寿阳旱作春玉米不同耕作施肥农田土壤呼吸及碳排放估算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气候变化是当今世界面临的重大挑战,也是科学界的研究热点问题。土壤呼吸是土壤碳库向大气碳库输入碳的主要途径。研究表明,土壤碳库微小的变化就能导致大气中CO2浓度的巨大变化。目前,陆地生态系统中的土壤呼吸研究主要集中在森林和草原生态系统,农田生态系统研究较少。而我国农田土壤呼吸研究又主要集中于黄淮海、东北和长江中下游地区,对北方尤其是西北旱作区研究较少。虽然前人已经针对部分代表性区域做了相关研究,但仍有许多科学问题存在争议,需要进一步深入研究。本研究在农业部寿阳旱作农业试验站进行了田间试验,通过测定不同耕作措施与施肥处理下春玉米农田土壤呼吸速率、水热因素、作物产量等的动态变化,主要研究了:(1)不同耕作措施与施肥处理土壤呼吸季节变化规律及其对水热因素的响应程度;(2)不同耕作措施土壤CO2-C排放量;(3)不同耕作措施与施肥处理农田作物产量与水分利用效率;(4)不同耕作措施土壤碳汇/源效应,最终提出了寿阳旱作区农田最佳耕作与施肥管理措施。
     本研究得出的主要结论如下:
     1.寿阳地区春玉米农田生育期内土壤呼吸具有明显的季节变化特征,春、秋季较低,夏季最高。不同耕作措施土壤呼吸具有显著差异,其中免耕耕作土壤呼吸在春、秋季最低,夏季超过少耕和传统耕作达到最高;三种施肥处理平均土壤呼吸速率差异不显著。
     2.土壤温度和土壤湿度是影响土壤呼吸的重要因素。15cm土壤温度可以解释土壤呼吸变化的67%~82%;土壤呼吸温度敏感性系数Q10分别为2.02(传统耕作)、1.59(少耕)和2.47(免耕)。0~10cm土壤湿度能够解释土壤呼吸季节变化的57%~76%;三种耕作措施对0~10cm土壤湿度变化的敏感程度表现为免耕>少耕>传统耕作。
     3.基于土壤温度和土壤湿度的双因素模型(y=aebTWc)拟合结果显示,在0~10cm和10~20cm土层土壤上,水热因子交互作用分别可以解释土壤呼吸变化的70%~90%和85%~90%;三种耕作措施土壤呼吸变化对水热因子的响应程度表现为少耕>传统耕作>免耕。
     4.少、免耕耕作较传统耕作措施提高了作物产量和水分利用效率,同时也提高了土壤呼吸强度;施用氮磷肥105kg·hm~(2)处理产量最高。
     5.少、免耕耕作措施较传统耕作措施虽然提高了土壤呼吸强度,但土壤中也积累了大量的有机碳;少、免耕耕作土壤生育期内分别能够固碳2573和2838kgC·hm~(2),表现为碳汇,而传统耕作每年损失土壤碳1848kgC·hm~(2),表现为碳源。
     6.寿阳地区采用免耕耕作配施氮磷肥105kg·hm~(2)能够有效地提高产量和水分利用效率,减少环境污染和土壤侵蚀,提高土壤固碳能力,是保证农田可持续生产的环境友好型管理措施。
     本研究的创新点是在寿阳地区首次采用双因素模型拟合了土壤水热交互作用对土壤呼吸的影响程度,为北方旱作农田土壤碳循环的研究提供了参数支持;揭示了寿阳地区旱作农田土壤呼吸测定方法之间的关系,为后续相关研究提供了关系转化公式;针对寿阳旱作区特点综合分析了各项效益指标,提出了该地区最佳耕作与施肥管理措施。
Climate change is a major challenge we face in today's world, also is a hot issue in the scientificcommunity. Soil respiration is the main route of importing carbon form soil carbon pool to atmosphericcarbon pool. Studies have shown that small changes of soil carbon pool can lead to huge changes of theCO2concentration at atmosphere. At present, researches about the soil respiration in terrestrialecosystems mainly focus on the forest and grassland ecosystems, few on the farmland ecological system.In China, farmland soil respiration studies centralize in the Huang huai hai area, northeast of China andthe middle and lower reach of Yangtze River, but there is less research in the North Area, especially inthe Northwest Arid Zone. Even though predecessors have done some research for some representativeareas, there are still many scientific issues in dispute, which need for further in-depth study. This studyconducted a field experiment in the Ministry of Agriculture Rainfed Agriculture Experiment Station,Shouyang, by measuring the dynamic changes of soil respiration rate of the spring maize under differenttillage and fertilization, water and heat factors, and crop yields, we investigated:(1) respiratory seasonvariation and its response to water and heat factors under different tillage and fertilization treatments;(2)different tillage soil carbon dioxide emissions;(3) crop yield and water use efficiency under differenttillage and fertilization treatments;(4) different tillage soil carbon sink source effect, and ultimately putforward the best farming and fertilizer management measures which are suitable to rainfed farmland inShouyang.Conclusion:
     1. At Shouyang area, there is a significant seasonal variation of soil respiration in spring maizegrowth stage, generally, lower soil respiration in spring and fall, and the highest in summer. Accordingto different tillage practices, soil respiration has significant differences, which are as follows: onno-tillage farming, soil respiration reaches the lowest level in spring and fall and in summer soilrespiration achieves the highest on over reduced tillage and conventional tillage farming. The averagesoil respiration rate was almost the same after three different types of fertilization treatment, so there isno significant effect.
     2. Soil temperature and soil moisture is an important factor affecting soil respiration.15cm soiltemperature can explain the changes of soil respiration from67%to82%; soil respiration temperaturesensitivity Q10are2.02(conventional tillage),1.59(reduced tillage) and2.47(no-tillage) separately.0~10cm soil moisture is able to explain57%to76%of the seasonal variation of soil respiration; threetillage practices on0~10cm of soil moisture changes in the sensitivity of the performance ofno-tillage> reduced tillage> conventional tillage.
     3. Based on soil temperature and soil moisture two-factor model (y=aebTWc), on0~10cm and10~20cm soil layer, the interaction of heat and water factors respectively can explain the change of soilrespiration from70%to90%and85%to90%; three tillage measures changes in soil respirationresponse to combination of soil water and heat expressed as reduced tillage> conventional tillage> no-tillage.
     4. Compared with conventional tillage, reduced tillage and no-tillage farming not only improvedcrop yield and water use efficiency, but also increased soil CO2-C emissions; application of nitrogen andphosphorus105kg·hm~(2)deal with the highest yield.
     5. Compared with conventional tillage, reduced tillage and no-tillage farming increased soil carbondioxide emissions, but accumulated a large amount of organic carbon in the soil; reduced tillage,no-tillage farming can sequestrate carbon about2573and2838kgC·hm~(2)separately in spring maizegrowth stage, as a carbon sink, while conventional tillage annual loss of soil carbon about1848kgC·hm~(2), expressed as carbon source.
     6. Shouyang area used no-tillage farming with nitrogen fertilizer phosphate105kg·hm~(2), which caneffectively improve the crop yield and water use efficiency, reduce environmental pollution and soilerosion, and improve soil carbon sequestration capacity. This is environment-friendly managementmeasures to guarantee the sustainable production of farmland.
     The innovation of this study is the first time used double factors model which simulates thecombination of soil water and heat to fit the degree of influence on soil respiration in Shouyang area,which for Northern Arid Soil carbon cycle research provides a parameter support; which reveals therelationship among methods of dry farmland soil respiration determination in there and for follow-upstudy provides conversion formula; according to the various indexes from comprehensive analysis aboutthe characteristics of Shouyang area, we put forward the best farming and fertilizer managementmeasures which are suitable to this region.
引文
1.陈书涛,胡正华,张勇,等.陆地生态系统土壤呼吸时空变异的影响因素研究进展.环境科学,2011,32(8):2184-2191.
