基于模糊滑模变结构算法的大气候室控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气候室法能够模拟实际室内环境,对人造板及其制品进行整体的甲醛释放量检测,测试结果能够反映室内环境中甲醛释放的实际情况,具有较高的可信度。但是大气候室造价高,检测周期长,导致甲醛检测成本过高,影响了大气候室在国内的应用。另外,大气候室的温度和相对湿度属于非线性、强耦合、大滞后的控制对象,常规的PID控制很难获得良好的控制效果。本文针对上述两个问题开展研究,开发出以微处理器为核心控制器的30m3甲醛检测大气候室,应用模糊滑模变结构控制算法,通过理论推导、仿真实验和实际运行,研究模糊滑模变结构对大气候室的控制效果。主要研究结果如下:
     (1)开发了模拟居住环境的30m3大气候室设备,将其用于人造板及其制品的甲醛释放量检测。大气候室的控制系统以ATmega2560微处理器为核心,系统程序设计成功能单一、结构清晰的模块,方便编译、维护和修改,模块化的设计容易实现系统移植,加快了软件的开发进程。与PLC控制系统相比,成本仅为其1/3左右。
     (2)建立大气候室温、湿度数学模型,并采用局部线性化方法对系统数学模型进行简化,对大气候室温度和相对湿度之间存在的耦合效应进行前馈解耦,将双输入双输出系统分解成两个单输入单输出系统,以方便模型求解。
     (3)分别研究了模糊控制和滑模控制对大气候室系统模型的控制效果,分析了这两种控制方式的控制特点,为了发扬不同控制方式的优点,克服其缺点,将两种控制方式相结合,设计出模糊滑模控制器。以切换函数s作为模糊输入变量,以改进型指数趋近律的系数ε和k为模糊输出变量,优化系统的趋近过程,削弱控制输入的抖振现象。仿真结果表明模糊滑模控制器对大气候室这种非线性系统控制效果良好,与传统的PID控制相比,具有响应速度快、超调小等优势。
     (4)首次将模糊滑模控制算法应用到甲醛检测大气候室的温、湿度控制上来。系统运行测试结果表明,室外环境温度为9℃时,大气候室的温度和相对湿度约7h后达到稳定状态,超调很小,控制精度分别为±0.3℃和±1%。
     (5)使用模糊滑模变结构控制实现了动态条件下产生饱和湿空气的约束技术,整个检测过程中,检测室内没有出现雾与结露,保证了检测过程的准确性。
Climate chamber method can simulate actual indoor environment, evaluate formaldehyderelease of artificial board and its products. The testing results has a high credibility since theyreflects the actual situation of formaldehyde release indoor.
     Due to high cost of climate chamber equipment and a longer testing cycle, themeasurement of formaldehyde release cost a lot, which results in climate chamber method cannot be widely used in domestic. In addition, climate chamber temperature and relative humidityare nonlinear controll objects with the properties of strong coupling and large lag. Therefore, itis hard to to obtain good control using the conventional PID control. In order to solve abovetwo problems, this study is aiming at developing a30m3formaldehyde test climate chamberwith the core of microprocessor. Fuzzy sliding mode variable structure arithmetic is applied toclimate chamber control. Through theoretical derivation, simulation experiment and actualmotion, the control effectiveness of fuzzy sliding mode variable structure on control of climatechamber are assessed. The specific conclusions are given as follows:
     (1) A new climate chamber equipment has been developed to simulate a livingenvironment with a volume of30m3. It can be used to examine the formaldehyde release ofwood-based panels and wood products. ATmega2560microprocessor is applied as the core ofcontrol system. The main features of system programs are single function and clear structure,which lead to easily compile, maintain, modify, and easy to transplant the syste, accordinglyspeed up software development. In comparison to the cost of PLC system, the cost ofmicroprocessor control system is reduced by one third.
