嵌段共聚物(PS-b-PAA)/无机杂化材料的研究和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学的不断发展,材料科学从单一的聚合物材料正在向和各学科交叉转变,其中有机-无机杂化材料已成为材料科学发展的重要方向之一。有机-无机杂化材料因在光学透明性、可调折光指数、高催化活性、耐高温及耐磨损等方面表现出优良的性能而广泛应用于新型的结构材料、涂层材料、光学材料、电学材料、磁学材料和生物学材料等方面,使用越来越广泛。因此,寻求具有多种优异性能的该类新材料将是今后一个时期材料领域的重点研究课题之一。基于以上想法,本论文在简述了近年来有机-无机杂化材料研究进展的基础上,主要开展了以下三方面的工作:
     1.以嵌段共聚物PS-b-PAA为稳定剂,在超声辐照下成功地制备了分散性较好、尺寸较均匀的立方相纳米银颗粒。用原子力显微镜(AFM)、红外光谱(FT-IR)、透射电镜(TEM)、紫外-可见吸收光谱(UV-Vis)和热分析(TGA)等对制备的纳米银复合材料进行了表征。红外结果表明超声辐照并没有破坏聚合物的链结构。聚合物的引入,对纳米银颗粒起到了很好的分散保护作用。低浓度的硝酸银溶液,得到粒径较小的纳米银颗粒;随着硝酸银浓度增大,纳米银颗粒粒径也增大;而聚合物的浓度增大时,所得银纳米颗粒粒径减小。聚合物的重均分子量越大,银纳米颗粒的粒径越小。TG结果说明银纳米粒子的引入,能提高聚合物的热稳定性。
     2.利用低强度超声辐照技术在室温下用嵌段共聚物作为保护剂,制备出单晶的银纳米棒和高度有序的树枝状超分子银纳米材料。电子衍射图表明生成的银纳米棒为单晶。银纳米晶的形态从棒状的银纳米晶生长为树枝状的银纳米晶。溶液中AgNO_3的浓度对树枝状银的形成有生长起非常重要的作用。封盖高分子材料的浓度与银浓度的比率同样对银纳米结构的形状及大小有影响。这些不同的银纳米材料与纳米结构可能在催化中有重要的应用。这种方法可以扩展到制备其它贵金属的新型纳米结构。
     3.通过逐层自组装(Layer-by-Layer)的方法将磁性粒子吸附到双亲嵌段共聚物表面,制备了双亲PS-b-PAA/Fe_3O_4复合材料,并以该复合材料作为载体固定化果胶酶。讨论了自由酶和固定化酶的贮存稳定性,可重复利用性和动力学性质。结果表明:固定化酶相对自由酶最显著的优点是可以长期贮存。且固定化酶有很好的pH稳定性,能够在很宽的pH范围内保持很高的酶催化活性。可具有良好稳定性的固定化酶使得利用昂贵的酶的成本降低并在生物催化技术方面开辟了新的领域。而且由于PS-b-PAA/Fe_3O_4粒子表面吸附的Fe_3O_4增强了其磁力性能,使得其在反复利用的催化过程中具有简便、快速分离的优点。
With the continuous development of science, Materials science from single polymer material changes to the interdisciplinary, organic-inorganic hybrid materials of scientific development has become one of the important directions. The inorganic-organic hybrid materials are used widely in electricity, magnetics, and optics fields and so on, because of its interesting optical, magnetic, catalytic and thermal steady properties. Therefore, to seek such new materials of excellent performance will be one of the key research subjects in the coming period on the field of materials subject. In this thesis, our research is mainly focused on the following three parts:
     1. Silver nanoparticles were synthesized by using amphiphilic block copolymer PS-b-PAA based on the flexibility of the copolymer chains and the complex effect of -COOH in the poly(crylic acid) with Ag~+ and Ag under ultrasonic irradiation. The product was characterized by Atomic Force Microscopy (AFM), Fourier Transfer Infrared Spectrometer (FT-IR), Transmission Electron Microscope (TEM), UV-Vis spectrum and Thermal Gravity Analysis (TGA). The FT-IR results revealed that the backbone of the PS-b-PAA block copolymer was not be cleavage during the synthesis of the silver nanoparticles under ultrasonic irradiation. The TEM results revealed that the size of the resulting silver nanoparticles prepared basing on the copolymer was strongly dependent on the initial concentration of the silver ion solution and the copolymer. Low initial silver ion concentration allowed for yielding silver nanoparticles with a small size and the size of the silver nanoparticles increased with the concentration of the silver ion solution increasing. And that the silver nanoparticles decreased with the M_n of the copolymer increasing.
