白菜花粉发育相关基因BcMF13和BcMF14的分离及其功能验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
十字花科蔬菜是我国栽培面积最大、总产量最高、杂种优势利用最为普遍的蔬菜之一。发掘和创建其雄性不育系在生产实践中具有重要意义,一直以来深受人们重视。但是,雄性不育的产生机制仍然是一个尚未完全解开的谜,目前对其的认识是零散和不完全的,许多问题还有待深入研究。花粉发育相关基因的克隆和分析有助于通过反义技术等阻断与花粉发育有关基因的表达从而获得雄性不育植株。这些分子生物学理论与技术的应用,不仅为最终阐明植物雄性不育机制提供了条件。也将大大推动十字花科作物和其他农作物杂种优势的有效应用。本实验室采用cDNA-AFLP技术从白菜(Brassica campestris L.ssp.chinensis Markino,syn.B.rapa ssp.chinensis)减数分裂胞质分裂突变体mmc(male meiotic cytokinesis)的野生型(可育株)中分离到两个与花粉育性密切相关的差异片段A8T4和A9T15,本研究以其为研究对象,通过PCR扩增方法对其基因组全长和cDNA全长进行克隆、鉴定,以及蛋白质结构和功能的预测,并以十字花科不同种属的植物为材料进行同源序列克隆、鉴定,并构建分子进化树,探讨其进化关系。并运用反义和RNA干涉技术,对菜心[B.campestris L.ssp.chinensis Markino var.parachinensis(Bailey)Tsen et Lee]进行转化,以获得这两个基因功能缺失突变体,从而分析其在花粉发育进程中的生物学功能。获得的主要结果如下:
     (1)根据差异片段A8T4和A9T15序列设计引物,利用RACE技术获得花粉发育相关基因的cDNA和DNA序列全长,分别命名为Brassica campestris Male Fertility 13(BcMF13)和Brussicacampestris Male Fertility 14(BcMF14)。序列分析表明,BcMF13的cDNA序列全长为600bp,含有2个外显子和1个长度为106bp的内含子。cDNA序列的最大开放阅读框(open reading frame,ORF)为222bp,编码73个氨基酸。在GenBank数据库中没有发现与BcMF13同源性很高的基因,表明BcMF13是一个新基因。BcMF13在可育株系‘Bajh97-01/B'的的Ⅳ~Ⅴ级花蕾中特异表达,尤其在雄蕊中表达量很高,在不育株系‘Bajh97-01A'中不表达,并且EST数据库中相似性很高的序列都来源于芸薹属的生殖器官,因此初步推断BcMF13很可能参与芸薹属花粉的发育过程。BcMF14的ORF为240个碱基,编码79个氨基酸,软件分析表明BcMF14的核酸序列和编码的BcMF14序列均符合RALF的特征,表明该基因是白菜中快速碱化因子类信号分子。
     (2)根据BcMF13的全长序列设计引物,在十字花科芸薹属植物的8个物种中克隆到BcMF13的同源序列,BcMF13同源基因在核苷酸水平和氨基酸水平相似性分别为80.0%~96.9%和96.7%~99.9%。在序列同源比对的基础上,基于Kimura双参数距离,构建了BcMF13同源基因在芸薹属植物8个物种中的NJ、ME和MP分子进化树,3种分子树的拓扑图总体趋势相同,有较高的一致性,表明用BcMF13序列得到的系统树能客观地反映BcMF13类基因在这些物种中的进化关系。
     (3)根据白菜BcMF14的全长序列设计引物,分别在十字花科5个属17份材料中扩增到BcMF14的同源序列,表明该基因在十字花科植物中广泛存在,进一步扩大了快速碱化因子的基因家族成员。并且这17个同源基因在核苷酸水平和氨基酸水平均有很高的相似性,编码的氨基酸都含有快速碱化因子蛋白的特征:一个保守的“YIXY”区和4个保守的半胱氨酸残基。说明该基因在十字花科植物中进化速度较慢,它们可能在其发育过程中发挥重要的作用。
     (4)利用BcMF13构建了含有组成型启动子CaMV35S的RNA反义载体pBI35S-AMF13和干涉载体pBI35S-RMF13,并利用农杆菌介导的方法将构建的BcMF13反义载体和干涉载体导入菜心中,分别获得了BcMF13的反义和干涉菜心转基因植株。利用BcMF14构建了含有组成型启动子CaMV35S的RNA反义载体pBI35S-AMF14和含有绒毡层特异表达启动子BcA9的RNA反义载体pBIBcA9-AMF14,并利用农杆菌介导的方法将构建的BcMF14的反义载体导入菜心中,获得了反义BcMF14菜心转基因植株。
     (5)用BcMF13 cDNA序列作探针的Northern杂交结果表明,BcMF13在含有CaMV35S启动子的反义载体和干涉载体的菜心转基因植株花蕾中的表达比对照都有降低,而干涉载体比反义载体对BcMF13表达水平的降低程度要大一些,说明干涉技术对白菜BcMF13的沉默效果要好于反义技术。透射电镜观察发现BcMF13受到反义和干涉抑制后,使花粉的发育在减数分裂前期就出现异常,在四分体时期小孢子和绒毡层细胞受到严重影响,从而导致正常的成熟花粉数量锐减。花粉萌发实验表明,pBI35S-AMF13菜心转基因植株花粉的萌发率为34.23%,显著低于对照的78.17%,而扫描电镜下的花粉畸形率达到54.66%。这种情况在转干涉基因的菜心植株中更明显:pBI35S-RMF13菜心转基因植株花粉的萌发率只有26.27%;花粉畸形率比转反义基因的稍高,达到57.55%。柱头萌发比体外萌发更能说明花粉正常与否,对受精后的柱头进行苯胺蓝染色观察发现转基因菜心的花粉管在柱头中的生长速度明显减慢。
     (6)用BcMF14 300-bp长的cDNA序列作探针,对菜心转基因植株大花蕾的Northern杂交结果表明,BcMF14在含有不同启动子反义载体的转基因菜心中的表达都受到不同程度的抑制,其中pBIBcA9-AMF14比pBI35S-AMF14的反义转基因植株中的表达量降低幅度更明显,说明BcA9启动子对BcMF14反义基因在花蕾中的启动效果要优于CaMV35S启动子。BcMF14的表达受到了抑制,一方面说明BcMF14为一在花粉中起作用的RALF基因,另一方面也验证了CaMV35S启动子在菜心花粉中具有启动活性。在对菜心转BcMF14反义基因植株和转空载体对照植株的细胞学观察和透射电镜的观察中均发现,转基因植株与对照株在四分体时期以前的小孢子发育阶段没有明显差别,而两种转基因菜心花粉在发育到四分体阶段都出现异常,说明BcMF14很可能作用在白菜小孢子发育的四分体时期。BcMF14除了直接影响小孢子发育以外,还对绒毡层的发育产生了影响。推测BcMF14基因在小孢子和绒毡层之间的信号、物质联络中有一定的作用。pBI35S-AMF14、pBIBcA9-AMF14反义载体菜心转基因植株花粉在扫描电镜下的花粉畸形率分别为48.95%和51.2%,花粉的体外萌发率分别为44.39%和26.09%,花粉在柱头上的萌发和对照相比,只有部分花粉管能生长到达花柱底部,这表明反义技术使得BcMF14的表达量降低,导致花粉发育异常,产生大量畸形花粉,最终导到花粉萌发率下降。这表明快速碱化因子类基因家族中的确存在一些调控植物花粉发育的RALF信号分子。这与Bedinger等对在番茄花粉中特异表达的PRALF基因进行研究结果相吻合,PRALF或BcMF14的过量或缺失表达都能引起花粉萌发异常,进而影响花粉管的生长。
Cruciferae crops is one of the vegetable crops species of the highest yield and cultivated most widely as well as is a kind of crops of the most successful in utilizing of heterosis in China. In recent years, an increasingly amount of research has been devoted to the molecular biology of research on the plant breeding of the male sterile line and the basis for application in Brassica crops. However, the mechanism of the plant male sterility is not demonstrated adequately. A lot of questions remain unknown. The cloning and characterization of pollen development related genes is important to analysis the mechanism of male sterility in Cruciferae and construct male sterility line. Along with the development of molecular biological theories and methods, it can provide powerful tools to study on the molecular mechanism of plant male sterility and drive the heterosis to apply in the production in Brassica crops and others. Recently, by cDNA-AFLP technology, two differential fragments named A8T4 and A9T15, 191 bp and 201 bp respectively in length, were obtained in our lab from the wild type of male meiotic cytokinesis (mmc) mutant (male sterile plant) of Brassica campestris L. ssp. chinensis Markino (syn. B. rapa ssp. chinensis). The genes which the two fragments belonging to were named BcMF13 and BcMF14. Earlier study had proved that BcMF13 was a new gene while BcMF14 shared a high homology to Rapid Alkalinization Factor (RALF) genes. In this study, the full length cDNA and DNA of pollen development related BcMF13 and BcMF14 gene was cloned and characterized from Chinese cabbage pak-choi (B. campestris L. ssp. chinensis Makino). Homologous genes with the BcMF13 and BcMF14 were cloned from deferent species in deferent genera of Cruciferae by PCR amplification. Phylogenetic trees of BcMF13 and BcMF14 gene were constructed based on the alignment of their homologous genes, respectively. They provided important molecular data for the study of Cruciferae evolution. Meanwhile, RNAi or anti-sense RNA technology were applied to transforme B. campestris L. ssp. chinensis Markino var. parachinensis (Bailey) Tsen et Lee by agrobacterium-mediated method to obtain their loss-of-function mutant to analyze BcMF13 and BcMF14 function in pollen development process. The major study results were as follows:
     (1) On the basis of cDNA-AFLP differential fragments A8T4 and A9T15, the cDNA sequence of BcMF13 and BcMF14 were isolated by rapid amplification of cDNA ends (RACE) . Subsequently, their DNA sequences were obtained. Sequence comparison indicated that the BcMF13 cDNA was 600 bp and was interrupted by a 106-bp intron. The largest open reading frame (ORF) of BcMF13 was composed of 222 bp with a deduced 73 amino acids. Homology analysis showed that BcMF13 shared no similarity with any known genes. So BcMF13 was a new gene. BcMF13 exclusively expressed in stage four and five flower buds, open flowers and silique of fertile line, strongly expressed in stamens with no expression in sterility. And many cDNA sequences from the ESTs share high similarity with BcMF13 all came from the generative organs in Brassica. So we suggested that BcMF13 most possibly had a role in pollen development of Brassica. ORF of BcMF14 was composed of 240 bp with a deduced 79 amino acids. Homology comparison and phylogenetic analysis showed that BcMF14 had relation to rapid alkalinization factor gene (RALF). The BcMF14 amino acids had the characteristic of RALF proteins.
     (2) BcMF13 Homologous genes were isolated from 8 species of Cruciferae by PCR amplification. The identification ratio of nucli acid and amino acid were 80.0% ~ 96.9% and 96.7% ~ 99.9%.The Clustal X program was used to align the homologous sequences from different 8 species of Cruciferae and to produce NJ, ME and MP phylogentic trees based on distances estimated by the two-parameter method with ] 000 bootstrap samples using MEGA 2;1. The result shows three kinds of phylogentic trees have the strictly accordant topologic structure which means the BcMF13 molecular tree can reflect the evolution of BcMF13.
     (3) BcMF14 Homologous genes were isolated from 17 species of Cruciferae by PCR amplification. The increased the RALF gene families into some new species. The entification ratio of nucli acid and amino acid were high. The proteins they coded all had the characteristic of RALF: one conserved 'YIXY' region and four conserved C residues. These indicated the BcMF14 evolution was slow and it maybe has important role in Cruciferae.
     (4) The antisense expression vector and RNAi expression vector of BcMF13 containing constitutive promoter CaMV35S were constructed, respectively, named pBI35S-AMF13 and pBI35S-RMF13. By agrobacterium-mediated method, their flowering Chinese cabbage transgenic plantlets were obtained. The antisense expression vector of BcMF14 containing constitutive promoter CaMV35S and tapetum-expressed promoter BcA9 were constructed, respectively, named pBI35S-AMF14 and pBIBcA9-AMF14. By agrobacterium-mediated method, their flowering Chinese cabbage transgenic plantlets were obtained.