    2.高会议,郭胜利,刘文兆.黄土旱塬裸地土壤呼吸特征及其影响因子.生态学报,2011,31(18):5217-5223.
    3.官情,王俊,宋淑亚,等.黄土旱塬区不同覆盖措施对冬小麦农田土壤呼吸的影响.应用生态学报,2011,22(6):1471-1476.
    4.韩广轩,周广胜,许振柱.玉米生长季土壤呼吸的时间变异性及其影响因素.生态学杂志,2008,27(10):1698-1705.
    5.韩广轩,周广胜,许振柱.中国农田生态系统土壤呼吸作用研究与展望.植物生态学报,2008,32(3):719-733.
    6.胡立峰,李琳,陈阜,等.不同耕作制度对南方稻田甲烷排放的影响.生态环境,2006,15(6):1216-1219.
    7.胡玉琼,王跃思,纪宝明,等.内蒙古草原温室气体排放日变化规律研究.南京气象学院学报,2003,26(1):29-37.
    8.黄斌,王敬国,龚元石,等.冬小麦夏玉米农田土壤呼吸与碳平衡的研究.农业环境科学学报,2006,25(1):156-160.
    9.贾金生,李俊,张永强.夏玉米生长盛期农田土壤CO2排放的研究.中国生态农业学报,2003,11(3):1-4.
    10.姜艳,王兵,汪玉如,等.亚热带林分土壤呼吸及其与土壤温湿度关系的模型模拟.应用生态学报,2010,21(7):1641-1648.
    11.李德文,孟凡祥,史奕,等.农业管理措施对土壤有机碳固存潜力影响的研究进展.农业系统科学与综合研究,2005,21(4):260-263.
    12.李海防,夏汉平,熊燕梅,等.土壤温室气体产生与排放影响因素研究进展.生态环境,2007,16(6):1781-1788.
    13.李虎,邱建军,王立刚.农田土壤呼吸特征及根呼吸贡献的模拟分析.农业工程学报,2008,24(4):14-20.
    14.李玉强,赵哈林,李玉霖,等.沙地土壤呼吸观测与测定方法比较.干旱区地理,2008,31(5):680-686.
    15.刘慧,樊杰,Guillaume Giroir.中国碳排放态势与绿色经济展望.中国人口·资源与环境,2011,21(4):151-154.
    16.刘立新,董云社,齐玉春.草地生态系统土壤呼吸研究进展.地理科学进展,2004,23(4):35-42.
    17.刘爽,严昌荣,何文清,等.不同耕作措施下旱地农田土壤呼吸及其影响因素.生态学报,2010,30(11):2919-2924.
    18.马骏,唐海萍.内蒙古农牧交错区不同土地利用方式下土壤呼吸速率及其温度敏感性变化.植物生态学报,2011,35(2):167-175.
    19.孟凡乔,关桂红,张庆忠,等.华北高产农田长期不同耕作方式下土壤呼吸及其季节变化规律.环境科学学报,2006,26(6):992-999.
    20.潘根兴,李恋卿,张旭辉,等.中国土壤有机碳库量与农业土壤碳固定动态的若干问题.地球科学进展,2003,18(4):609-618.
    21.乔云发,苗淑杰,王树起,等.不同施肥处理对黑土土壤呼吸的影响.土壤学报,2007,44(6):1028-1035.
    22.强学彩,袁红莉,高旺盛.秸秆还田量对土壤CO2释放和土壤微生物量的影响.应用生态学报,2004,15(3):469-472.
    23.沈裕琥,黄相国,王海.秸秆覆盖的农田效应.干旱地区农业研究,1998,16(1):45-50.
    24.孙小花,张仁陟,蔡立群,等.不同耕作措施对黄土高原旱地土壤呼吸的影响.应用生态学报,2009,20(9):2173-2180.
    25.王小彬,王燕,代快,等.旱地农田不同耕作系统的能量/碳平衡.生态学报,2011,31(16):4638-4652.
    26.王小彬,武雪萍,赵全胜,等.中国农业土地利用管理对土壤固碳减排潜力的影响.中国农业科学,2011,44(11):2284-2293.