     2. Using the block copolymers as a protective agent, the single crystals of silver nanorods and highly ordered dendritic supramolecular silver nanomaterials were prepared under low-intensity ultrasound irradiation at room temperature. The electronic diffraction pattern indicated that the silver nanorods are single crystal. The shape of the silver nanocrystal grows from stick to dendritic. The concentration of silver nitrate and copolymer play an important role in formation and growth process of the silver nanocrystal. These different silver nanomaterials possibly have important application in catalysis applications. This method can be extended to prepare the new type of nano-structure of other precious metals.
     3. The idea of preparing the surface of Fe_3O_4 layer pre-adsorbed on the copolymer via layer by layer self-assembly approach receives special relevance in enzyme technology. The copolymer PS-b-PAA/Fe_3O_4 support presents a very simple, mild, and time-saving process for enzyme immobilization. We discussed the storing stability, reusability and kinetic property of the free enzyme and the Immobilized enzyme. The most significant advantages of the Immobilized enzyme is the long-term storing stability. And immobilized enzymes have good pH stability in a wide pH range, maintaining a high level of enzyme activity. The immobilized enzyme which have good stability reduced the cost of the expensive enzyme and opened up a new field of the catalytic technology. These particles, premodified with the layer of magnetic nanoparticles to impart a magnetic property were repeatedly used as catalysts following their rapid and easy separation with a magnet.
引文
[1]丁星兆,何怡贞,董远达.溶胶-凝胶工艺在材料科学中的应用[J].材料科学与工程,1994,12(2):1-8.
    [2]李旭华,袁荞龙,王得宁.杂化材料的制备、性能及应用[J].功能高分子学报,2000,13(2):211-218.
    [3]吴崇洁,王世敏,赵雷.溶胶-凝胶法制备无机-有机聚合物杂化材料的进展[J].胶体与聚合物,2003,21(1):39-42.
    [4]Y.Y.Yu,C.Y.Chen,W.C.Chen.Synthesis and characterization of organic-inorganic hybrid thin films from poly(acrylic) and monodispersed colloidal silica[J].Polymer,2003,44(3):593-601.
    [5]R.J.Nussbaumer,C.Walter,T.Theo.Synthesis and characterization of surface-modified rutile nanoparticles and transparent polymer composites thereof[J].J.Nanopart.Res.,2002,4(4):319-323.
    [6]乔放,李强,漆宗能,等.聚酰胺/粘土纳米复合材料的制备、结构表征及性能研究[J].高分子通报,1997,(3):135-142.
    [7]肖泳,胡克鳌,吴人洁.聚环氧乙烷/LixMoO_3纳米复合材料的制备及表征[J].功能高分子学报,2000,13(4):372-374.
    [8]董秀芳.制备有机-无机纳米复合材料方法研讨[J].华北工学院学报,2004,25(4):293-296.
    [9]钱军民,金志浩.甲基丙烯酸甲酯-顺丁烯二酸酐共聚物/SiO_2杂化材料的制备与性能[J].高分子材料科学与工程,2003,19(4):162-165.
    [10]程之强,任卫,魏美玲.Ormocer在多功能薄膜中的应用研究[C],1999第二届表面工程国际会议,武汉,1999.
    [11]B.M.Novak,M.Ellsworth,T.Wallow.Simultaneous interpenetrating networks of inorganic glasses[J].Polymer,1990,31(2):698-699.
    [12]B.M.Novak,D.Auerbach,C.Verrier.Low-density,mutually interpenetrating organic-inorganic composite materials via supercritical drying techniques[J].Chem.Mater.,1994,6(3):282-286.