     (5) Using cDNA of BcMF13 as probe, the Northern hybridization results showed that the expression of BcMF13 in pBI35S-AMF13 and pBI35S-RMF13 transforments was sharply inhibited. And the expression of BcMF13 in pBI35S-RMF13 transforments was much lower than the pBI35S-AMF13 transforments. It suggested that the RNA interference technology was better than antisense technology on the BcMF13 gene in Brassica. Investigation of pollen morphology of transgenic plants of flower Chinese cabbage obtained from BcMF14 anti-sense RNA vector by transition electron microscope indicated that when BcMF13 was depressed pollen development got abnormal early in meiosis. The microspore and tapetum were affected. All these greatly reduced the number of mature pollens. As far as pBI35S-AMF13 was concerned, 34.23% pollen germination ratio in vitro and 54.66% pollen abnormality by scan electron microscope. This is more serious in the RNA interference technology, with 26.27% pollen germination ratio in vitro and 57.55% pollen abnormality in the pBI35S-RMF13. Whether pollen germination was normal or not should be confirmed by further in pistil experiment. Moreover, pollen germination in stained pistil by aniline blue after pollination 24 h by fluorescence microscope was examined. The results also indicate that the expression of BcMF13 was inhibited by the two methods, which resulted in adhesion failure of pollen to pistil and germination ration of pollen accordingly decreased.
     (6) Using 300-bp cDNA of BcMF14 as probe, the Northern hybridization was performed in flower buds of pBI35S-AMF14 and pBIBcA9-AMF14. The result showed that the expression of BcMF14 was caught and decreased sharply in comparison to positive CK, and the expression in pBIBcA9-AMF14 was more decreased than in pBI35S-AMF14, which proved that BcMF14 was a pollen-expressed RALF. This illuminated CaMV35S promoter had activity in pollen, and the activity was less than BcA9, which was consistent with the study results of our lab's transition electron microscope experiments and tissue investigation showed that BcMF14. worked during tetrad. It worked on microspore and tapetum and might have a role in the interaction between the two kinds of cells. In pBI35S-AMF14,48.95% pollen germination ratio in vitro and 26.09% pollen abnormality by scan electron microscope also confirmed that CaMV35S promoter acted in pollen, which was 51.2% and 44.39% in pBIBcA9-AMF14. Moreover, pollen germination in pistil was examined. The results also indicate that less pollen tube could get into the bottom of the pistil on contrast to the control. This tells us that the antisense technology could decrease the expression of BcMF14 and made pollen development abnormal, with many freaky pollens and the co-identity between the pollen and the pistil was affected. All these indicated that in the RALF families there were some signal molecule had certain role in pollen development. These inosculated with Bedinger's discovering, the over-expression or depress of BcMF14 and PRALF could disturb pollen development and restrain the pollen tubes' growing remarkably.
引文
曹家树,曹寿椿,易清明.白菜及其相邻类群基因组DNA的RAPD分析.园艺学报,1995a,22(1):47-52
    曹家树,叶纨芝,张明,曾广文.白菜核雄性不育两用系花蕾的mRNA差别显示及其cDNA差异片段分析.浙江大学学报(农业与生命科学版),2001,27:596-599
    曹家树.中国白菜起源、演化和分类研究进展.园艺学年评.科学出版社,1996:1-21
    曹雅娟,王慧.连翘花粉发育的超微结构研究.北京师范大学学报(自然科学版),1992,28(4):548-553
    陈建南,傅鸿仪.HSP70反义RNA对高粱花粉的正常形成的影响.科学通报.1997,42(18):1993-1997
    陈建南,傅鸿仪.HSP70基因表达对高粱育性的影响.发育与生殖生物学报(英文版).1998a,7(2):51-62
    陈建南,傅鸿仪.高粱细胞质雄性不育与HSC70 mRNA的关系.科学通报.1998b,43(23):2525-2530
    陈贤丰,梁承邺.水稻不育花药中H_2O_2的积累与膜脂过氧化的加剧.植物生理学报,1991,17(1):44-48
    郭丽娟,申书兴,张成合,陈雪平,武占会.茄子雄性不育系的可溶性糖、淀粉、氨基酸分析.河北农业大学学报,2004,27(4):34-36,92
    郝岗平,杨清.植物胞质雄性不育及育性恢复的分子机制研究进展.亚热带植物科学.2002,31(3)78-84
    胡适宜.被子植物生殖生物学.北京:高等教育出版社,2005
    胡适宜.被子植物有性生殖图谱.科学出版社,2000
    黄鹂.白菜三种雄性不育系与保持系花蕾转录组差异分析及三个花粉发育相关基因功能鉴定.博士学位论文,2007
    康春生,浦佩玉,贾志凡,张志勇,王广秀,刘晓智,裘明哲.反义AKT2 RNA抑制U251胶质瘤细胞生长的体内外研究.中华神经医学杂志.2007,6(2):113-117
    孔祥海.植物细胞质雄性不育分子生物学研究进展.中国生态农业学报.2004,12(3):35-39
    寇晓虹,朱本忠,田慧琴,石英,罗云波.多聚半乳糖醛酸酶(PG)反义基因对加工番茄果实成熟的影响.中国食品学报.2003,3(4):27-32
    李竞雄,周洪生.作物雄性不育及杂种优势研究进展(Ⅰ).北京:中国农业出版社,1996:136-144
    李鹏,牟秋焕,刘保申.植物细胞质雄性不育分子机理研究.山东科学.2005,18(4):31-36,41
    李仕贵,周开达,朱立煌.水稻温敏显性核不育基因的遗传分析和分子标记定位.科学通报.1999,44(5):955-958
    李素平,陈利平,陈贵华.辣(甜)椒雄性不育研究进展.内蒙古农业科技,1999,(6):28-31
    李莹莹,魏佑营,张瑞华,吕杰.辣椒雄性不育系与可育系小孢子发生的细胞学观察.植物研究,2006,26(4):411-415
    利容千.几种农作物雄性不育的细胞学研究.武汉大学学报.1978,1:83-96
    梁艳荣,胡小红,陈源闽,王勇,张艳萍,张少英.胡萝卜雄性不育系生理生化特性研究.华北农学报,2006,21(3):19-22
    梁燕,王鸣.Ogucms结球白菜雄性不育系研究.西北农业学报,1994 b,3(2):14-16
    梁燕,王鸣.结球白菜胞质雄性不育花药和花粉的发育.西北农业大学学报,1994 a,22(3):19-23
    凌杏元,朱英国.植物细胞质雄性不育分子机理研究进展.植物学通报.2000,17(4):319-332
    刘宏伟,张改生,王军卫,王小利,方振武.GENESIS诱导小麦雄性不育与幼穗中乙烯含量的关系.西北农林科技大学学报.2003,31(3):39-42
    刘娟旭,余义勋,孟成民,曹必好,雷建军.雄性不育基因工程及其在园艺植物中的应用.生物技术通讯.2005, 16(6):696-699
    刘穆.种子植物形态解剖学导论.科学出版社,2004
    刘忠松:官春云,陈社员.植物雄性不育机理的研究及应用.北京:中国农业大学出版社,2001
    陆翠华,陆静贤,华国平,朱净,王华,黄介飞,顾美珍,周倩,倪润洲.反义抑制结缔组织生长因子对实验性肝纤维化的影响.中华肝脏病杂志.2007,15(2):118-121
    逯红栋,巩振辉,黄炜,李大伟,赵尊练.9个辣椒雄性不育材料花蕾生理生化特性研究.西北植物学报,2006,26(4):0832-0835
    马庆虎,宋艳茹.多聚半乳糖醛酸酶反义基因在转基因番茄中的表达.生物多样性.1995,3(1):21-25
    孟博,朱大海.反义RNA技术的应用与进展.国外医学(遗传学分册).2001,24(6):289-292
    孟金陵,刘定富,罗鹏.植物生殖遗传学.科学出版社,1995,147-202
    潘坤清.水稻野败型雄性不育系花粉败育的解剖学和细胞学观察.遗传学报,1979,6(2):211-215
    宋江华.白菜花粉发育相关基因BcMF11和BcMF12的克隆、表达及其功能验证.博士学位论文,2007
    孙日飞,方智远,张淑江,李菲,钮心恪,吴飞燕.萝卜胞质大白菜雄性不育系的生化分析.园艺学报,2000,27(3):187-192
    孙日飞,吴飞燕,司家钢,李晓鸥,钮心恪.大白菜核雄性不育两用系小孢子发生的细胞形态学研究.园艺学报.1995,22(2):153-156
    汤郡,马桂璋,莫薇,谭学方.Epstein-Barr病毒LMP-exonl反义表达载体对NPC细胞生长的抑制作用.热带医学杂志.2002,2(3):233-236
    田福发,徐跃进,袁黎,陈建军.红菜薹雄性不育系花药败育的细胞形态学观察.武汉植物学研究,2004,22(3):269-272
    田志宏.油菜细胞质雄性不育的分子机理及其应用研究进展.湖北农学院学报.2002,22(4):368-372
    王伏林,王远山,胡张华.反义RNA在植物基因工程中的应用.生物技术.2003,13(1):34-35
    王福青,李敏,曲咏梅.大白菜雄性败育的显微结构观察.植物学通报,2001a,18(1):105-109
    王福青,王翠兰,宋再华.大白菜雄性不育系88-3花药和花粉发育的细胞形态学观察.西北植物学报,2001b,21(3):570-574
    王玲平.十字花科植物CYP86MF同源基因的结构、功能及进化关系研究.博士学位论文,2004
    王台,童哲.光周期敏核不育水稻农垦58S不育花药的显微结构变化.作物学报,1992,8(2):132-136
    王永勤,曹家树,符庆功,余小林,叶纨芝,向旬.利用cDNA-AFLP技术分析白菜核雄性不育两用系的表达差异 中国农业科学(英文)2002,2:195-199
    王永勤,曹家树,虞慧芳,叶纨芝,余小林,向珣,卢钢.白菜核雄性不育两用系生理生化特性的分析.园艺学报,2003,30(2):212-214
    王中凤,应铁进.植物乙烯信号转导研究进展.植物生理与分子生物学学报.2004,30(6):601-608
    危文亮,王汉中,刘贵华.甘蓝型油菜细胞质雄性不育系NCa花药发育的细胞学观察.中国农业科学 2005,38(6):1232-1237
    魏玉凝,李曜东.表达多聚半乳糖醛酸酶反义RNA的转基因番茄分析.植物学报(英文版).1996,38(3):245-248
    夏涛,刘纪鳞.玉米细胞质雄性不育性与组织抗氰呼吸关系的研究.中国农业科学,1988,21(1)39-43
    夏涛.玉米雄性不育的生理生化研究进展.中国科学技术学会首届青年学术年会论文集(农科分册)北京:中国科学技术出版社,1992:128-132
    谢潮添,杨延红,邱义兰,葛丽丽,田惠桥.白菜核雄性不育系可育和不育花药中Ca~(2+)的分布.植物生理与分子生物学学报.2005,(6):615-624
    徐奇元,韩翠芳,杨经略.糜子绒毡层及雄配子体的超微结构.内蒙古农牧学院学报,1994,15(2):51-55
    徐祖元,周玲革,姜金波,徐乃瑜.新型小麦胞质不育系花粉败育的细胞学观察.武汉植物学研究,1998,16(3):193-196
    杨焕杰,田国伟,申家恒.桔梗小孢子发生和雄配子体发育的细胞化学研究.哈尔滨师范大学自然科学学报,1996,
    杨晓云,曹寿椿.不结球白菜波里马胞质雄性不育系花药发育的细胞形态学研究.南京农业大学学报,1997,20(3):36-43
    叶纨芝,曹家树,余小林。崔辉梅,黄鹂,向珣,陶甦.白菜细胞核雄性不育两用系的细胞学观察.细胞生物学杂志,2004,26(5):516-522
    叶志彪,李汉霞.两个反义基因在番茄工程植株中的生理抑制效应分析.植物生理学报.1996.22(2):157-160
    游捷,赵蓉,刘礼斌,林建银.晚期糖化终产物受体反义RNA腺相关病毒载体的构建及在肾脏系膜细胞中表达.免疫学杂志.2007,23(2):135-138
    余凤群,傅廷栋.甘蓝型油菜几个雄性不育系花药发育的细胞形态学研究.武汉植物学研究.1990.8(3):209-216
    余凤群.甘蓝型油菜几个品种花药发育的细胞学研究.中国油料.1988,4:23-25
    余小林.白菜雄性不育相关基因CYP86MF的功能验证及其人工不育系的创建.博士学位论文,2002
    袁芳,刘映红,段绍斌,彭佑铭,刘伏友.反义转化生长因子β1基因对大鼠肾系膜细胞FN和PAI-1分泌的影响.中国医学工程.2007,15(1):25-27
    袁美,杨光圣,傅廷栋.油菜细胞质雄性不育的分子生物学研究进展.中国油料作物学报.2002,24(2)87-90
    张明.白菜核雄性不育基因的分了标记及遗传分析.浙江大学硕士学位论文.2000
    张明永,粱承邺,黄毓文等.水稻细胞质雄性不育系与保持系的呼吸途径比较.植物生理学报.1998,24(1):55-58
    张能刚,周燮.三种酸性内源激素与农垦58s育性转换的关系.南京农业大学学报.1992,15(3):7-12
    张强.多聚半乳糖醛酸酶基因BcMF6和花粉外壁蛋白基因BcMF5的分离及其功能验证.博士学位论文.2006
    张弢.十字花科植物BcMF2和BcMF4同源基因的克隆、表达及进化关系的研究.博士学位论文,2005
    张晓海,扈廷茂.番茄ACC合成酶基因的反义RNA-核酶嵌合基因植物表达载体的构建及对番茄的转化.内蒙古大学学报(自然科学版).2001.32(1):74-78
    张英涛,杨海东,陈朱希昭.绒毡层研究进展.植物学通撒,1996,13(4):6-13
    赵军良,梁爱华.高等植物细胞质雄性不育分子机理的研究进展.西北植物学报.2004,24(8):1543-1546
    左石,刘民锋,罗剑,徐立宁,陈勇军,唐启彬,邹声泉.反义调控DNA甲基转移酶1基因对人胆管癌细胞生长的抑制效应.中华肝胆外科杂志.2007,13(3):196-199
    Aarts M,Dirkse W G,Stiekema W J.Transposon tagging of a male sterility gene in Arabidopsis.Nature.1993.363:715-717
    Agashe B,Prasad C K,Siddiqi I.Identification and analysis of DYAD:a gene required for meiotic chromosome organization and female meiotic progression in Arabidopsis.Development,2002,129:3935-3943
    Aitou N,Nei M.The Neighbor-joining method:A new method for reconstructing phylogenetic trees.Molecular Biology and Evolution,1987,4:406-425
    Albertsen M C,Phillips R L.Developmental cytology of 13 genetic male-sterile loci in maize.Canadian Journal of Genetics and Cytology,1981,23:195-208
    Andrew G F,Ravi S K,Peder Z.Functional genomic analysis of C.elegans chromosome I by systematic RNA interference.Nature,2000,408:325-330
    Aoki Y,Cioca D P,Oidaira H,Kamiya J,Kiyosawa K.RNA interference may be more potent than antiscnsc RNA in human cancer cell lines.Clinical and Experimental Pharmacology and Physiology,2003,30:96-102
    Atkinson R G,Cipriani G,Whittaker D J,Gardner R C.The allopolyploid origin of kiwifruit(Actinidia deliciosa).Plant Systematics and Evolution,1997,205:111-124
    Bachem C W B,Hoeven R S.V D,Bruijn Z M,Vreugdenhill D,Zabeau M,Visser R G F,De B S M.Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. The Plant Journal, 1996, 9: 745-753
    Bachem C W B, Oomen R J F J, Visser R G F. Transcript imaging with cDNA-AFLP: a step-by-step protocol. Plain Molecular Biology Reporter, 1998,16:157-173
    