    27.王小彬,蔡典雄.旱作农田保护性耕作-液膜-施肥综合技术研究.农业工程学报,2005,21(6):23-25.
    28.王小彬,蔡典雄,张镜清,等.旱地玉米秸秆还田对土壤肥力的影响.中国农业科学,2000,33(4):54-61.
    29.王立刚,邱建军,李维炯.黄淮海平原地区夏玉米农田土壤呼吸的动态研究.土壤肥料,2006(6):13-17.
    30.王旭,周广胜,蒋延玲,等.长白山红松针阔混交林与开垦农田土壤呼吸作用比较.植物生态学报,2006,30(6):887-893.
    31.王旭,周广胜,蒋延玲,等.山杨白桦混交次生林与原始阔叶红松林土壤呼吸作用比较.植物生态学报,2007,31(3):348-354.
    32.王永强,崔凤娟,郭小刚.农田生态系统土壤呼吸文献综述.内蒙古农业科技,2010,(3):65-67.
    33.王艳萍,高吉喜,冯朝阳,等.北京京郊果园施用不同农肥的土壤呼吸特征研究.浙江大学学报(农业与生命科学版),2009,(1):77-83.
    34.王燕.养分管理与耕作措施对旱地土壤碳消长过程影响的研究.北京:中国农业科学院硕士论文,2008.
    35.王重阳,王绍斌,顾江新,等.下辽河平原玉米田土壤呼吸初步研究.农业环境科学学报,2006,25(5):1240-1244.
    36.吴会军,蔡典雄,武雪萍,等.不同施肥条件下小麦田土壤呼吸特征研究.中国土壤与肥料,2010,(6):70-74.
    37.严俊霞,李洪建,尤龙凤.玉米农田土壤呼吸与环境因子的关系研究.干旱区资源与环境,2010,(3):183-189.
    38.杨晶,黄建辉.农牧交错区不同植物群落土壤呼吸的日动态观测与测定方法比较.植物生态学报,2004,28(3):318-325.
    39.姚志生,郑循华,周再兴,等.太湖地区冬小麦田与蔬菜地N2O排放对比观测研究.气候与环境研究,2006,11(6):691-701.
    40.杨玉盛,陈光水,王小国,等.中国亚热带森林转换对土壤呼吸动态及通量的影响.生态学报,2005,25(7):1684-1690.
    41.张丁辰,蔡典雄,代快,等.旱地农田两种土壤呼吸测定方法的比较.中国土壤与肥料,2011,(4):1-4.
    42.张东秋,石培礼,张宪洲.土壤呼吸主要影响因素的研究进展.地球科学进展,2005,20(7):778-785.
    43.张电学,韩志卿,李东坡,等.不同促腐条件下秸秆还田对土壤微生物量碳氮磷动态变化的影响应.应用生态学报,2005,16(10):1903-1908.
    44.张宏,黄懿梅,祁金花,等.温度和水分对黄土丘陵区3种典型土地利用方式下土壤释放CO2潜力的影响.中国生态农业学报,2011,19(4):731-737.
    45.朱强根,张焕朝.苏北不同杨树人工林经营模式下土壤呼吸日变化观测与测定方法比较.安徽农业科学,2007,35(30):9518-9521.
    46.周晓宇,张称意,郭广芬.气候变化对森林土壤有机碳贮藏影响的研究进展.应用生态学报,2010,21(7):1867-1874.
    47. Bekku Y, Koizumi H, Oikawa T, Iwaki H. Examination of four methods form measuring soilrespiration. Applied Soil Ecology,1997,5(3):247-254.
    48. Borken W, Muhs A, Beese F. Application of compost in spruce forests: Effects on soil respiration,basal respiration and microbial biomass. Forest Ecology and Management,2002,159:49-58.
    49. Calderón J F, Jackson L E, Scow K M. Microbial response to simulated tillage in cultivated anduncultivated soils. Soil Biology and Biochemistry,2000,32:1547-1559.