     (2) Mathematical models between temperature and relative humidity of climate chamberhas been established. The mathematical models are simplified based on local linearization andfeedforward decoupling. Meanwhile, the double input and double output system is decomposedinto two single input single output system, in order to slove this model easily.
     (3) Control effect of fuzzy control and sliding mode control on system model of climatechamber are studied respectively in this research. In order to combine the advantages of twodifferent control strategies, a fuzzy sliding mode controller has been designed. In this newcontroller, switch function S is used as fuzzy input variable and improved exponential reachinglaw coefficient k and ε as fuzzy output variable. In this way, the approach process is optimizedand chattering phenomenon is alleviated. Simulations results show that fuzzy sliding modecontroller has a good control on climate chamber nonlinear system. Compared to PID control,it has faster response speed and smaller overshoot, et.al advantages.
     (4) For the first time, fuzzy sliding mode control algorithm was applied to temperatureand relative humidity control of the formaldehyde test climate chamber. The test results showthat when outdoor environment temperature is9℃, it takes about7h to reach steady statebetween climate chamber temperature and relative humidity. It also shows that the accuracyfor temperature and relative humidity can achieve±0.3℃and±1%respectively, with a slightovershoot.
     (5) Fuzzy sliding mode variable structure control makes constraint technology ofgenerating saturated moist air in dynamic environment come true. There is no fog and dewgenerated through whole detecting process, which ensures the accuracy of the inspectionprocess.
引文
[1]国家林业局.中国森林资源报告——第七次全国森林资源清查[M].北京:中国林业出版社,2009.
    [2]陈绪和.世界人造板工业发展态势[J].中国人造板,2011,18(3):78-83.
    [3]国家林业局.2011年我国木材及人造板产量[J].木材工业,2012,26(5):60.
    [4]钱小瑜.我国人造板行业发展现状、前景与挑战[J].木材工业,2010,24(1):15-18.
    [5] Lemus R, Abdelghani AA, Akers TG, et a1. Potential health risks from exposure to indoorformaldehyde[J].Rev Environ Health,1998,13:91-98.
    [6] GB18580-2001,室内装饰装修材料人造板及其制品中甲醛释放限量[S].
    [7] GB/T23825-2009,人造板及其制品中甲醛释放量测定气体分析法[S].
    [8]王维新.甲醛释放与检测[M].北京:化学工业出版社,2003.
    [9]安源,周玉成,程放,等.《甲醛释放量气体分析法检测箱》行业标准的编制[J].木材工业,2011,25(3):32-34.
    [10]安源,周玉成,侯晓鹏等.甲醛释放量气体分析法快速检测装置的设计与实现[J].林业科学,2009,45(6):116-120.
    [11] GB/T18883-2002,室内空气质量标准[S].
    [12]黄勇,江涛,赵丽媛.浅谈板式家具甲醛释放的检测方法[J].中国木材,2008,(6):29-31.
    [13]朱海鸥,卢志刚,李翔,等.人造板标准甲醛检测技术和方法解析[J].木材工业,2009,23(5):37-40.
    [14]高为炳.变结构控制理论基础[M].北京:中国科学技术出版社,1990.
    [15]赵永胜.模糊滑模控制及其在机电系统中应用的研究[D].武汉:华中科技大学,2007.
    [16]钱小瑜.“十二五”我国人造板将再铸辉煌[J].木材工业,2011,25(1):1-5.
    [17]黄维南.人工气候室的应用和发展[J].亚热带植物科学,1982,1:6-21.
    [18] A.Gorissen, P.L.Kuikman.ESPAS-An advanced phytotron for measuring carbon dynamics in a wholeplant-soil system[J].Plant and Soil,1996:81-87.
    [19]王惠永,王松涛,孙学斌,等.自然光照人工气候室的研究[J].农业工程学报,1990,6(1):78-84.
    [20]徐师华.国内外人工气候控制装置应用发展的概述[J].农业工程学报,1989,5(4):16-21.
