大气压DBD氩等离子体射流放电伏安特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气压低温均匀等离子体由于具有广阔的工业应用前景,因此在实验技术和数值模拟方面,许多学者针对大气压均匀等离子体放电开展了大量的研究工作。大气压射流放电是近年来发展起来的产生大气压低温等离子体的一种有效放电技术。本文利用介质阻挡放电(DBD)制式,在流动的氩气中实现了大气压低温等离子体射流。氩气中的射流放电电流半周期之内呈现规则的多脉冲特性,本文系统地研究了大气压氩气介质阻挡等离子体射流放电的多脉冲电流现象。
     通过实验测量得到氩气射流放电的电压和电流波形,据此分别计算了相邻电流脉冲之间的瞬时电压差值、脉冲峰值、脉冲宽度、以及平均放电电荷(电流正半周期的传导电荷)和平均放电功率,研究了这些特性与放电条件参数之间的关系,这些参数包括气体的流量、电极之间的间距以及地电极的面积。实验表明,积累在介质表面的电荷产生的反向电场,是导致放电电流形成多个脉冲的主要原因。当其他条件不变,仅仅改变气体流量,分析计算发现气体流量对电流脉冲的峰值、宽度、以及放电电荷和放电功率等参数没有显著的影响。仅仅改变地电极的面积,发现不同的放电面积,产生的电流脉冲的峰值和宽度有较为明显的差异,地电极的面积越小,电流脉冲的峰值和宽度也就越小,同时其放电的功率和放电电荷也越小。通过改变电极之间的间距,可以看出,当电极间距增大时,电流脉冲的峰值变小,电流脉冲的宽度会增大,放电功率以及放电传导电荷量变小。
     氦气DBD放电中电流脉冲的多脉冲现象,已有大量的数值理论研究显示,是因为氦原子的长寿命亚稳态和及其在氦气中的高扩散性质所决定的。为了探索氩气射流放电电流脉冲的有序性,对大气压氦气和氩气产生的等离子体射流放电的电流特性做了对比研究。在本文的实验条件下,氦气和氩气的放电电流都会出现多脉冲现象,但是电流脉冲之间的瞬时电压差值、脉冲峰值、脉冲宽度以及放电电荷和放电功率显著不同。实验表明,氩气放电相邻脉冲之间的瞬时电压间隔是稳定的,而氦气的却是起伏变化的。在相同的放电条件下,氦气的电流脉冲数目比氩气的电流脉冲数目多,氩气的放电电流脉冲高而窄,氦气的电流脉冲低而宽,半个放电周期内氩气放电传导电荷小于氦气放电传导电荷,但是氩气的放电功率大于氦气的放电功率。据此,本文认为氦气放电多电流脉冲的形成机理和氩气中的多脉冲电流的形成机理是不完全相同的。
A lot of experiments and simulations on uniform atmospheric-pressure discharge (APG) have been motivated by numerous potential applications on industry. In recent years, Atmospheric pressure cold plasma jet is a kind of uniform plasma generated technology. In this paper, a plasma jet of argon has been achieved using dielectric barrier discharge (DBD) in flowing argon at atmospheric pressure. A sequence of discharge current pulses of the argon plasma jets has been characterized for each half cycle. The nature of the discharge multi-pulses have been investigated schematically.
     By recording the discharge voltage and current waveforms, the discharge current pulses under various discharge circumstances have been analyzed in aspects of the transient onset voltage gap between adjoining current pulses, the peak amplitude, the temporal width, the quantity of discharge and the discharge power for the current pulses, according to the external discharge conditions including the gas flow rate, the interelectrode gap, and the area of ground electrode. The results show that the multiple current pulses appeared per half cycle due to the feedback electric field generated by charges accumulated on the dielectric surface. If all the discharge conditions but the gas flow rate are kept invariable, the current peak, the temporal width, discharge quantity and discharge power don't change remarkably. However, when the area of ground electrode is decreased, the current peak, pulse widths discharge quantity and discharge power are decreased. If the interelectrode gap is changed, the pulse width grows with bigger interelectrode gap, while the current peak, discharge quantity and discharge power decrease.