    [13]J.N.Hay,H.M.Raval.Synthesis of organic-inorganic hybrids via the nonhydrolytic sol-gel process[J].Chem.Mater.,2001,13(10):3396-3403.
    [14]董秀芳.制备有机-无机纳米复合材料方法研讨[J].华北工学院学报,2004,25(4):293-296.
    [15]Y.J.Liu,D.C.DeGroot,J.L.Schindler,C.R.Kannewurf,M.G.Kanatzidis.Intercalation of poly(ethylene oxide) in vanadium pentoxide(V_2O_5) xerogel[J].Chem.Mater.,1991,3:992-994.
    [16]宋晓艳,张玉清,张杰,李俊贤.聚氨酯弹性体/蒙脱土纳米复合材料的合成与性能[J].高分子学报,2004,5:419-423。
    [17]M.Okamoto,S.Morita,H.Taguchi,Y.H,Kim,Tadao Kotaka,H.Tateyama.Synthesis and structure of smectic clay/poly(methyl methacrylate) and day/polystyrene nanocomposites via in situ intercalative polymerization[J].Polymer,2000,41:3887-3890.
    [18]E.R.Hitzky,P.Aranda,B.Casal.Nanocomposite materialswith controlled ion mobility[J].Adv.Mater.,1995,7(2):180-184.
    [19]J.Wu,M.Lerner.Structural,thermal,and electrical characterization of layered nanocomposites derived from sodium-montmorillonite and polyethers[J].Chem.Mater.,1993,5:835-838.
    [20]R.A.Vaia,S.Vasudevan,W.Krawiec.New polymer electrolyte nanocomposites:melt intercalation of poly(ethylene oxide) in micatype silicates[J].Adv.Mater.,1995,7:154-162.
    [21]张爱玲,张宝砚,吕凤柱,雷刚.液晶聚合物对PA1010/滑石粉杂化材料增容作用的研究[J].高分子材料科学与工程,2003,19(1):136-139.
    [22]余家会,杜予民,郑化.壳聚糖-明胶共混膜[J].武汉大学学报(自然科学版),1999,45(4):440-444.
    [23]羊海棠,杨瑞成,冯辉霞,李迎春,陈奎,袁晓波.纳米二氧化硅粒子增韧聚丙烯的研究[J].甘肃工业大学学报,2003,29(2):36-36.
    [24]董相廷,张丽,张伟.纳米CeO_2/聚苯乙烯杂化材料的制备及表征[J].物理化学学报,2001,17(8):739-742.
    [25]Y.Wei,D.C.Yang,L.G.Tang.Synthesis,characterization,and properties of new polystyrene-SiO_2 hybrid sol-gel materials[J].Mater.Res.,1993,8:1143.
    [26]彭平,李效东,袁桂芳,曹峰,佘文奇,廖杰.聚乙烯醇缩丁醛/氧化铝杂化高分子材料的研究[J].高分子学报,2001,2:167-171.
    [27]孙阁彪,吴刚,徐瑞芬,武德珍.纳米TiO_2的表面处理及聚丙烯/TiO_2复合体系的研究[J].中国塑料,2002,16(12):47-50.
    [28]任显诚,白兰英,王贵恒.纳米级CaCO_3粒子增韧增强聚丙烯的研究[J].中国塑料,2000,14(1):22-26.
    [29]胡平,范守善,万建伟.碳纳米管/UHMWPE复合材料的研究[J].工程塑料应用,1998,26(1):1-3.
    [30]刘秀华,邓义,傅依备.聚合物基纳米复合材料研究的进展[J].化学工程师,2004.9:22-25.
    [31]毛秉伟,任斌.扫描电化学显微技术[J].化学通报,1995,3:13-17.
    [32]Q.D.Chen,X.H.Shen,H.C.Gao.One-step synthesis of silver-poly(4-vinyl pyridine) hybrid microgels by γ-irradiation and surafetant-free emulsion polymerisation,the photolumine scence charaeteristies[J].Colloid.Surface.A:Physicochem.Eng.Aspects,2006,275(2):45-49.
    [33]J.Li,M.Josowicz.Synthesis and characterization of electropolymerized poly(cyclophosphazene-benzoquinone)[J].Chem.Mater.,1997,9(6):1451-1462.