    50. Cassman K G, Dobermann A, Walters D T. Meeting cereal demand while protecting naturalresources and improving environmental quality. Annual Review of Environment and Resources,2003(28):315-358.
    51. Chapin F S, Vitousek P M, Van Cleve K. The nature of nutrient limitation in plant communities.American naturalist,1986,127:48-58.
    52. Davidson E A, Belk E, Boone R D. Soil water content and temperature as independent orconfounded factors controlling soil respiration in a temperate mixed hardwood forest. GlobalChange Biology,1998,4:217-227.
    53. Davidson E A, Janssens I A, Luo Y Q. On the variability of respiration in terrestrial ecosystems:moving beyond Q10. Glob Change Bio,2006,12:154-164.
    54. Dilustro J J, Collins B, Duncan L, Crawford C. Moisture and soil texture effects on soil CO2effluxcomponents in southeastern mixed pine forests. Forest Ecology and Management,2005,204:85-95.
    55. Elmi A A, Madramootoo C, Hamel C. Denitrification and nitrous oxide to nitrous oxide plusdinitrogen ratios in the soil profile under three tillage systems. Biology and Fertility of Soils,2003(38):340-348.
    56. Fang C, Moncrieff J B, Gholz H L, Clark K L. Soil CO2efflux and its spatial variation in a Floridaslash pine plantation. Plant and Soil,1998,205:135-146.
    57. Fang C, Moncrieff J B. The dependence of soil CO2efflux on temperature. Soil Biology andBiochemistry,2001,33,155-165.
    58. Grace J, Rayment M. Respiration in the balance. Nature,2000,404:819-820.
    59. Han G X, Zhou G S, Xu Z Z, Yang Y, Liu J L, Shi K Q. Soil temperature and biotic factors drivethe seasonal variation of soil respiration in a maize (Zeamays L.) agricultural ecosystem. Plant andSoil,2007,291,15-26.
    60. He J K, Liu B, Chen Y. China’s National Assessment Report on Climate Change (III): Integratedevaluation on policies of China responding to climate change. Advances in climate change research,2007,3(1):12-18.
    61. Hooker B A, Morris T F, Peters R. Long-term effects of tillage and corn stalk return on soil carbondynamics. Soil Science Society of America Journal,2005,69(2):188-196.
    62. Houghton, J T, Ding Y, Griggs D J. Climate Change2001: The Scientific Basis//Contribution ofWorking Group I to the Third Assessment Report of the Intergovernmental Panel on ClimateChange. Cambridge: Cambridge University Press,2001.
    63. Hui D, Luo Y. Evaluation of soil CO2production and transport in Duke Forest using aprocess-based modeling approach. Global Biogeochemical Cycles,2004,18(4):4029-4041.
    64. IPCC. Climate Change2007: The Physical Science Basis. Contribution of working Group I to theFourth Assessment Report of the Intergovernmental Panel on Climate Change.UK: CambridgeUniversity Press,2007.
    65. Janssens I A, Pilegaard K. Large seasonal changes in Ql0of soil respiration in a beech forest.Global Change Biology,2003,9:911-918.
    66. Jia B R, Zhou G S, Wang F Y, Wang Y H, Weng E S. Effects of grazing on soil respiration ofLeymus chinensis steppe. Climatic Change,2007,82,211-223.
    67. Kucera C, Kirkham D. Soil respiration studies in tall grass prairie in Missouri. Ecology,1971,52(5):912-915.
    68. Lal R.Residue management, conservation tillage and soil restoration for mitigating greenhouseeffect by CO2-enrichment. Soil and Tillage Research,1997,43(1/2):81-107.
    69. Lal R, Kimble JM, Folletten RF, et al. The potential of US cropland to sequester carbon andmitigate the greenhouse effect. Chelsea: Ann Arbor Press, MI,1998,128.
    70. Lal R, Folletten RF, Kimble JM, et al. Management of US cropland to sequester carbon in soil.Journal of Soil Water Conswevations,1999,54:374-381.
    71. Lal R. Soll carbon sequestration impacts on globalclimate change and food security. Science,2004,304(5677):1623-1627.