     The multi-pulses of the discharge current in helium DBD are easily formed in a half circle and therefore many simulations have been done to reveal the forming mechanism of the multi-pulses. It has been recognized that the long-life metastables of helium and their fast diffusion are the key factors for the multi-pulse discharge mode in helium DBD. In order to make clear the physics of the glow-like mode in flowing argon DBD, the multi-pulses of the discharge currents in helium and argon plasma jets have been compared in the aspects of the transient onset voltage gap between the adjoining current pulses, current peaks, pulse widths, discharge quantity and power. With all the investigated circumstances, the multi-pulse feature of the discharge current is shared in both argon and helium plasma jet discharge. However the transient onset voltage gap between the adjoining current pulses, pulse peaks, pulse widths. discharge power and quantity appear in remarkably different ways. The transient onset voltage gap of two sequent discharge pulses are almost the same for argon discharge while are fluctuant for helium discharge. Under the same discharge conditions, the numbers of current pulses per half cycle for helium discharge are more than that for argon discharge. The current peaks of argon discharge are generally higher in amplitude than those of helium discharge, but are more narrow in width than those of helium. In each half cycle, the discharge quantity conducted in helium is more than in argon, while the power costed in argon discharge is more than in helium discharge. Therefore, an additional breakdown mechanism is proposed for argon plasma jet discharge to that for helium DBD in conclusion.
引文
[1]J.R. Roth著.吴坚强,季天仁等译.工业等离子体工程[M].北京:科学出版社,1998.
    [2]马腾才,胡希伟,陈银华.离子体物理原理[M].合肥:中国科学技术大学出版社,1988.
    [3]徐学基,诸定昌.气体放电物理[M].上海:复旦大学出版社,1996.
    [4]Kogelschatz U. Filamentary, Patterned, and Diffuse Barrier Discharges [J]. IEEE Trans. Plasma Sci.,2002,30(4):1400-1408.
    [5]Eliasson B, Hirth M, and Kogelschatz U. Ozone synthesis from oxygen in dielectric barrrier discharges[J]. J. Phys. D:Appl. Phys.,1987,20(11):1421-1437.
    [6]Braun D, Kuchler U and Pietsch G. Microdischarges in air-fed ozonizers[J]. J. Phys. D:Appl. Phys.,1991,24(4):564-572.
    [7]Falkenstein Z. Influence of ultraviolet illumination on microdischarge behavior in dry and humid N2, O2, air, and Ar/O2:The Joshi effect[J]. J. Appl. Phys.,1997, 81 (9):5975-5979.
    [8]Kozlov K V, Wagner H-E, Brandenburg R and Michel P. Spatiotemporally resolved spectroscopic diagnostics of the barrier discharge in air at atmospheric pressure[J]. J. Phys. D:Appl. Phys.,2001,34(21):3164-3176.
    [9]Kogelschatz U. Dielectric-barrier Discharges:Their History, Discharge Physics, and Industrial Applications[J]. Plasma Chem. Plasma Process.,2003,23(1):1-46.
    [10]任春生.常压空气辉光放电的形成和介质阻挡放电聚合物表面处理研究[D].大连.大连理工大学,2008.
    [11]Guikema J, Miller N, Niehof J, Klein M, and Walhout M. Spontaneous pattern formation in an effectively one-dimensional dielectric-barrier discharge system[J]. Phys. Rev. Lett.,2000,85(18):3817-3820.
    [12]Breazeal W, Flynn K M, and Gwinn E G. Static and dynamic two-dimensional patterns in self-extinguishing discharge avalanches[J]. Phys. Rev. E.,1995,52(2): 1503-1515.
    [13]王艳辉.均匀大气压介质阻挡放电特性及模式研究[D].大连.大连理工大学,2006.
    [14]董丽芳,毛志国,冉俊霞.氩气介质阻挡放电不同放电模式的电学特性研究[J].物理学报,2005,54(7):3268-3272.
    [15]Gambling W A and Edels H. The properties of high-pressure steady-state discharges in hydrogen [J]. Brit. J. Appl. Phys.,1956,7(10):376-379.
    [16]Doran A A and Meyer J. Photographic and oscillographic investigations of spark discharges in hydrogen [J]. Brit. J. Appl. Phys.,1967,18(6):793-799.
    [17]Doran A A. The development of a Townsend discharge in N2 up to breakdown investigated by image converter, intensifier and photomultiplier Techniques[J]. Z. Phys.,1968, 208 (5):427-440.
    [18]Bartnikas R. Note on discharges in helium under a. c. conditions [J]. Brit. J. Appl. Phys.,1968,1(2):659-661.
    [19]Kekez M M, Barrault M R, and Craggs J D. Spark channel formation[J]. J. Phys. D: Appl. Phys.,1970,3(12):1886-1896.
    [20]Palmer A J. A physical model on the initiation of atmospheric-pressure glow discharges [J]. Appl. Phys. Lett.,1974,25(3):138-140.