    Bancroft I. Duplicate and diverge: the evolution of plant genome microstructure. Trends in Genetics, 2001, 17 (2): 89-93
    Beals T P, Goldberg R B. A novel cell ablation strategy blocks tobacco anther dehiscence. The Plant cell, 1997. 9: 1527-1545
    Bettencourt R. Hemolin genesilencing by dsRNA injected into Cecropia pupae is to next generation embryos. Insect Molecular Biology, 2002,11(3):267~271
    Bhandari N N. The Microsporangium. In: Johri B M (ed), Embryology of Angiosperms. Springer-Verlag, Berlin, Heidelberg, 1984: 53-121
    Blackmore S, Barnes S H. Pollen wall development in angiosperms. In Microspores: Evolution and Ontogeny, S Blackmore and R B Knox, eds, London: Academic Press. 1990,173-192
    Blackmore S. Pollen and spores: microscopic keys to understanding the earth's biodiversity. Plant Systematics and Evolution, 2007,263: 3-12
    Bleecker A B, Kende H. Ethylene: A gaseous signalmolecule in plants. Annual Review of Cell and Developmental Biology, 2000,16:1-18
    Breda N P, Heather A O, Kenneth A F, Christopher A M. Characterization of three male-sterile mutants of Arabidopsis thaliana exhibiting alterations in meiosis. Sexual Plant Reproduction, 1996,9: 1-16
    Brenda L B. Double-stranded RNA as a template for gene silencing. Cell, 2000, 101: 235-238
    Brown S M, Crouch M L. Characterization of a gene family abundantly expressed in Oenothera organensis pollen that shows sequence similarity to polygalacturonase. The Plant Cell, 1990, 2: 263-274
    Cameron F H. Multiple domains in a ribozymes construct confer increased suppressive activity in monkey cells. Antisense Research and Development, 1994, 4(2): 87-94
    Canales, C, Bhatt A M, Scott R, Dickinson H. EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis. Current Biology, 2002, 12: 1718-1727
    Carpenter J L, Ploense S E, Snustad D P, Silflow C D. Preferential Expression of an α-Tubulin Gene of Arabidopsis in Pollen. The Plant Cell, 1992,4: 557-571
    Cerutti L, Mian N, Bateman A. Domains in gene silencing and cell differentiation proteins: the novel PA/ domain and redefinition of the Piwi domain . Trends in Biochemical Sciences. 2000, 25: 481-482
    Chaudhury A M. Nuclear genes controlling male sterility. The Plant Cell, 1993, 5: 1277-1283
    Chen C, Marcus A, Li W, Hu Y, Calzada J, Grossniklaus U, Cyr R, Ma H. The Arabidopsis ATK1 gene is required for spindle morphogenesis in male meiosis. Development, 2002,129: 2401-2409
    Cheng J Q, Ruggeri B, Klein W M, Sonoda G, Altomare DA, Watson DK, Testa JR. Amplifieation of AKT2 in human pancreatic cells and inhibition of AKT2 expression and tumorigenicity by antisense RNA. Proceedings of the National Academy of Sciences of the United States of America, 1996,93(8):3636~3641
    Chuang C F, Meyerowitz E M. Specific and heritable genetic interference by double-strand RNA in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 2000,97(9): 4985-4990
    Chuang C F, Meyerowitz E M. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97 (9): 4985-4990
    Connett M B, Hanson M R. Differential mitochondrial electron transport through the cyanide-sensitive and cyanide-insensitive pathways in isonuclear lines of cytoplasmic male-sterile, male fertile and restored Petunia. Plant Physiology, 1990,93:1634-640
    