    [21] Yair Rosenthal, Blake Farnsworth, F.V.Rodrigo Romo, Guanghui Lin, Bruno D.V.Marino.High quality,continuous measurements of CO2in Biosphere2to assess whole mesocosm carboncycling[J].Ecological Engineering,1999(13):249-262.
    [22] William F.Dempster.Biosphere2engineering design[J].Ecological Engineering,1999(13):31-42.
    [23] Daeseok Kang.Simulation of the water cycle in Biosphere2[J].Ecological Engineering,1999(13):301-311.
    [24] Charles S.Cockell, Adrian Southern, Aleshs Herrera.Lack of UV radiation in Biosphere2-practical andtheoretical effects on plants[J].Ecological Engineering,2000(16):293-299.
    [25]吴波.人工气候室智能控制器研究与开发[D].南京:南京航空航天大学,2009.
    [26]程放,周玉成,杨建华,等.1m3甲醛释放量检测气候箱的行业标准编制[J].木材工业,2005,19(5):25-27.
    [27] ASTM E1333-1996.Standard test method for determining formaldehyde concentrations in air andemission rate from wood products using a large chamber[S].
    [28] EN717-1:2004.Wood-based panels-determination of formaldehyde release Part1: formaldehydeemission by the chamber method[S].
    [29]吴盛富,王莉娟.美国加州立法严限人造板制品甲醛释放量[J].木材工业,2008,22(4):13-16.
    [30]周玉成,尹朝万,刘晓平.一类离散时间非线性系统的局部状态反馈解耦[J].信息与控制,1997,6:17-26
    [31]周玉成,刘晓平.一类离散时间广义非线性控制系统的动态不可测扰动解耦[J].系统工程理论与实践,1998b,12:16-23.
    [32]周玉成,程放,肖天际,等.一类含不确定因素的非线性系统鲁棒跟踪[J].林业科学,2003,39(2):130-136.
    [33] GB18584-2001,室内装饰装修材料——木家具中有害物质限量[S].
    [34]司琳琳,杨越飞,林玉珍.国内外人造板甲醛释放量检测标准对比[J].林业机械与木工设备,2010,38(8):48-51.
    [35]高为炳.变结构控制的理论及设计方法[M].北京:科学出版社,1996.
    [36] J.J.Slotine, S.S.Sastry.Tracking control of nonlinear systems using sliding surfaces with application torobot manipulator[J].International Journal of Control,1983,38(2):465-492.
    [37] W.C.Su, S.V.Drakunov, U.Ozguner, etc.Sliding mode with chattering reduction in sampled datasystems[C].Texas, USA: Proceedings of the32ndIEEE Conference on Decision and Control,1993:2452-2457.
    [38] G.Bartolini, A.Ferrara, E.Usani.Chattering Avoidance by second-order sliding mode control[J].IEEETransactions on Automatic Control,1998,43(2):241-246.
    [39] B.Yoo., W.Ham..Adaptive fuzzy sliding mode control of nonlinear system[J].IEEE Transactions onFuzzy Systems,1998,6(2):315-321.
    [40] H.Morioka, K.Wada, A.Sabanovic, etc. Neural network based chattering free sliding modecontrol[C].Hokkaido, Japan: Proceedings of the34thSICE Annual Conference,1995:1303-1308.
    [41] M.Ertugrul, O.Kaynak. Neural sliding mode control of robotic manipulators[J]. Techtronic,2000,10(1-2):239-263.
    [42]胡跃明.变结构控制理论与应用[M].北京:科学出版社,2003.
    [43]刘金琨.滑模变结构控制MATLAB仿真(第2版)[M].北京:清华大学出版社,2012.
    [44] Emelyanov S V, Utkin V I.Design principles of variable structure control systems, MathematicalTheory of Control[M].New York: Academic Press,1967.
    [45] Emelyanov S V.Automatic control systems of variable structure[J].Moscow: Nauka,1967.