    72. Lee J J, Lameers D A. An approach to the regional evaluation of the responses of soils to globalclimate change. In: Bouwman A F. Soils and the Green house Effect. New York: John Wiley andSons,1990.359-399.
    73. Lee X H, Wu H J, Sigler J, Oishi C, Siccama T. Rapid and transient response of soil respiration torain. Global Change Biology,2004,10:1017-1026.
    74. Lloyd J, Taylor J A. On the temperature dependence of soil respiration. Functional Ecology,1994,8(3):315-323.
    75. Li C, Frolking S, Butterbach-Bahl K. Carbon sequestration in arable soils is likely to increasenitrous oxide emissions, offsetting reductions in climate radiative forcing. Climatic Change,2005(72):321-338.
    76. Lin E D, Xu Y L, Jiang J H. China’s National Assessment Report of Climate Change (II): Climatechange impacts and adaptation. Advances in climate change research,2006,2(2):51-56.
    77. Liu X Z, Wan S Q, Su B. Response of soil CO2efflux to water manipulation in a tall grass prairieecosystem. Plant and Soil,2002,240:213-223.
    78. Luo Y Q, Wan S Q, Hui D F, Wallace L L. Acclimatization of soil respiration to warming in a tallgrass prairie. Nature,2001,413(6856):622-625.
    79. Maestre F T, Cortina J. Small-scale spatial variation in soil CO2efflux in a Mediterranean semiaridsteppe. Applied Soil Ecology,2003,23:199-209.
    80. Martin J G, Bolstad P V. Variation of soil respiration at three spatial scales: Components withinmeasurements, intra-site variation and patterns on the landscape. Soil Biology and Biochemistry,2009,41(3):530-543.
    81. Myeong H Y, Seung J J, Kauneyuki N. Comparison of field methods for measuring soil respiration:a static alkali absorption method and two dynamic closed chamber methods.Forest Ecology andManagement,2002,170:189-197.
    82. Orchard V A, Cook F J. Relationship between soil respiration and soil moisture. Soil Biology andBiochemistry,1983,15(4):447-453.
    83. Petersen S O, Klug M J. Effects of tillage storage and incubation temperature on the phospholipidsfatty acid profile of a soil microbial community. Application of Environmental Microbiology,1994,60:2421-2430.
    84. Porter G S, Bajita-Locke J B, Hue NV, et al. Manganese solubility and phytotoxicity affected bysoil moisture, oxygen levels, and green manure additions. Communications in Soil Science andPlant Analysis,2004,35(1-2):99-116.
    85. Qi Y, Xu M. Separating the effects of moisture on soil CO2efflux in a coniferous forest in theSierra Nevada mountains.Plant and Soil,2001,237(1):15-23.
    86. Qi Y, Xu M, Wu J G. Temperature sensitivity of soil respiration and its effects on ecosystem carbonbudget Nonlinearity begets surprises. Ecological Modeling,2002,153:131-142.
    87. Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationshipto vegetation and climate. Tellus Series B: Chemical and Physical Meteorology,1992,44(2):81-99.
    88. Reicosky D C, Dugas W A, Torbert H A. Tillage-induced soil carbon dioxide loss from differentcropping systems. Soil and Tillage Research,1997,41:105-118.
    89. Reichstein M, Beer C. Soil respiration across scales: The importance of a model-data integrationframework for data interpretation. Journal of plant nutrition and soil science,2008,171(3):344-354.
    90. Reth S, Gockede M, Falge E. CO2efflux from agricultural soils in Eastern Germany-comparison ofa closed chamber system with eddy covariance measurements. Theoretical and AppliedClimatology,2004,85,175-186.
    91. Rey A, Pegoraro E, Tedeschi V, Parri ID, Jarvis PG, Valen-tini R. Annual variation in soilrespiration and its components in a coppice oak forest in central Italy. Global Change Biology,2002,8,851-866.