    Cordero de Mesa M, Jimenez B S, Pliego A F. Agrobacterium Cells as Microprojectile Coating: A Novel Approach to Enhance Stable Transformation Rates in Strawberry. Australia Journal of Plant Physiology, 2000, 27 (12): 1093-1100
    Das S, Rajagopal J, Bhatia S, Srivastava P S, Lakshmikumaran M. Assessment of genetic variation within Brassica campestris cultivars using amplified fragment length polymorphic DNA markers. Journal of Biosciences, 1999. 24: 433-440
    Dawson J, Wilson Z A, Aarts M G M. Microspore and pollen development in six male sterile mutants of Arabidopsis thaliana. Canadian Journal of Botany, 1993, 70: 629-638
    Dearnaley J D W and Daggard G A. Expression of a polygalacturonase enzyme in germinating pollen of Brassica napus. Sexual Plant Reproduction, 2001, (13)5: 265-271
    Dellagi A, Birch P R J, Heilbrom J. cDNA-AFLP analysis of differential Gene-Expression in the Prokaryotic Plant Pathogen Erwinia carotovora. Micribiology, 2000,146:165-171
    Demeke T. Adams R P, Chibbar R. Potential taxonomic use of random amplified polymorphic DNA (RAPD): A case study in Brassica. Theoretical and Applied Genetics, 1992,84: 984-990
    Dickinson H G, Sheldon J M. The generation of patterning at the plasma membrane of the young microspore of lilium. In: Blackmore S, Fergusou I K, eds, Pollen and spores, Form and function, London, Academic Press, 1986: 1-17
    Doughty J, Dixon S, Hiscock S J, Willis A C, Parkin I A, Dickinson H G. PCP-AI, a defensin-like Brassica pollen coat protein that binds the S locus glycoprotein, is the product of gametophytic gene expression. The Plant Cell. 1998. 10: 1333-1347
    Doughty J, Hedderson F, McCubin A, Dickinson H G. Interaction between a coating-borne peptide of the Brassica pollen grain and stigmatic-S (self-incompatibility)-locus specific glycoproteins. Proceedings of the National Academy of Sciences of the United States of America, 1993,90:467-471
    Doutriaux M P, Couteau F, Bergounioux C, White C. Isolation and characterization of the RAD5I and DMCI homologs from Arabidopsis thaliana. Molecular Genetics and Genomics, 1998, 257:283-291
    Doyle J J, Doyle J L. The cytosolic glutamine synthetse gene family in leguminosae: Gene phylogeny and evolution of its role in nodulation. American Journal of Botany, 1997, 84S: 188
    Eady C, Lindsey K, Twell D. The significance of microspore division and division symmetry for vegetative cell-specific transcription and generative cell differentiation, the Plant Cell, 1995,7:65-74
    Elbashir S M, Martinez J, Pakaniowska A, Lendeckel W, Tuschl T. Functional anatomy of siRNA for mediating efficient RNAi in Drosophila Melanogaster embryolysate. The EMBO Journal, 2001,20:6877-6888
    Emily B, Amy A C, Scott M H, Gregory J H. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 2001,409:363-366
    Fan L, Wang Y, Wang H, Wu W. In vitro Arabidopsis pollen germination and characterization of inward potassium currents in Arabidopsis pollen grain protoplasts. The Journal of Experimental Botany, 2001, 52: 1603-1614
    Fennell A, Hauptmann R. Electroporation and PEG delivery of DNA into maize microspores. Plant Cell Report. 1992. 11:567-570
    