    [21]Levatter J I, and Lin S C. High-power generation from a parallel-plates-driven pulsed nitrogen laser[J]. Appl. Phys. Lett.,1974,25(12):703-705.
    [22]Levatter J I, and Lin S C. Necessary conditions for the homogeneous formation of pulsed avalanche discharges at high pressures[J]. J. Appl. Phys.,1980,51(1): 210-222.
    [23]Yokoyama T, Kogoma M, Moriwaki T and Okazaki S. Stable glow plasma at atmospheric pressure[J]. J. Phys. D:Appl. Phys.,1988,21(5):838-840.
    [24]Yokoyama T, Kogoma M, Moriwaki T and Okazaki S. The mechanism of the stabilized glow plasma at atmospheric pressure[J]. J. Phys. D:Appl. Phys.,1990,23(8): 1125-1128.
    [25]Okazaki S, Kogoma M, Uehara M, and Kimura Y. Appearance of a stable glow discharge in air, argon, oxygen and nitrogen at atmospheric pressure using a 50 Hz source [J]. J. Phys. D:Appl. Phys.,1993,26(5):889-892.
    [26]Kogoma M and Okazaki S. Raising of ozone formation efficiency in a homogeneous glow discharge plasma at atmospheric pressure[J]. J. Phys. D:Appl. Phys.,1994, 27(9):1985-1987.
    [27]Massines F, Rabehi A, Decomps P, Gadri R B, Segur P, and Mayoux C. Experimental and theoretical study of a glow discharge at atmospheric pressure controled by a dielectric barrier [J]. J. Appl. Phys.,1998,83(6):2950-2957.
    [28]Massines F and Gouda G. A comparison of polypropylen-surface treatment by filamentary, homogeneous and glow discharges in helium at atmospheric pressure[J]. J. Phys. D:Appl. Phys.,1998,31(1):3411-3420.
    [29]Gherardi N, Gouda G, Gat E, Ricard A, and Massines F. Transition from glow silent discharge to micro-discharges in nitrogen gas[J]. Plasma Sources Sci. Technol. 2000,9(3):340-346.
    [30]Roth J R, Laroussi M, and Liu C. Experimental generation of a. steady-state glow-discharge at atmospheric pressure[C]. in Proc.27th Int. Conf. Plasma Science, Tampa, FL,1992, pp.170-171.
    [31]齐冰.大气压均匀介质阻挡放电以及多针电晕增强放电机理研究[D].大连.大连理工大学,2007.
    [32]Roth J R. Industrial Plasma Engineering[M]. London:Institute of Physics Publishing,2001,2:60.
    [33]Montie T C, Kelly-Wintenberg K, and Roth J R. An overview of research using a one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials [J]. IEEE Trans. Plasma Sci.,2000,28(1):41-50.
    [34]Kelly-Wintenberg K, Montie T C, Brickman C, Roth J R, Karr A K, Sorge K, Wadsworth L C, and Tsai P P-Y. Room temperature sterilization of surfaces and fabrics with a one atmosphere uniform glow discharge plasma[J]. J. Ind. Microbiol. Biotechnol. 1998,20(1):69-74.
    [35]Kelly-Wintenberg K, Hodge A, Montie T C, Deleanu L, Sherman D M, Roth J R, Tsai P P-Y, and Wadsworth L C. Use of a one atmosphere uniform glow discharge plasma to kill a broad spectrum of microorganisms [J]. J. Vac. Sci. Technol.,1999,17(4): 1539-1544.
    [36]Gadria R B, Roth J R, Montiec T C, Kelly-Wintenbergd K, Tsaie P P-Y, et al. Sterilization and plasma processing of room temperature surfaces with a one atmosphere uniform glow discharge plasma (OAUGDP)[J]. Surface and Coatings Technology,2000,131(1-3):528-542.
    [37]Kelly-Wintenberg K, Sherman D M, Tsai P P-Y, Gadri R B, Karakaya F, Chen Z, Roth J R, and Montie T C. Air filter sterilization using a one atmosphere uniform glow discharge plasma (the Volfilter) [J]. IEEE Trans. Plasma Sci.,2000,28(1):64-71.
    [38]Laroussi M. Sterilization of contaminated matter with an atmospheric pressure plasma[J]. IEEE Trans. Plasma Sci.,1996,24(3):1188-1191.
    [39]Laroussi M, Sayler G S, Glascock B B, McCurdy B, Pearce M R, Bright N G, and Malott C M. Images of biological samples undergoing sterilization by a glow discharge at atmospheric pressure[J]. IEEE Trans. Plasma Sci.,1999,27(1):34-35.