    [34]M.Y.Gao,X.G.Pen.Assembly of modified CdS particles/cationic polymer based on electrostatic interactions[J].Thin Solid Films,1996,284-285(15):242-245.
    [35]L.Valentini,V.Bavastrello,I.Arrnentano,F.D.Angelo,G.Pennelli,C.Nicolini,J.M.Kenny.Synthesis and electrical properties of CdS Langmuir-Blodgett multilayers nanoparticles on self-assembled carbon nanotubes[J].Chem.Phys.Lett.,2004,392(1-3):214-219.
    [36]X.Mo,C.Y.Wang,M.You,Y.R.Zhu,Z.Y.Chen,Y.Hu.A novel ultravioletirradistion route to CdS nanocrystallites with different morphologies[J].Mater.Res.Bull.,2001,36:2277-2282.
    [37]X.Chen,Z.T.Yu,J.S.Chen,B.Yang.In situ hydrothermal preparation of CdS/polymer composite particles with cadmium-containing polymer latexes[J].Mater.Lett.,2004,58(3-4):384-386.
    [38]P.V.Braun,S.I.Stupp.CdS mineralization of hexagonal,lamellar and cubic lyotropic liquid crystals[J].Mater.Res.Bull.,1999,34(3):463-469.
    [39]R.S.Singh,V.K.Rangari,S.Sanagapalli,V.Jayaraman,S.Mahendra,V.P.Singh.Nanostructured CdTe,CdS and TiO_2 for thin film solar cell applications[J].Sol.Energ.Mat.Sol.C.,2004,82(1-2):315-330.
    [40]张勇,韩永军.微波辐照一步合成纳米硫化镉/共聚物复合材料[J].化学研究,2002,13(4):10-12.
    [41]Z.Ahmad,M.I.Sarwar,J.E.Mark.Preparation and properties of hybrid organic-inorganic composites prepared from poly(phenylene terephthalamide) and titania[J].Mater.Chem.,1997,7:259-263.
    [42]T.Lan,T.J.Pinnavaia.Synthesis,characterization and mechanical properties of epoxy-clay nanocomposites[J].Chem.Mater.,1994,6:2216-2219.
    [43]Y.N.Yang,P.Wang.Preparation and characterizations of a new PS/TiO_2 hybrid membrane by sol-gel process[J].Polymer,2006,47(8):2683-2688.
    [44]D.S.Kim,H.B.Pakr,J.W.Rhim,Y.M.Lee.Preparation and characterization of crosslinked PVA/SiO_2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications[J].J.Membr.Sei.,2004,240(1):37-48.
    [45]官建国,袁润章,光学透明材料的现状和研究进展Ⅱ:有机-无机纳米复合光学透明材料[J].武汉工业大学学报,1998,20(3):11-13.
    [46]曹峰,朱子康,印杰.新型光敏聚酰亚胺/SiO_2杂化材料的制备与性能研究[J].功能高分子学报,2000,13:325-328.
    [47]吴瑜光,张通和,谢孟峡,周固.金属离子注入聚合物光电特性研究[J].功能材料,2002,33(1):96-97.
    [48]A.Biswas,O.C.Aktas,J.Kanzow,U.Saeed,T.Strunskus,V.Zaporojtchenko,F.Faupel.Polymer-metal optical nanocomposites with tunable particle plasmon resonance prepared by vapor phase co-deposition[J].Mater Lett.,2004,58:1530-1534.
    [49]B.Ingham,S.V.Chong,J.L.Tallon.Novel materials based on organic-tungsten oxide hybrid systems Ⅱ:electronic properties of the W-O framework[J].Curr.Appl.Phys.,2004,4(3):202-205.
    [50]冯军强,徐曼,郑晓泉,曹晓珑.Ag/PVA纳米聚合物基复合材料的制备及其电性能研究[J].中国电机工程学报,2004,24(6):92-95.
    [51]藤镕,智晃.电磁波遮蔽性树脂组成物[P],日本,H12-288438(A),2000-10-17.
    [52]C.Ohtsuki,T.Miyazaki,M.Tanihara.Development of bioactive organicinorganic hybrid for bone substitutes[J].Mat.Sci.Eng.,2002,22:27-34.