    Fernandez M C, Rodriguez-Garcia M I. Pollen wall development in Olea europaea L. New Phytologist, 1988.108: 91 -99
    Fire A, Xu S Q, Muontgomerv M K, Montgomery M K, Kostas S A, Driver S E, Mello CC. Potent and specific genetic interference by double-stranded RNA tn Caenorhabditis elegans. Nature, 1998,391: 806-811
    Franklin T N, Bryant J. P4C1-Plant Reproductive Biology. Elsevier Abstracts, 2002: S125-S137
    Franssen H J, Bisseling T. Peptide signaling in plants. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98 (23): 12855-12856
    Gallego M E, White C I. RAD50 function is essential for telomere maintenance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98: 1711-1716
    Germain H, Chevalier E, Caron S, Matton DP. Characterization of five RALF-like genes from Solanum chacoense provides support for a developmental role in plants. Planta. 2005,220(3 ):447-454
    Goldberg R B, Beals T P, Sanders P M. Anther development:basic principles and practical applications. The Plant Cell. 1993,5:1217-1229
    
    Gorou H. RNA silencing in plants: a shortcut to functional analysis. Differentiation, 2004, 72: 65- 73
    Gourret J P, Delourme R, Renard M. Expression of ogu cytoplasmic male srerility in cybrids of Brassica napus. Theoretical and Applied Genetics, 1992, 83: 549-556
    Grelon M, Vezon D, Gendrot G, Pelletier G AtSPO11-1 is necessary for efficient meiotic recombination in plants. The EMBO Journal, 2001,20: 589-600
    Habu Y, Fukada-Tanaka S, Hisetomi Y, Iida S. Amplified restriction fragment length polymorphism based mRNA fingerprinting using a single restriction enzyme that recognizes a 4-bp sequence. Biochemical and Biophysical Research Communications, 1997,234:516-521
    
    Hadfeid K, Bennet A, Polygalacturonases: many genes in search of a function. Plant Physiology, 1998, 117: 337-343
    Hammond S M, Berstein E, Beach D, Hannon G J. An RNA-directed nuclease mediates posttranscriplional gene silencing in Drosophila cells. Nature, 2000,404:293-296
    Haruta M, Constabel C P. Rapid alkalinization factors in Poplar cell cultures, peptide isolation, cDNA cloning and differential expression in leaves and methyl Jasmonate-treated cells. Plant Physiology, 2003, 131 (2): 814-823
    Higginson T, Li S F, Parish R W. AtMYB103 regulates tapetum and trichome development in Arabidopsis thaliana. The Plant Journal, 2003,35(2): 177-192
    Hiscock S J, Doughty J, Willis A C, Dickinson H G. A 7-kDa pollen coating-borne peptide from Brassica napus interacts with S-locus glycoprotein and S-locus related glycoprotein. Planta, 1995,196:367~374
    Holen T, Amarzguioui M, Wiiger M, Babaie E. Postional effect of short interferencing RNAs targeting the human coagulation trigger tissue factor. Nucleic Acid Research, 2002, 30(8): 1757-1766
    