    [40]Laroussi M, Alexeff I, and Kang W L. Biological decontamination by nonthermal plasmas [J]. IEEE Trans. Plasma Sci.,2000,28(1):184-188.
    [41]Hideomi Koinuma, Hiroyuki Ohkubo, Takuya Hashimoto. Development and application of a microbeam plasma generator[J]. Appl.Phys.Lett.,1992,60(7):816-817.
    [42]Herrmann H W, Henins I, Park J, and G Selwyn S. Decontamination of chemical and biological warfare (CBW) agents using an atmospheric pressure plasma jet (APPJ) [J]. Phys. Plasmas.,1999,6(5):2284-2289.
    [43]Sanchez-Gonzalez R, Kim Y, Rosocha L A, and Abbate S. Methane and Ethane Decomposition in an Atmospheric-Pressure Plasma Jet[J]. IEEE Trans. Plasma Sci. 2007,35(6):1669-1676.
    [44]Lu X P and Laroussi M. Dynamics of an atmospheric pressure p]asma plume generated by submicrosecond voltage pulses[J]. J. Appl. Phys.,2006,100(6):3302-3307.
    [45]Li S Z, Huang W T, Zhang J L, and Wang D Z. Optical diagnosis of an argon/oxygen needle plasma generated at atmospheric pressure[J]. Appl. Phys. Lett.,2009, 94(11):1501-1503.
    [46]Nie Q Y, Ren C S, Wang D Z, and Zhang J L. A simple cold Ar plasma jet generated with a floating electrode at atmospheric pressure[J].Appl. Phys. Lett.,2008, 93(1):1503-1505.
    [47]Zhang J L, Sun J, Wang D Z, Wang X G. A novel cold plasma jet generated by atmospheric dielectric barrier capillary discharge[J]. Thin Sol. Films.,2006(506-507): 404-408.
    [48]Sands B L, Ganguly B N, and Tachibana K. A streamer-like atmospheric pressure plasma jet[J]. Appl. Phys. Lett.,2008,92(15):1503-1505.
    [49]Lu X P, Jiang Z H, Xiong Q, Tang Z Y, and Pan Y. A single electrode room-temperature plasma jet device for biomedical applications[J]. Appl. Phys. Lett.,2008,92(15): 1504-1506.
    [50]Cao Z, Walsh J L, and Kong M G. Atmospheric plasma jet array in parallel electric and gas flow fields for three-dimensional surface treatment [J]. Appl. Phys. Lett. 2009,94(2):1501-1503.
    [51]Ye R and Zheng W. Temporal-spatial-resolved spectroscopic study on the formation of an atmospheric pressure microplasma jet[J]. Appl. Phys. Lett.,2008,93(7): 1502-1504.
    [52]Teschke M, Kedzierski J, Finantu-Dinu E G, Korzec D, and Engemann J. High-Speed Photographs of a Dielectric Barrier Atmospheric Pressure Plasma Jet[J]. IEEE Trans. Plasma Sci.,2005,33(2):310-311.
    [53]Sands B L, Ganguly B N, and Tachibana K. Time-Resolved Imaging of "Plasma Bullets" in a Dielectric Capillary Atmospheric Pressure Discharge[J]. IEEE Trans. Plasma Sci.,2008,36(4):956-957.
    [54]Lu X P, Ye T, Cao Y G, Sun Z Y, et al. The roles of the various plasma agents in the inactivation of bacteria[J]. J. Appl. Phys.,2008,104(5):3309-3314,
    [55]Mangolini L, Orlov K, Kortshagen U, Heberlein J, and Kogelschatz U. Radial structure of a low-frequency atmospheric-pressure glow discharge in helium[J]. Appl. Phys. Lett.,2002,80(10):1722-1724.
    [56]Golubovskii Yu B, Maiorov V A, Behnke J and Behnke J F. Modelling of the homogeneous barrier discharge in helium at atmospheric pressure[J]. J. Phys. D:Appl. Phys. 2003,36(1):39-49.
    [57]Golubovskii Yu B, Maiorov V A, Behnke J, and Behnke J F. On the stability of a homogeneous barrier discharge in nitrogen relative to radial perturbations [J]. J. Phys. D:Appl. Phys.,2003,36(8):975-981.
    [58]王艳辉,王德真.大气压下多脉冲均匀介质阻挡放电的研究[J].物理学报,2005,54(3):1295-1300.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700