    [46] Utkin V I.Sliding modes and their application in variable structure control systems[J].Moscow: Nauka,1974
    [47] Utkin V I.Variable structure systems with sliding modes[J].IEEE Transactions on Automatic Control,1977,22(2):212-222.
    [48] J-J. E. Slotine.Sliding controller design for nonlinear systems [J].Int. J. Contr., Vol.40, No.2,1984.
    [49] G. Bartolici and T. Zolezzi.Variable structure systems nonlinear in the control law [J].IEEE Trans.AC-30, NO.7,1985.
    [50] B.Drazenovic.The invariance conditions in variable structure systems[J].Automatics, Vol.5,287-295,1969.
    [51] O.M.E.El-Chezawl. A.s.l. Ziduber and S.A. Bbillings.Analysis and design of variable structure systemsusing a geometric approach [J].Int. J. Contr., Vol.38, No.3,1983.
    [52]冯纯伯.非线性控制系统分析与设计[M].江苏南京:东南大学出版社,1990.
    [53] M.S.Chen, Y.R.Hwang, M.Tomizuka.A state-dependent boundary layer design for sliding modecontrol[J].IEEE Transactions on Automatic Control,2002,47(10):1677-1681.
    [54] S.Seshagiri, H.K.Khalil.On introducing integral action in sliding mode control[C].Las Vegas, USA:Proceedings of the41stIEEE Conference on Decision and Control,2002:1473-1478.
    [55]刘金琨,孙富春.滑模变结构控制理论及其算法研究与进展[J].控制理论与应用,2007,24(3):407-418.
    [56]高为炳,程勉.变结构控制的品质控制[J].控制与决策,1989,4(4):1-6.
    [57]翟长连,吴智铭.一种离散时间系统的变结构控制方法[J].上海交通大学学报,2000,,3(5):719-722.
    [58] G.Bartolini, A.Ferrara, E.Usani, etc. On multi-input chattering-free second-order sliding modecontrol[J].IEEE Transactions on Automatic Control,2000,45(9):1711-1717.
    [59] G.Bartolini, E.Punta.Chattering elimination with second-order sliding mode robust to coulombfriction[J].Journal of Dynamic Systems Measurement and Control,2000,122(4):679-686.
    [60] G.Bartolini, A.Pisano, E.Punta, etc.A survey of applications of second-order sliding mode control tomechanical systems[J].International Journal of Control,2003,76(9):875-892.
    [61] M.Hamerlain, T.Youssef, M.Belhocine. Switching on the derivative of control to reducechatter[J].IEEE Proceedings on Control Theory and Application,2001,148(1):88-96.
    [62]张天平,冯纯伯.基于模糊逻辑的连续滑模控制[J].控制与决策,1995,10(6):503-507.
    [63] K.Y.Zhuang, H.Y.Su, J.Chu, etc.Globally stable robust tracking of uncertain systems via fuzzy integralsliding mode control[C].Proceedings of the3rdWorld Congress on Intelligent Control and Automation,P. R. China,2000:1827-1831.
    [64] S.J.Huang, K.S.Huang, K.C.Chiou.Development and application of a novel radial basis functionsliding mode controller[J].Mechatornics,2003,13(4):313-329.
    [65] D.Y.Yang, Y.Yamane, X.J.Zhang, etc.A new method for suppressing high-frequency chattering insliding mode control system[C].Tokushima, Japan: Proceedings of the36thSICE Annual Conference,1997:1285-1288.
    [66] Hung.J.Y, Gao.W, Hungh J.C.Variable structure control: a survey[J].IEEE Trans. Ind. Electron,1993,40(1):2-22.
    [67] Dote.Y, Holf.R.G.Microprocessor based sliding mode controller for DC motor drives[A].Presented atthe industrial application society Annual meeting[C].1980, Cincinnati, Ohio.