    Honys D, Twell D. Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiology. 2003. 132: 640-652
    Horvitz R, Herskowitz I. Mechanisms of asymmetric cell division: Two Bs or not two Bs, that is the question. Cell. 1992. 68:237-255
    Izhar S, Frankel R. Mechanism of male sterility in Petunia: The relationship between pH. callase activity in the anthers. and the breakdown of the microsporogenesis. Theoretical and Applied Genetics, 1971, 141: 104-108
    Jacobsen S E, Shi L F, Zhan G X, Neil E. Olszewski. Gibberellin-induced changes in the translatable mRNA populations of stamens and shoots of gibberellin-deficient tomato. Planta, 1994, 192:372-378
    Jidong Liu, Michelle A C, Fabiola V R, Carolyn G M J, Michael T, Song J, Scott M H, Leemor J. Gregory J H. Argonaute2 Is the Catalytic Engine of Mammalian RNAi. Science, 2004,305(5689): 1437 - 1441
    Johnes J T, Rower H. A comparision the efficiency of differential display and cDNA-AFLP as a tool for the isolation of differentially expressed parasite genes. Fundamental and Applied Nemadity, 1998, 21: 81-88
    Kapoor S, Kobayashi A, Takatsuji H. Silencing of the tapetum-specific zinc finger gene TAZ1 causes premature degeneration of tapetum and pollen abortion in petunia. The Plant Cell, 2002, 14:2353-2367
    Kennerdell J R, Carthew R W. Heritable gene silencing in Drosophila using double-stranded RNA. Nature Biotechnology. 2000,18:896-898
    Kieber J, Rothenberg M, Roman G, Feldmann KA, EckerJR. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell, 1993, 72 (3): 427-441
    Kim, J. Improving the accuracy of phylogenetic estimation by combinating different methods. Sysematie Biology. 1993. 42:331-340
    Kishitani S, Konno N. Inhibitors of cyanide-insensitive respiratory pathway induce male sterility in broccoli (Brassica oleracea). Japanese Journal of Breeding, 1990,40:217-222
    
    Kittler R, Pelletier L, Ma C L, Poser I, Fischer S, Hyman A A, Buchholz F. RNA interference rescue by bacterial anilkial chromosome transgenesis in mammalian tissue culture cells. Proceedings of the National Academy of Sciences, 2005, 102(7):2396~2401
    Laser K D, Lerstern. Anatomy and cytology of microsporogenesis in cytoplasmic male sterile angiosperms. Botanical Review, 1972,38:424-454
    Lee J Y, Lee D H. Use of serial analysis of gene expression technology to reveal changes in gene expression in Arabidopsis pollen undergoing cold stress. Plant Physiol, 2003,132: 517-529
    Lee NS, Dohjima T, Bauer G, Li H, Li M J, Ehsani A, Salvaterra P, Rossi J. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nature Biotechnology. 2002.20:500-505
    Liu L C, Cao J S, Xiang X. Effects of silencing BcMF3 by RNAi on pollen development of flowering chinese cabbage. Acta Horticulturae Sinica, 2007,34:125-130
    Lottmann H, Vanselow J, Hessabi B, Walther R.The Tet-On system in transgenic mice: inhibition of the mouse pdx-1 gene activity by antisense RNA expression in pancreatic β-cells. Jourmal Molecul Medel, 2001, 79: 321-328
    Ma H. Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annual Review of Plant Biology, 2005,56:393-434
    Ma Y, Sakata K, Masuda M. Partial inhibition of pollen degradation by gibberellic acid in male sterile tomato mutants derived from cv. First (Lycopersicon esculentum Mill). Scientific Reports of the Faculty of griculture, Okayama University. 1999,88:57-63
    Maclintosh, G C, Wilkerson C, Green P J. Identification and analysis of Arabidopsis expressed sequence tags characteristic of non-coding RNAs. Plant Physiology, 2001,127 (3): 765-776
    Mascarenhas J P, Hamilton D A. Artifacts in the localization of GUS activity in anthers of petunia transformed with a CaMV35S-GUS construct. Plant Journal, 1992,2:405-408
    Mascarenhas J P. Gene activity during pollen development. Annual Review of Plant Physiology and Plant Molecular Biology, 1990,41:317-318
    Mascarenhas N T, Bashe D, Eisenberg A, Wiling R P, Xiao C M, Mascarenhas J P. Messenger RNAs in corn pollen and protein synthesis during germination and pollen tube growth. Theoretical and Applied Genetics, 1984. 68: 323-326
    Mathews S, Lavin M, Sharrock R A. Evolution of the phytochrome gene family and its utility for phylogenetic analyses of angiosperms. Annals of the Missouri Botanical Garden. 1995. 82: 296-321
    Matsubayashi Y, Yang H, Sakagami Y. Peptide signals and their receptors in higher plants. Trends in Plant Science, 2001, 6 (12): 573-577
    
    McCormick S. Control of male gametophyte development. The Plant Cell, 2004,16:42-153
    McCormick S. Male gametophyte development. The Plant cell, 1993, 5: 1265-1275
    Mercier R, Armstrong S J, Horlow C. The meiotic protein SWII is required for axial element formation and recombinationinitiation in Arabidopsis. Development, 2003,130: 3309-3318
    
    Mercier R, Vezon D, Bullier E, Motamayor J C, Sellier A, Lefevre F, Pelletier G, Horlow C. Switchl (SWII): a novel protein required for the establishment of sister chromatid cohesion and for bivalent formation at meiosis Genes and Development, 2001, 15: 1859-1871
    Michael J D, Carolas L, Williams B, Detection of foreign RNA:Implications for RNAi. Immunology and Cell Biology. 2005,83:224-228
    
    Miller A A, Dennis E S. The alcohal dehydrogenase genes of cotton. Plant molecular Biology, 1996,3: 897-904
    Miyagishi M, Taira K.U6 promoter driven siRNAs with four uridine 3' overhangs efficiently suppress targeted gene expression in mammalian cells. Nature Biotechnology, 2002, 20:497-500
    Morton B R, Gaut B, Clegg M T. Evolution of alcohol dehydrogenase gene in the palm and Grass Families. Proceedings of the National Academy of Sciences of the United States of America. 1996.94: 2415-2420
    
    Motamayor J C, Vezon D, Bajon C, Sauvanet A, Grandjean O, Marchand M. Bechtold N. Pelletier G. Horlow C .Switch (swil), an Arabidopsis thaliana mutant affected in the female meiotic switch. Sexual Plant Reproduction. 2000. 12: 209-218
    Muthukrishanan S., Chandra G R, Maxwell E S. Hormonal control of a-amylase gene expression in barley. Journal of Biological Chemistry, 1983,258:2370-2375
    Narayanan B A. Antisense RNA to the putative tumor-suppressor gene DCC transforms Rat-1 fibroblasts. Oncogene. 1992,7(3):553~561
    Nawaz-ul-Rehman M S, Mansoor S, Khan A A, Zafar Y, Briddon R W. RNAi-mediated male sterility of tobacco by silencing TA29. Molecular biotechnology, 2007, 36 (2): 159-165
    Nektarios T. Induction of RNA interference in Caenorhabditis elegans by RNAs derived from plants exhibiting post-transcriptional gene silencing. Nucleic Acids Research, 2002,30 (7): 1688-1694
    Nelson A, Roth D A, Johnson J D. Tobacco mosaic virus infection of transgenic Nicotiana plants is inhibited by antisense constructs directed at the 5' region of viral RNA. Gene, 1993,127(2): 227-232
    