    [53]S.Sharma,C.Nirkhe,S.Pethkar,A.A.Athawale.Chloroform vapour sensor based on copper/polyaniline nanocomposite[J].Sensor.Actuat.B-Chem.,2002,85:131-136.
    [54]N.Krasteva,B.Guse,I.Besnard,A.Yasuda,T.Vossmeyer.Gold nanoparticle/PPI-dendrimer based chemiresistors Vapor-sensing properties as a function of the dendrimer size[J].Sensor.Actuat.B-Chem.,2003,92:137-143.
    [55]V.E.Bochenkov,N.Stephan,L.Brehmer,V.V.Zagorskii,G.B.Sergeev.Sensor activity of thin polymer films containing lead nanoparticles[J].Colloid.Surface.A:Physicochem.Eng.Aspects,2002,198-200:911-915.
    [56]M.T.Reetz,A.Zontra,J.Simpelkanp.Effecent hero seneous biocatalysts by entrapment of lipases in hydrophobic materials[J].Angew.Chem.Int.Ed.Engl.,1995,34(3):301-309.
    [57]S.A.Yamanaka,B.Dunn,J.S.Valentine,J.I.Zink.Nicotinamide adenine dinucleotide phosphate fluorescence and absorption monitoring of enzymic activity in silicate sol-gels for chemical sensing applications[J].J.Am.Chem.Soc.,1995,117(4):9095-9096.
    [58]K.Esumi,K.Miyamoto,T.Yoshimura.Comparison of PAMAM-Au and PPI-Au nanocomposites and their catalytic activity for reduction of 4-Nitrophenol[J].J.Colloid.Interf.Sci.,2002,254:402-405.
    [59]周萍,李莉,宋旭梅.POM-APS-TiO_2杂化光催化剂的制备及表征[J].齐齐哈尔大学学报,2003,19(4):24-26.
    [60]T.Trindade,P.O'Brien,N.L.Pickett.Nanocrystalline semiconductors:synthesis,properties,and perspectives[J].Chem.Mater.,2001,13:3843-3858
    [61]X.J.Wang,X.W.Zheng,Y.Xie.Reduction of selenious acid induced by ultrasonic irradiation-formation of Se nanorods[J].Ultrason.Sonochem.,2004,11:307-310.
    [62]M.Filali,A.R.Meier Michael,S.S.Ulrich.Star-block copolymers as templates for the preparation of stable gold nanoparticles[J].Langmuir,2005,21:7995-8000.
    [63]Q.L.Zhang,T.Xu,D.Butterfield,M.J.Misner,D.Y.Ryu,T.Emrick,T.P.Russell.Controlled placement of CdSe nanoparticles in diblock copolymer templates by electrophoretic deposition[J].Nano.Lett.,2005,5:357-361.
    [64]Y.Cui,M.T.Bjork,J.A.Liddle,C.Sonnichsen,B.Boussert,A.P.Alivisatos.Integration of colloidal nanocrystals into lithographically patterned devices[J].Nano.Lett.,2004,4:1093-1098.
    [65]E.Hao,H.Zhang,B.Yang,H.Ren,J.C.Shen.Preparation of luminescent polyelectrolyte/Cu-doped ZnSe nanoparticle multilayer composite films[J].J.Colloid.Interf.,Sci.2001,238:285-290.
    [66] J. J. Chiu, B. J. Kim, E. J. Kramer, D. J. Pine. Control of nanoparticle location in block copolymers[J]. J. Am. Chem. Soc, 2005,127: 5036-5037.
    [67] J. C. Scaiano, C. Aliaga, S. Maguire, D. S. Wang. Magnetic field control of photoinduced silver nanoparticle formation[J]. J. Phys. Chem. B., 2006, 110: 12856-12859.
    [68] C. X. Zhang, S. O'Brien, L. Balogh. Comparison and stability of CdSe nanocrystals covered with amphiphilic poly(amidoamine) dendrimers[J]. J. Phys. Chem. B., 2002,106:10316-10321.