    [68] W.B.Gao, Y.F.Wang, A.Homaifa.Discrete-time variable structure control systems[J].IEEE Transactionson Industrial Electronics,1995,42(2):117-122.
    [69] A.J.Koshkouei, A.S.I.Zinober.Sliding mode control of discrete-time systems[J].Journal of dynamicsystems measurement and control,2000,122(4):793-802.
    [70] J.H.Kim, S.H.Oh, D.I.Cho, etc.Robust discrete-time variable structure control methods[J].Journal ofdynamic systems measurement and control,2000,122(4):766-775.
    [71] R.H.Sira, S.O.Llanes.Adaptive dynamical sliding mode control via backstepping[C].Texas, USA:Proceedings of the32ndIEEE Conference on Decision and Control,1993:1422-1427.
    [72] M.R.Bolivar, A.S.I.Zinober, H.Sira-Ramirez.Dynamic adaptive sliding mode output tracking control ofa class of nonlinear systems[J]. International Journal of Robust and Nonlinear Control,1997,7(4):387-405.
    [73] F.J.Lin, S.L.Chiu, K.K.Shyu.Novel sliding mode controller for synchronous motor drive[J].IEEETransactions on Aerospace and Electronic Systems,1998,34(2):532-542.
    [74] G.Wheeler, C.H.Su, Stepanenko Y.A sliding mode controller with improved adaptation laws fortheupper bounds on the norm of uncertainties[J].Automatica,1998,34(12):1657-1661.
    [75] N.Bekiroglu, H.I.Bozma, Y.Istefanopulos. Model reference adaptive approach to sliding modecontrol[C].Washington, USA: American Control Conference,1995:1028-1032.
    [76] J.B.Song, Y.Ishida.A robust sliding mode control for pneumatic servo systems[J].International JournalEngineering Science,1997,35(8):711-723.
    [77] C.M.Kwan.Sliding mode control of linear systems with mismatched uncertainties[J].Automatica,1995,31(2):303-307.
    [78] H.H.Choi.A new method for variable structure control system design: a linear matrix inequalityapproach[J].Automatica,1997,33(11):2089-2092.
    [79] H.H.Choi.An explicit formula of linear sliding surface for a class of uncertain dynamic systems withmismatched uncertainties[J].Automatica,1998,34(8):1015-1020.
    [80] H.H.Choi.On the existence of linear sliding surface for a class of uncertain dynamic systems withmismatched uncertainties[J].Automatica,1999,35(10):1707-1715.
    [81] J.Li.Backstepping variable structure control of nonlinear systems with unmatched uncertainties[C].14thTriennial World Congress,1999:67-71.
    [82] F.Gouaisbaut, W.Perruqetti, J.P.Richard.A sliding mode control for linear systems with input and statedelays[C].Arizona, USA: Proceedings of the38thIEEE Conference on Decision and Control,1999:4234-4239.
    [83] C.H.Chou, C.C.Cheng.Decentralized mode following variable structure control for perturbed largescale systems with time-delay interconnections[C].Chicago, Illinois, USA: Proc. American ControlConference,2000:641-645.
    [84] Y.Q.Xia, Yingmin Jia. Robust sliding-mode control for uncertain time-delay systems: a LMIapproach[J].IEEE Transactions on Automatic Control,2003,48(6):1086-1091.
    [85] Y.B.Shtessel, A.S.I.Zinober, I.A.Shkolnikov.Sliding mode control for nonlinear systems with outputdelay via method of stable center[J].Journal of Dynamic Systems Measurement and Control,2003,125(2):158-165.
    [86] V.I.Utkin.Sliding modes in control and optimization[M].Berlin: Spring-Verlag,1992.
    [87] X.Y.Lu, Spurgeon S.K.Control of nonlinear non-minimum phase systems using dynamic slidingmode[J].Int. J. System Science,1999,30(2):183-198.