    Nishihara M, Ito M, Tanaka I, Kyo M, Ono K, Irifune K. Morikawa H. Expression of the b-glucuronidasc gene in pollen of lily (Lilium longiflorum), tobacco (Nicotiana tabacum), Nicotiana rustica, and peony (Paeonia lactiflora) by particle bombardment. Plant Physiology, 1993,102:357-361
    Nykanen A, Hally B, Zamore P D. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell, 2001, 107: 300-321
    Okamoto K, Freundlich M. Mechanism for the autogenous control of the crp opron: Transcriptional inhibition by a divergent RNA transcript. Proceedings of the National Academy of Sciences of the United States of America. 1986. 83(14): 5000-5004
    Olsen A N, Mundy J, Skriver K. Peptomics, identification of novel cationic Arabidopsis peptides with conserved sequence motifs. In Silico Biology, 2002,2 (4): 177-180
    Paul C P, Good P D, Winer I. Effective expression of small interfering RNA in human cells. Nature Biotechnology, 2002. 20 (5):505 -508
    Pearce G, Moura D S, Stratmann J, Ryan C A Jr. RALF, a 5-kDa ubiquitous polypeptide in plants, arrests root growth and development. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98 (22): 12843-12847
    Pearce G, Moura D S, Stratmann J, Ryan, C A. Production of multiple plant hormones from a single polyprotein precursor. Nature, 2001,411 (6839): 817-820
    Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, Nielsen H, Lacy M, Austin M, Parker J. Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell, 2000, 103 (7): 1111-1120
    Porat R, Lu P, O'Neill S D. Arabidopsis SKP1, a homologue of a cell cycle regulator gene, is predominantly expressed in meristematic cells. Planta, 1998,204: 345-351
    Quan G X, Kanda T, Tamura T. Induction of the white egg 3 mutant phenotype by injection of the double-stranded RNA of the silkworm white gene. Insect Molecular Biology, 2002,11(3):217~222
    Rastogi R, Sawhney V K. The role of plant growth regulators, sucrose and pH in development of floral buds of tomato cultured in vitro Journal of Plant Physiology. 1987,128:285-289
    Regan S M, Moffatt B A. Cytochemical analyses of pollen development in wild-type Arabidopsis and a male-sterile mutant. The Plant Cell, 1990,2: 877-889
    Ren J P, McFerson J R, Li R G, Kresovich S, Lamboy W F. Identities and relationships among Chinese vegetables Brassica as determined by random amplified polymorphic DNA marker. The Journal of the American Society for Horticultural Science, 1995, 120 (3): 548-555
    Roni A. The industion of cascular tissue by auxin, In: Davies P J. Plant Pormenes and Their Role in PlantGrowth and Decelopment. Dordrecht: Martimus Nijhoff Publishers. 1987,363-373
    Ross K J, Fransz P, Armstrong S J, Vizir I, Mulligan B, Franklin F C H , Jones G H, Cytological characterization of four meiotic mutants of Arabidopsis isolated from T-DNA transformed lines. Chromosome Research, 1997, 5: 551-559
    Ryan C A, Pearce G, Scheer J, Moura D S. Polypeptide hormones. The Plant Cell. 2002, 14 (5): 251-264
    Ryan C A, Pearce G. Polypeptide hormones. Plant Physiology, 2001, 125 (1): 65-68
    Ryan C A, Pearce G. Systemins: A functionally defined family of peptide signals that regulate defensive genes in Solanaceae species. Proceedings of the National Academy of Sciences of the United States of America, 2003. 25 (100): 14577-14580
    Saeywhn V K, Shukla A. Male sterile in flowering plants: are growth substances involved? American Journal of Botany. 1994,81(12): 1640-1647
    
    Sanders P M, Bui A Q, Weterings K, McIntireK N, Yung-Chao Hsu , Lee P Y , Truong M T , Beals T P, Goldberg R B. Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sexual Plant Reproduction. 1999. II: 297-322
    Sang T, Donoghue M J, Zhang D. Evolution of alcohol dehydrogenase gene in Peonies (Paeonia): Phylogenetie relationships of putative nonhybrid species. Molecular Biology and Evolution, 1997,14: 994-1007
    Sarver N. Ribozymes as potential anti-HIV therapeutic agents. Science, 1990,247(4947): 1222-1225
    Savin KW, Baudinette SC, Graham MW, Michael MZ, Nugent GD, Lu CY, Chandler SF, Cornish EC. Antisense ACC oxidase RNA delays carnation petal senescence. HortScience, 1995, 30(5):970~972
    Sawhney V K, Shukla A. Male Sterility in flowering plant:are plant growth substances involved. American Journal of Botany, 1994, 81(12): 1640-1647
    Sayda M E, Jens H, Winfried L. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells Nature, 2001, 411:494-498
    Schaller A, Oecking C. Modulation of plasma membrane H~+-ATPase activity differentially activates wound and pathogen defense responses in tomato plants. The Plant Cell. 1999. 11 (2): 263-272
    Scheer J M, Pearce G, Ryan C A. LeRALF, a plant peptide that regulates root growth and development, specifically binds to 25 and 120 kDa cell surface membrane proteins of Lycopersicon peruvianum.Planta. 2005. 221(5):667-74
    Schiefthaler U, Balasubramanian S, Sieber P, Chevalier D. Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 1999,96: 11664-11669
    Schmid A, Schindelhoz B, Zinn K. Combination RNAi: a method for evaluating the function of gene families in Drosophila. Trends in Neurosci, 2002,25 (2):71~74
    Schmulling T, Rohrig H, Pilz S, Walden R, Schell J. Restoration of fertility by antisense RNA in genetically engineered male sterile tobacco plants. Molecular Genetics and Genomics, 1993,237:385-394
    Schopfer C R, Nasrallah M E, Nasrallah J B. The male determinant of self-incompatibility in Brassica. Science, 1999.286: 1697-1700
    Scott R, Dagless E, Hodge R, Soufleri I, Draper J. Patterns of gene expression in developing anthers of Brassica napus. Plant Molecular Biology, 1991, 17: 195-207
    Shen J B, Hsu F C. Brassica anther-specific genes: characterization and in situ localization of expression. Molecular Genetics and Genomics, 1992,234: 379-389
    Shi L, Kent R, Bennee N. Developmental expression of a DNA repair gene in Arabidopsis. Mutation Research. 1997. 384: 145-56
    Shiba H, Takayama S, Iwano M, Shimosato H, Funato M, Nakagawa T, Che F S, Suzuki G, Watanabe M. Hinata K. Isogai A. A pollen coat protein, SP11/SCR, determines the pollen Sspecificity in the self-incompatibility of Brassica species. The Plant Physiology, 2001, 125:2095-2103
    Shukls A, Sawhmey V K. Abscisic acid: one of the faxtorx affecting male sterikity in Brissca Napus. Journal of Plant Physiology, 1994,91:522~528
    