    [69] S. H. Yu, M. Yoshimura, J. M. C. Moreno, T. Fujiwara, T. Fujino, R. Teranishi. In situ fabrication and optical properties of a novel polystyrene/semiconductor nanocomposite embedded with CdS nanowires by a soft solution processing route[J]. Langmuir, 2001,17:1700-1707.
    [70] X. D. Gao, X. M. Li, W. D. Yu. Structural and morphological evolution of ZnO cluster film prepared by the ultrasonic irradiation assisted solution route[J]. Thin Solid Films, 2005, 484:160-164.
    [71] H. X. Xu, J. Xu, Z. Y. Zhu, H. W. Liu, S. Y. Liu. In-situ formation of silver nanoparticles with tunable spatial distribution at the poly (N-isopropylacrylamide) corona of unimolecular micelles[J]. Macromolecules, 2006, 39: 8451-8455.
    [72] J. G. Xie, X. Y. Cao, J. X. Li. Application of ultrasonic irradiation to the sol-gel synthesis of silver vanadium oxides[J]. Ultrason. Sonochem., 2005,12:289-293.
    [73] C. T. Hsu. Effects of temperature and ZnSe well-layer thickness on PL in ZnSe/ZnS strained-layer superlattices[J]. Thin Solid Films, 1998, 315: 94-98.
    [74] J. L. Zhang, B. X. Han, M. H. Liu, D. X. Liu, Z. X. Dong, J. Liu, D. Li, J. Wang, B. Z. Dong, H. Zhao, L. X. Rong. Ultrasonication-induced formation of silver nanofibers in reverse micelles and small-angle X-ray scattering studies[J]. J. Phys. Chem. B., 2003,107: 3679-3683.
    [75] C. H. Chen, L. S. Sarma, G. R. Wang, J. M. Chen, S. C. Shih, M. T. Tang, D. G. Liu, J. F. Lee, J. M. Chen, B. J. Hwang. Formation of bimetallic Ag-Pd nanoclusters via the reaction between Ag nanoclusters and Pd~(2+) ions[J]. J. Phys. Chem. B., 2006,110:10287-10295.
    [76] V. M. Mastikhin, S. N. Goncharova, V. M. Tapilin, V. V. Terskikh, B. S. Balzhinimaev. Effect of particle size upon activation of an Ag thin film catalyst[J]. Chem. Phys. Lett., 1998, 286: 502-507.
    [77] J. M. Du, Z. M. Liu, B. X. Han, Z. H. Li, J. L. Zhang, Y. Huang. One-pot synthesis of the macroporous polyaniline microspheres and Ag/polyaniline core-shell particles[J]. Micropor. Mesopor. Mat., 2005, 84: 254-260.
    [78] S. H. Liu, B. H. Jeffrey Tok, Z. N. Bao. Nanowire Lithography: fabricating controllable electrode gaps using Au-Ag-Au nanowires [J]. Nano Lett., 2005, 5: 1071-1076.
    [79] M. Aizawa, M. Cooper Anne, M. Malac. Silver nano-inukshuks on germanium[J]. Nano. Lett., 2005, 5: 815-819.
    [80] Y. G. Sun, B. Gates, B. Mayers. Crystalline silver nanowires by soft solution processing[J]. Nano. Lett., 2002, 2:165-168.
    [81] Y. J. Kang, T. A. Taton. Controlling shell thickness in core-shell gold nanoparticles via surface-templated adsorption of block copolymer surfactants [J]. Macromolecules, 2005, 38: 6115-6121.
    [82] J. P. Gao, J. Fu, C. K. Lin. Formation and photoluminescence of silver nanoparticles stabilized by a two-armed polymer with a crown ether core[J]. Langmuir, 2004, 20: 9775-9779.
    [83] M. Filali, A. R Meier Michael, S. S. Ulrich. Star-block copolymers as templates for the preparation of stable gold nanoparticles [J]. Langmuir, 2005, 21: 7995-8000.
    [84] G. J. Lee, S. I. Shin, Y. C. Kim. Preparation of silver nanorods through the control of temperature and pH of reaction medium[J]. Mate. Chem. Phys., 2004,84: 197-204.