    [88] J.Wang, Y.Zheng, X.P.Lu.Robust output tracking of constrained nonlinear systems[C].14thTriennialWorld Congress,1999:37-40.
    [89] G.Bartolini, A.Ferrara, L.Giacomini.Modular backstepping design of an estimation-based sliding modecontroller for uncertain nonlinear plants[C].Philadelphia, PA, USA: Proceedings of the1998AmericanControl Conference,1998:574-578.
    [90] Yu.X.H, Man.Z.H, Wu.B.L.Design of fuzzy sliding mode control systems[J].Fuzzy Sets and Systems,1998,95(3):295-306.
    [91] Chang.W, Park.J.B, Joo.Y.H, etc.Design of robust fuzzy model based controller with sliding modecontrol for SISO nonlinear systems[J].Fuzzy Sets and Systems,2002,125(l):l-22.
    [92] S.W.Kim, J.J.Lee.Design of a fuzzy controller with fuzzy sliding surface[J].Fuzzy Sets and Systems,1995,71(3):359-367.
    [93]瞿少成.不确定系统的滑模控制理论及应用研究[D].武汉:华中科技大学,2005.
    [94] W.Perruquetti, J.P.Barbot.Sliding mode control in engineering[M].New York: Marcel Dekker Inc.,2002.
    [95] X..H.Yu, J.X.Xu.Advances in variable structure systems[M].Singapore: World Scientific Publishing,2000.
    [96] J.J.Slotine.The robust control of robot manipulators[J].Int. J. Robotic Research,1985,6:49-59.
    [97] A.Ficola, M.L.Cava.A sliding mode controller for a two-joint robot with an elastic link[J].Mathematicsand Computers in Simulation,1996,41(5-6):559-569.
    [98]赖旭芝,蔡自兴,吴敏.一类欠驱动机械系统的模糊与变结构控制[J].自动化学报,2001,27(6):850-854.
    [99] C.Edwards, S.K.Spurgeon.Sliding mode control: theory and application[M].London: Taylor&Francis,1998.
    [100] D.Zhou, C.D.Mu, W.L.Xu.Adaptive sliding mode guidance of a homing missile[J].Journal ofguidance, control and dynamics,1999,22(4):589-592.
    [101]周荻.寻的导弹新型导引规律[M].北京:国防工业出版社,2002.
    [102] Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling andcontrol[J].IEEE Transaction on Systems, Man. Cybernet,1985,15(1):116-132.
    [103] Zadeh L.A.Fuzzy sets[J].Information Control,1965,8(3):338-353.
    [104] Zadeh L.A.A rationale for fuzzy control[J].Trans. ASEM, J. Dynamic Systems Meas. Control,1972,94(1):3-4.
    [105] Mamdani E.H.Application of fuzzy algorithms for control a simple dynamic plant[J].Proceedings ofIEEE,1974,121(12):1585-1588.
    [106] Holmblad L.P. and Ostergard J.J.Control of a cement kiln by fuzzy logic[J].In: Gupta, M.M., and E.Sanchez, eds., Fuzzy Information and Decision Processes, North-Holland, Amsterdam,1982,298-409.
    [107] King P.J. The application of fuzzy control systems to industrial processes[J]. Automation1977,13(3):235-242.
    [108] Ostergarad J.J.Fuzzy logic control of a heat exchange process[J].Fuzzy Automata and DecisionProcesses, Amsterdam: Gupta MM. et. Eds. North-Holland1977.
    [109] Pappis C.P.A fuzzy logic controller for a traffic junction[J].IEEE Trans. Systems Man Cybem.1977,SMC-7(10):707-717.
    [110] Chao K., Gates R.S., Sigrimis N..Fuzzy logic controller design for staged heating and ventilatingsystem[J].Transactions of ASAE,2000,43(6):1885-1894.
    [111]郝久玉,李惠敏.人工气候室专家模糊控制器的研究[J].制冷学报,1997,(1):20-25.