    92. Ronertson G P, Paul E A, Harwood R R. Greenhouse gases in intensive agriculture: contribution ofindividual gases to the radiative forcing of the atmosphere. Science,2000(289):1922-1925.
    93. Ryan M G, Law B E. Interpreting, measuring, and modeling soil respiration. Biogeochemistry,2005,73(1):3-27.
    94. Schlesinger W H, Andrews J A. Soil respiration and the global carbon cycle. Biogeochemistry,2000,48:7-20.
    95. Schlentner R E, Cleve K V. Relationships between CO2evolution from soil, substrate temperature,and substrate moisture in four mature forest types in interior Alaska. Canadian Journal of ForestResearch-Revue Canadienne De Recherche Forestier,1985,15:97-106.
    96. Singh J S, Gupta S R. P1ant decomposition and soil respiration in terrestrial ecosystems. Bot Rev,1997,43:449-528.
    97. Six J, Ogle S M, Breidt F J. The potential to mitigate global warming with no-tillage managementis only realized when practised in the long term. Global Change Biology,2004,10(2):155-160.
    98. Smith P, Powlson D S, Glendining M J. Establishing a European soil organic matter network(SOMNET)‖P owlson D S, Smith P, Smith J U, eds. Evaluation of Soil Organic Matter Modelsusing Existing,Long-Term Datasets, NATO ASI Series I,Vol.38. Berlin: Springer-Verlag,1996:81-98.
    99. Smith P. Carbon sequestration in crop lands: The potential in Europe and the global context.Europe Agronomy,2004,20:229-236. 
    100. Smith P. An overview of the permanence of soil organic carbon stocks: Influence of directhuman-induced, indirect and natural effects. European Journal of Soil Science,2005,56:673-680.
    101. Tang J W, Baldocchi D D, Qi Y, Xu L K. Assessing soil CO2efflux using continuous measurementsof CO2profiles in soils with small solid-state sensors. Agricultural and Forest Meteorology,2003,118,207-220.
    102. Ussiri D A N, Lal R, Jarecki M K. Nitrous oxide and methane emissions from long-term tillageunder a continuous corn cropping system in Ohio. Soil&Tillage Research,2009(104):247-255.
    103. Wagai R, Brye K R, Gower S T, Norman J M, Bundy L G. Land use and environmental factorsinfluencing soil surface CO2flux and microbial biomass in natural and managed ecosystems inSouthern Wisconsin. Soil Biology and Biochemistry,1998,30:1501-1509.
    104. Wang X B, Cai D X, Hoogmoed W B, et al. Crop residue, manure and fertilizer in dryland maizeunder reduced tillage in northern China: I grain yields and nutrient use efficiencies. Nutr CyclAgroecosyst,2007,79(1):1-16.
    105. Wardle D A, Bardgett R D, Klironmos J N, et al. Ecological linkages between above ground andbelowground biota. Science,2004,304(5677):1629-1633.
    106. West T O, Post W M. Soil organic carbon sequestration by tillage and crop rotation: A global dataanalysis. Soil Science Society of America Journal,2002,66:1930-1946.
    107. Wildung R E, Garland T R, Buschom R L. The interdependent effect of soil respiration rate andplant root decomposition in arid grassland soils. Soil Biology and Biochemistry,1975,7:373-378.
    108. Xiaobin Wang, Kuai Dai, Dingchen Zhang, et al. Dryland maize yields and water use efficiency inresponse to tillage/crop stubble and nutrient management practices in China. Field Crops Research.2010,(120):47-57.
    109. Xu M, Qi Y. Spatial and seasonal variations of Q10determined by soil respiration measurements ata Sierra Nevadan forest. Global Biogeochemical Cycles,2001,15(3):687-696.
    110. Yu K W, Faulkner S P, Patrick W H. Redox potential characterization and soil greenhouse gasconcentration across a hydrological gradientin a Gulf coast forest. Chemosphere,2006,62(6):905-914.
    111. Yu K W, Chen G X, Xu H, et al. Rice yield reduction by chamber enclosure: a possible effect onenhancing methane production. Biology and Fertility of Soils,2006,43(2):257-261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700