硬膜外局部低温治疗重型颅脑外伤的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景重型颅脑外伤是严重危害人类健康和生命的多发疾病,不仅给患者及其家庭带来沉重的精神和生活负担,而且容易引发一系列社会和经济问题。在医学不断进步的今天,重型颅脑外伤的致残、致死率却一直居高不下,至今仍没有一项十分有效的治疗方法。上个世纪末本世纪初,在多项重型颅脑外伤药物临床试验结果不尽人意时,低温在治疗心脏停搏相关脑损伤和新生儿缺血缺氧性脑病方面所取得的积极效果,又使人们把目光聚焦到重型颅脑外伤低温脑保护的研究中。低温治疗的实施可有多种方法,目前应用较广的是全身降温,但有研究发现全身降温可能存在寒战、电解质紊乱、心律失常、出血倾向、易感染、皮肤损害等并发症。设计和实施一种既能有效低温治疗而又可避免全身降温并发症的降温技术,对低温脑保护的研究和应用具有重大意义。目前,低温发挥脑保护作用的机制尚不完全清楚,进一步研究其对重型颅脑外伤病理生理演变和预后转归的影响,有利于降低重型颅脑外伤的致残率和死亡率。
     第一章硬膜外局部低温方法的降温效能、安全性和并发症研究
     目的应用自制降温线圈实施硬膜外局部低温,通过与全身降温方法对比,研究该局部低温方法的降温效能、安全性和并发症情况。
     方法SD大鼠随机分为常温对照组(Nor组)、硬膜外局部低温组(LH组)和全身低温组(SH组),LH组以降温线圈贴附于一侧硬脑膜外实施局部低温,SH组以冰袋和酒精全身降温,两组均使脑温降至31.0~32.0℃并持续10小时。实验中观察大鼠寒战反应,监测同侧脑温、对侧脑温、肛温及呼吸、心率、血压变化,于降温末采血进行血气分析、电解质、血常规及血液流变学检测,并在降温后24 h以改良NSS评分方法评测其神经功能,取脑组织行光镜、电镜检查,以及脑组织水、钠、钾含量和血脑屏障通透性检测。
     结果降温后,LH组大鼠降温侧脑温在数分钟内从(36.5±0.3)℃下降到(31.4±0.4)℃并维持稳定,其对侧脑温、肛温以及R、HR、MABP无明显变化;SH组的局部脑温也下降到目标范围,但其对侧脑温、肛温同时出现降低。降温过程中,SH组寒战发生率为58.8%,并出现心率下降,血小板降低,高切变率下全血粘度和血浆粘度增高,LH组未观察到如上变化。实施低温后,LH组和SH组大鼠NSS评分正常,光镜和电镜下未发现脑组织损伤表现,两组的脑组织水、钠、钾含量和伊文思蓝含量与Nor组比较无统计学差异。
     结论该种硬膜外局部低温方法的降温效果与全身降温相似,且没有对脑组织造成急性损害。同时,与全身低温相比,该种硬膜外局部低温的并发症较少。硬膜外局部低温是一项有效、安全、并发症少的低温脑保护技术。
     第二章硬膜外局部低温治疗重型颅脑外伤及与全身低温疗法的比较
     目的探索硬膜外局部低温治疗对重型颅脑外伤实验大鼠死亡率、体重、神经功能、脑水肿和组织病理学的影响,并与全身低温方法对比,观察两者的治疗效果。
     方法SD大鼠随机分为正常对照组(Norm组)、假手术组(Sham组)、重型颅脑外伤组(sTBI组)、硬膜外局部低温治疗组(LHT组)和全身低温治疗组(SHT组)。采用Feeney's自由落体致伤方法制备重型颅脑外伤模型(25 g,60 cm)。在伤后30 min开始局部或全身低温治疗,持续10 h。在伤后不同时间点测量体重,采用改良NSS评分、平衡木和平衡行走试验以及Morris水迷宫进行神经功能评测,并取脑组织进行水、钠、钾含量检测和HE染色,观察脑水肿情况和组织病理学改变。
     结果sTBI组、LHT组和SHT组大鼠的死亡率分别为32.32%、15.19%和19.28%。LHT组和SHT组伤后体重下降的幅度比sTBI组小。在伤后相应时间点进行的NSS评分、平衡木、平衡行走试验和Morris水迷宫等评测结果显示,LHT组和SHT组大鼠相应的神经功能障碍均较sTBI组轻。在伤后12 h、1 d和3 d,sTBI组的脑组织水、钠含量增加而钾含量降低,提示脑水肿,而这三个时间点LHT组和SHT组的脑水肿程度均比sTBI组轻。重型颅脑外伤后,脑组织病理形态改变明显,而LHT组和SHT组的脑组织病理损害程度较轻。此外,在死亡率、体重变化、神经功能评分和脑水肿程度方面,LHT组和SHT组之间比较未见统计学差异。
     结论硬膜外局部低温治疗和全身低温相似,均可减缓大鼠重型颅脑外伤后的体重下降,改善神经功能障碍,减轻伤后脑水肿和脑组织病理改变程度等。该两种低温方法对重型颅脑外伤均具有明显的治疗作用,且在效果上无明显差异。
     第三章硬膜外局部低温对重型颅脑外伤大鼠脑组织PKC-δ、突触素和GAP-43表达的影响
     目的探索硬膜外局部低温治疗对重型颅脑外伤实验大鼠脑组织PKC-δ、突触素和GAP-43表达的影响,以研究低温脑保护作用的可能机制。
     方法SD大鼠随机分为正常对照组(Norm组)、假手术组(Sham组)、重型颅脑外伤组(sTBI组)和硬膜外局部低温治疗组(LHT组)。伤后30 min开始局部低温治疗,持续10小时。透射电镜下观察脑组织的超微形态结构改变,并取伤后12 h、1 d、3 d的脑组织进行PKC-δ免疫印迹和TUNEL染色,伤后7 d、14 d和28 d进行突触素、GAP-43的免疫印迹和免疫组化检测。
     结果sTBI组大鼠脑组织电镜下超微形态结构改变严重,而局部低温治疗后,细胞核、线粒体、血脑屏障等结构有所改善。sTBI组脑组织全细胞成分中PKC-δ表达下降,而PKC-δ具有活性的裂解片段CF-PKC-δ增加;此外,sTBI组细胞浆中PKC-δ表达减少而细胞膜中PKC-δ增加,提示伴发PKC-δ从胞浆向胞膜的转运。实施硬膜外局部低温后,PKC-δ的裂解和胞膜转位均减少,提示低温可抑制PKC-δ的激活。在伤后12 h、1 d、3 d,sTBI组脑组织TUNEL染色阳性凋亡细胞数增多,而LHT组凋亡细胞数减少,提示低温可能抑制细胞凋亡。在伤后7 d、14 d、28 d,可观察到sTBI组脑组织中突触素和GAP-43的蛋白表达和免疫活性均下降;给予硬膜外局部低温治疗后,LHT组的突触素、GAP-43表达和免疫活性均较sTBI组增加。
     结论硬膜外局部低温可减轻重型颅脑外伤所导致的神经组织、细胞超微形态结构损害。其可能通过抑制重型颅脑外伤伤后PKC-δ的裂解和胞膜转位,降低PKC-δ的有害活化,并可进一步调节、抑制细胞凋亡,从而发挥脑保护作用,减少急性期神经组织和细胞的损伤。同时,低温还可能通过增加脑组织突触素和GAP-43的表达,促进重型颅脑外伤伤后晚期神经再生和重塑,改善神经功能。
     综上所述,本研究结论如下:
     1.硬膜外局部低温方法有效、安全;与全身低温相比,其在实验动物身上观察到的并发症较少。
     2.硬膜外局部低温治疗可减缓大鼠伤后的体重下降,改善神经功能障碍,减轻伤后脑水肿,改善伤后脑组织病理改变等。其和全身低温相似,对重型颅脑外伤具有明显治疗作用,且二者在效果上无明显差异。