    [112]梁加山,袁艳,张泰山.人工气候室温度专家模糊控制系统的设计与实现[J].计算技
    [113]彭勇刚,韦巍.人工气候箱温湿度模糊控制[J].农业工程学报,2006,22(8):166-169.
    [114]彭勇刚,韦巍.基于神经网络补偿的人工气候箱温湿度模糊控制[J].仪器仪表学报,2009,30(7):1373-1377.
    [115]刘晓红.对家具中甲醛释放量的取样及测定方法的探讨[J].家具,2002,6:13-17.
    [116]刘鑫钰,侯晓鹏,苗虎,等.30m3甲醛释放量检测气候室的结构设计与实现[J].木材工业,2012,26(6):13-16.
    [117] GB50176-93,民用建筑热工设计规范[S].
    [118] LY/T1982-2011,人造板及其制品甲醛释放量检测用大气候室[S].
    [119]陈黟,吴味隆.热工学[M].北京:高等教育出版社,2004.
    [120]闫承琳,周玉成,侯晓鹏,等.甲醛等有机挥发物释放量检测箱的单片机控制系统设计[J].木材工业,2011,25(4):18-21.
    [121]金春林,邱慧芳,张皆喜.AVR系列单片机C语言编程与应用实例[M].北京:清华大学出版社,2003.
    [122]沈文,詹卫前,等.AVR单片机C语言开发入门指导[M].北京:清华大学出版社,2003.
    [123] Atmel Corp.ATmega640/ATmega1280/ATmega2560Datasheet.2005:1-6.
    [124]刘鑫钰,侯晓鹏,苗虎,等.甲醛检测气候室控制系统的研制[J].林业科学,2013,49(1):185-188.
    [125]周玉成,韩浩,刘晓平.一类隐含离散时间奇异非线性系统的精确线性化[J].控制与决策,1998,13(4):317-321.
    [126]彭勇刚,庞文尧,罗小平.基于Simulink技术的人工气候箱智能控制仿真模型设计[J].仪器仪表学报,2006,27(6):1887-1890.
    [127]郝久玉,陈伟,李惠敏,等.多变量模糊控制系统的前馈解耦[J].天津大学学报,2004,37(5):396-399.
    [128]韦巍,何衍.智能控制基础[M].北京:清华大学出版社,2008.
    [129] S.P.Chan, W.B.Gao. Apporach algorithm for smooth tracking with variable structurecontroller[J].American Control Conference,1989.
    [130] K.D.Young, V.I.Utkin.A control engineering’s guider to sliding mode control[J].IEEE Transactions onControl and System Technology,1999,7(3):328-342.
    [131] Yu X.H, Xu J.X.. Advances in variable structure systems: analysis, integrations andapplications[J].Proceedings6th. IEEE International workshop on variable structure systems, Australia,World Scientific,11,2000.
    [132] G.C.Hwang, S.C.Lin.A stability approach to fuzzy control design for nonlinear systems[J].Fuzzy Setand System,1992,48(2):297-287.
    [133] S.H.Ryu, J.H.Park.Auto-tuning of sliding mode control parameters using fuzzy logic[C].Arlington,VA, USA: American Control Conference,2001:618-623.
    [134] Y.S.Lu, J.S.Chen.A self-organizing fuzzy sliding-mode controller design for a class of nonlinear servosystems[J].IEEE Transactions on Industrial Electronics,1994,41(5):492-502.
    [135] J.Y.Chen.Expert SMC-based fuzzy control with genetic algorithms[J].Journal of the Franklin Institute,1999,336(4):589-610.
    [136] K.Jiang, J.G.Zhang, Z.M Chen.A new approach for sliding mode control based on fuzzy reachinglaw[C].Shanghai, China: Proceedings of the4thWorld Congress on Intelligent Control and Automation,2002:656-660.
    [137]侯晓鹏.木材干燥智能控制系统的研究[D].北京:中国林业科学研究院,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700