    Sijen T. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell. 2001. 107:465-476
    Singh S, Sawhney V K. Cytokinins and sbscisic acid in roots of the stamenkess-2 mutant of tomato, Reports of the Tomato Genetixs Cooperative, 1992,42:34-35
    Smith C J S, Watson C F, Morris P C, Bird C R, Seymour G B, Gray J E, Arnold C. Tucker G A. Schuch W. Grierson I). Inheritance and effect on ripening of antisense polygalacturonase genes in transgenic tomatoes. Plant Molccular Biology, 1990, 14:369-379
    Smith C J S, Watson C F, Ray J, Bird C R, Morris P C, Schuch W. Grierson D. Antisense RNA inhibition of polygalacturonase gene expression in transgenic tomatoes. Nature, 1988, 334 (25): 724-726
    Stanchev B S, Doughty J, Scutt C P, Dickinson H, Croy R R D. Cloning of PCPI, a member of a family of pollen coat protein (PCP) genes from Brassica oleracea encoding novel cysteine-rich proteins involved in pollen-stigma interactions. The Plant Journal, 1996,10:303-313
    Sullenger B A. Expression of chimeric tRNA-driven antisense transcripts renders NIH 3T3 cells highly resistant to Moloney murine leukemia virus replication. Molecular Cell Biology, 1990, 10(12):6512-6523
    Sun T P and Kamiya Y. The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis. The Plant Cell, 1994,6,1509-1518
    Svoboda P, Stein P, Schultz R M. RNAi in mouse oocytes and preimplantation embryos: effectiveness of hairpin dsRNA. Biochemical and Biophysical Research Communications, 2001,287:1099-1104
    Takayama S, Shiba H, Iwano M, Asano K, Hara M, Che F S, Watanabe M, Hinata K, Isogai A. Isolation and characterization of pollen coat proteins of Brassica campestris that interact with S locus-related glycoprotein I involved in pollen-stigma adhesion. Proceedings of the National Academy of Sciences of the United States of America, 2000a, 97(7): 3765-3770
    Takayama S, Shiba H, Iwano M, Shimosato H, Che F S, Kai N, Watanabe M, Suzuki G, Hinata K. Isogai A. The pollen determinant of self-incompatibility in Brassica campestris. Proceedings of the National Academy of Sciences of the United States of America, 2000b, 97: 1920-1925
    Tavernarakis N, Wang S L, Dorovkov M. Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nature Genetics. 2000, 24:180-183
    Thomas B R, Rodriguez R L. Metabolite signals regulate gene expression and source/sink relations in cereal seedlings. Plant Physiology, 1994, 106:1235-1239
    Timmons L, Court D, Fire A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene. 2001,263: 103-112
    Tomizawa J, Itoh T. Plasmid ColEl incompatibility determined by interaction of RNA I with primer transcript. Proceedings of the National Academy of Sciences of the United States of America, 1981, 78: 1421 -1425
    Twell D, Klein T M, Fromm M E, McCormick S. Transient expression of chimeric genes delivered into pollen by microprojectile bombardment. Plant Physiology, 1989, 91:1270-1274
    Twell D, Park S K, Lalanne E. Asymmetric division and cell-fate determination in developing pollen. Trends in Plant Science, 1998,3(8): 305-310
    Twell D, Yamaguchi J, Wing R D, Ushiba J, McCormick S. Promoter analysis of genes that are coordinately expressed during pollen development reveals pollen-specific enhancer sequences and shared regulatory elements. Genes and Developmentelepment, 1991, 5: 496-507
    Twell D. Pollen developmental biology. In O'Neill S D, Roberts J A, eds. Plant Reproduction Annual Plant Reviews, Sheffield: Sheffield Academic Press, 2002,6: 86-153
    Unte S U, Sorensen A M, Pesaresi P, Gandikota M, Leister D, Saedler H, Huijser P. SPL8, an SBP-Box gene that affects pollen sac development in Arabidopsis. The Plant Cell, 2003, 15 (4): 1009-1019
    van der Krol AR, Lenting PE, Veenstra J van der Meer I M, Koes R E, Gerats A G M, Mol J N M, Siuilje A R. An antisense Chalcone synthase gene in transgenic plants flower pigmentation. Nature, 1988, 333: 866-869
    van der Meer I M, Stam M E, van Tunen A J, Mol J N M, Stuitje A R. Antisense inhibition of flavonoid biosynthesis in petunia anthers results in male sterility. The Plant Cell, 1992,4: 253-262
    van der Salm T P M, van Tunen A J. Introduction and differential use of various promoters in pollen grains of Nieotiana glutinosa and Lilium longiflorum. Plant Cell Report, 1992, 11: 20-24
    Vanoosthuyse V, Miege C, Dumas C, Cock J M. Two large Arabidopsis thaliana gene families are homologous to the Brassica gene superfamily that encodes pollen coat proteins and the male component of the self-incompatibility response. Plant molecular biology, 2001,46 (1): 17-34
    Vizcay-Barrena G, Wilson Z A. Altered tapetal PCD and pollen wall development in the Arabidopsis msl mutant. Journal of Experimental Botany, 2006,57(11): 2709-2717
    Vos P, Hogers R, Bleeker M, Reijans M, Lee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research, 1995,23: 4407-4414
    Warmke H E, Lee S J. Pollen abortion in T cytoplasmic male-sterile corn (Zea mays): a suggested mechanism. Science. 1978, 200: 561-563
    Warmke H E, Overman M A. Cytoplasmic male sterility in sorghum. I. Callose behaviour in fertility and sterile anthers. Journal of Hered, 1972,63:103-108
    Wen J, Lease K A, Walker J C. DVL, anovel class of small polypeptides: over expression alters Arabidopsis development. the plant journal, 2004,37: 668-677
    Wilkinson J E, Twell D, Lindsey K. Activities of CaMV 35S and nos promoters in pollen: implications for field release of transgenic plants. Journal of Experimental Botany, 1997,48: 265-275
    Willing R P, Bashi D, Mascarenhas J P. An analysis of the quality and diversity of messenger RNA from pollen and shoot of Zea mays. Theotetical and Applied Genetics, 1988,75: 751-753
    Willing R P, Mascarenhas J P. Analysis of the complexity and diversity of mRNAs from pollen and shoot of Tradescantia. Plant physiology, 1984,75: 865-868
    Wilson Z A, Morroll S M, Dawson J, Swarup R, Tighe P J. The Arabidopsis MALE STERILITYI (MSI) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. The Plant Journal, 2001, 28:27-39
    Worrall D, Hird D L, Hodge R, Paul W, Draper J, Scott R. Premature dissolution of the microsporocyle callose wall causes male sterility in transgenic tobacco. The Plant Cell, 1992,4: 759-771
    Yang C Y, Spielman M, Coles J P, Li Y, Ghelani S, Bourdon V, Brown R C, Lemmon B E, Scott R J. Dickinson II G. TETRASPORE encodes a kinesin required for male meiotic cytokinesis in Arabidopsis. The Plant Journal. 2003. 34: 229-240
    Yang H, Matsubayashi Y, Hanai H, Nakamura K, Sakagami Y. Molecular cloning and characterization of OsPSK. a gene encoding a precursor for phytosulfokine-a, required for rice cell proliferation. Plant molecular biology, 2001). 44 (5): 635-647
    Yang H, Matsubayashi Y, Nakamura K, Sakagami Y. Diversity of Arabidopsis genes encoding precursors for phytosulfokine, a peptide growth factor. Plant Physiology, 2001, 127 (3): 842-851
    
    Yang H, Matsubayashi Y, Nakamura K. Sakagami Y. Oryza sativa PSK gene encodes a precursor of phytosulfokine-alpha, a sulfated peptide growth factor found in plants. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96 (23): 13560-13565
    Yang M, Hu Y, Lodhi M, McCombie W R, Ma H. The Arabidopsis SKPI-LIKEI gene is essential for male meiosis and may control homologue separation. Proceedings of the National Academy of Sciences of the United States of America, 1999,96:11416-11421
    Yang S L, Xie L F, Mao H Z, Ching San Puah, Yang W C, Jiang L X, Venkatesan Sundarcsan. De Ye. TAPETUM DETERMINANTI is required for cell specialization in the Arabidopsis anther. The Plant Cell, 2003. 15: 2792-2804
    Yang W C, Ye D, Xu J, Sundaresan V. The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a noval nuclear protein. Genes and development, 1999, 13:2108~2117
    Ye W Z, Cao J S, Xiang X, Zeng G W. Molecular cloning and characterization of the genic male sterility related gene CYP86MF in Chinese cabbage (Brassica campestris L. ssp. Chinensis Makino var. communis Tsen et l.ee). Journal of Horticultural Science and Biotechnology, 2003,78(3): 319-323
    Yu S W, Tang K X, MAP Kinase Cascades Responding to Environmental Stress in Plants. Acta Botanica Sinica. 2004. 46 (2): 127-136
    Zamore P D, Tuschl T, Sharp P A. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 2000, 101: 25-33
    Zhang Y P, Ryder O A. Mitochondrial DNA evolution in the Artoidea. Proceedings of the National Academy of Sciences of the United States of America, 1993,90: 9557-9561
    Zhao D Z, Wang G F, Speal B, Ma H. The EXCESS MICROSPOROCYTES1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes and Development, 2002, 16:2021-2031
    Zhao D, Han T, Risseeuw E P, Crosby W L, Ma H. Conservation and divergence of ASK1 and ASK2 gene functions during male meiosis in Arabidopsis thaliana. Plant Molecular Biology, 2003, 53(1-2): 163-73
    Zheng X, Song S, Liu H. Identification of Chinese cabbage (Brassica campestris L. ssp pekinensis) cultivars with isozyme RAPD and AFLP markers. Acta Horticulture, 2001, 546: 543-549

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700