    [85] W. Wang, S. A. Asher. Photochemical incorporation of silver quantum dots in monodisperse silica colloids for photonic crystal applications [J]. J. Am. Chem. Soc, 2001, 61:12528-12535.
    [86] W. Chen, J. Y. Zhang, Y. Di. Size controlled Ag nanoparticles within pores of monolithic mesoporous silica by ultrasonic irradiation [J]. Appl. Surf. Sci., 2003, 211: 280-284.
    [87] E. Leontidis, K. Kleitou, K. Leondidou. Gold colloids from cationic surfactant solutions. 1. mechanisms that control particle morphology [J]. Langmuir, 2002, 18: 3659-3668.
    [88] H. B. Yin, T. Yamamoto, Y. J. Wada. Large-scale and size-controlled synthesis of silver nanoparticles under microwave irradiation[J]. Mate. Chem. Phys., 2004, 83: 66-70.
    [89] H. R. Liu, X. W. Ge, Y. H. Ni, Synthesis and characterization of polyacrylonitril e-silver nanocomposites by γ-irradiation[J]. Radiat. Phys. Chem., 2001, 61: 89-91.
    [90] X. W. Zheng, Y. Xie, L. Y. Zhu. Formation of vesicle-templated CdSe hollow spheres in an ultrasound-induced anionic surfactant solution[J]. Ultrason. Sonochem., 2002, 9: 311-316.
    [91] K. Matyjaszewski, J. S. Wang. Controlled/"Living" radical polymerization. Halogen atom transfer radical polymerization promoted by a Cu( Ⅰ )/Cu( Ⅱ) redox process[J]. Macromol., 1995, 28: 7901-7910 [92] T. Teranishi, M. Miyake. Size control of palladium nanoparticles and their crystal structures[J]. Chem. Mater., 1998,10: 594-600.
    [93] S. W. Chen, K. Huang, J. A. Stearns, Alkanethiolate-protected palladium nanoparticles[J]. Chem. Mater., 2000,12(2): 540-547.
    [94] V. L. Colvin, M. C. Schlamp, A. P. Alivisatos. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer[J]. Nature, 1994, 370: 354-357.
    [95] R. P. Andres, J. D. Bielefeld, J. I. Henderson, D. B. Janes, V. R. Kolagunta, C. P. Kubiak, W. J. Mahoney, R. J. Osifchin. Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters[J]. Science, 1996, 273: 1690-1693.
    [96] J. D. Holmes, K. P. Johnston, R. C. Doty, B. A. Korgel. Control of thickness and orientation of solution-grown silicon nanowires[J]. Science, 2000, 287: 1471-1473.
    [97] H. Yorikawa, H. Uchida, S. Muramatsu. Energy gap of nanoscale Si rods[J]. J. Appl. Phys., 1996, 79: 3619.
    [98] M. Freemantle. Chem. Eng. News., 1996, 74: 62.
    [99] S. C. Tsang, Y. K. Chen, P. J. E. Harris, M. L. H. Green. A simple chemical method of opening and filling carbon nanotubes[J]. Nature, 1994, 372: 159-162.
    [100] B. C. Satishkumar, A. Govindaraj, J. Mofokeng, G. N. Subbanna, C. N. Rao. Novel experiments with carbon nanotubes: opening, filling, closing and functionalizing nanotubes[J]. J. Phys. B: At. Mol. Opt. Phys., 1996, 29: 4925-4934.
    [101] T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, M. A. El-Sayed. Shape-controlled synthesis of colloidal platinum nanoparticles[J]. Science, 1996, 272:1924-1925.
    [102] P. A. Brugger, P. Cuendet, M. Gratzel. Ultrafine and specific catalysts affording efficient hydrogen evolution from water under visible light illumination[J]. J. Am. Chem. Soc, 1981,103: 2923-2927.
    [103] H. Weller. Self-organized superlattices of nanoparticles [J]. Angew. Chem. Int. Ed. Engl., 1996,35:1079-1081.
    [104] J. J. Pietron, R. M. Stroud, D. R. Rolison. Using three dimensions in catalytic mesoporous nanoarchitectures[J], Nano Lett., 2002, 2: 545-549.
    [105] T. Sato, H. Ahemd, D. Brown, B. F. G. Johnson. Single electron transistor using a molecularly linked gold colloidal particle chain[J]. J. Appl. Phys., 1997, 82: 696.
    [106] W. P. Wuelfing, F. P. Zamborini, A. C. Templeton, X. G. Ween, H. Yoon, R. W. Murray. Monolayer-protected clusters: molecular precursors to metal films[J]. Chem. Mater., 2001,13: 87-95.
    [107] W. P. Wuelfing, R. W. Murray. Electron hopping through films of arenethiolate monolayer-protected gold clusters[J]. J. Phys. Chem. B., 2002,106: 3139-3145.
    [108] B. Nikoobakht, J. Wang, M. El-Sayed. Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: off-surface plasmon resonance condition[J]. A. Chem. Phys. Lett., 2002, 366:17-23.
    [109] P. A. Brugger, P. Cuendet, M. Gratzel. Ultrafine and specific catalysts affording efficient hydrogen evolution from water under visible light illumination[J]. J. Am. Chem. Soc, 1981,103: 2923-2927.
    [110] O. Katzenelson, H. Z. H. Or, D. Avnir, Chirality of large random supramolecular structures[J]. Chem. Eur. J., 1996, 2:174-181.
    [111] K. Sangeetha, A. T. Emilia. Chemical modification of papain for use in alkaline medium[J]. J. Mol. Catal. B-Enzym., 2006,38:171-177.
    [112] A. Bhardwaj, J. Lee, K. Glauner, S. Ganapathi, D. Bhattacharyya, D. A. Butterfield. Biofunctional membranes: an EPR study of active site structure and stability of papain non-covalently immobilized on the surface of modified poly(ether) sulfone membranes through the avidin-biotin linkage [J]. J. Membrane. Sci., 1996,119(2): 241-252.
    [113] T. Hayashi, Y. Ikada. Enzymatic hydrolysis of copoly-(N-hydroxyalkyl -glutamine/γ-methyl -glutamate) fibres[J]. Biomaterials. 1990,11(6): 409-413.
    [114] Y. Y. Liang, L. M. Zhang. Bioconjugation of Papain on Superparamagnetic Nanoparticles Decorated with Carboxymethylated Chitosan[J]. Biomacromolecules, 2007, 8(5): 1480-1486.
    [115] D. R. Kashyap, P. K. Vohra, S. Chopra, R. Tewari. Applications of pectinases in the commercial sector: a review[J]. Bioresource. Technol., 2001,77: 215-227.
    [116] A. Ramazan, A. Z. Michael, O. C. Richard, S. R. Judy. Synthesis, characterization and targeting of biodegradable magnetic nanocomposite particles by external magnetic fields[J]. J. Magn. Magn. Mater., 2005, 292: 108-119.
    [117] J. P. Dailey, J. P. Phillips, C. Li, J. S. Riffle. Synthesis of silicone magnetic fluid for use in eye surgery[J]. J. Magn. Magn. Mater., 1999,194:140-148.
    [118] F. Y. Cheng, D. B. Shieh, C. S. Yeh. Characterization of aqueous dispersions of Fe_3O_4 nanoparticles and their biomedical applications [J]. Biomaterials, 2005, 26: 729-7. 38.
    [119] I. J. Bruce, T. Sen. Surface modification of magnetic nanoparticles with alkoxysilanes and their application in magnetic bioseparations[J]. Langmuir, 2005, 21: 7029-7035.
    [120] Y. Sahoo, A. Goodarzi, M. T. Swihart, T. Y. Ohulchanskyy, N. Kaur, E. P. Furlani, P. N. Prasad. Aqueous ferrofluid of magnetite nanoparticles: fluorescence labeling and magnetcphoretic control[J]. J. Phys. Chem. B., 2005, 109: 3879-3885.
    [121] G. L. Miller. Use of dinitrosalicyclic acid reagent for determination of reducing sugar[J]. Anal Chem., 1959, 31: 426-428.
    [122] M. J. Bailey, E. Pessa. Strain and Process for production of polygalacturonase[J]. Enzyme. Microb. Tech., 1990,12: 266-271.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700