     3.硬膜外局部低温可能通过抑制伤后脑组织中PKC-δ的裂解和胞膜转位,降低PKC-δ的有害活化,进而调节、减少细胞凋亡,发挥脑保护作用。
     4.硬膜外局部低温可能通过增加脑组织突触素和神经生长相关蛋白-43(GAP-43)的表达,促进伤后晚期神经再生和重塑,改善神经功能。
Research background Severe traumatic brain injury is a frequently-occurring disease that usually causes significant harm to human health and life. The aftermath of such injuries leaves survivors with permanent disabilities resulting in lifelong medical, financial, emotional, familial and social problems. Today, although the advancement of medical sciences is obvious, the rate of disability and fatality after traumatic brain injury has been high for many years, and there are still not an effective treatment. In the last 1990s and the beginning of this century, the lack of progress in achieving brain protection with several pharmacologic agents, while a positive evidence of the therapeutic efficacy of mild to moderate hypothermia from the studies in post-cardiac arrest survivors and neonatal hypoxic encephalopathy, led to renewed interest in therapeutic hypothermia for the severe traumatic brain injuries. There are many ways to induce the therapeutic hypothermia, of which the systemic cooling method is most widely used at present. However, the systemic side effects of whole-body cooling such as chills, electrolyte disturbances, arrhythmia, bleeding tendency, easy to infected and skin lesion, have been reported in some studies. It is important to design and imply techniques of cooling in order to maximize the therapeutic benefit and minimize the complications. At present, the mechanisms that cause the neuroprotection provided by hypothermia still a matter of debate and are probably multiple. Further understanding the mechanisms underlying hypothermia's benefits will lead to more effective treatments to reduce the disability and mortality of severe traumatic brain injuries.
     Chapter 1. The Efficacy, Security and Complication of the Local Brain Hypothermia Induced by Epidural Cooling
     Objective To develop an epidural cooling method to induce local brain hypothermia using a self-made cooling coil, and to evaluate the efficacy, security and complications of this epidural local hypothermia technique.
     Methods SD rats were randomly divided into normal temperature group(Nor), local hypothermia group(LH) and systemic hypothermia group(SH). The local and systemic hypothermia were induced by self-made cooling coil and ice bag, alcohol respectively, the brain temperature were reduced to 31.0-32.0℃and maintained for 10 hours. During cooling, the shivering reaction, ipsilateral and contralateral brain temperature, rectal temperature, respiratory, heart rate and blood pressure of rats were assessed. The blood gas and electrolyte analysis, blood routine and hemorheology of rats were detected after cooling. The neurological evaluation and microscopic examination were carried out at 24 h follow cooling, and the brain water, Na~+, K~+ content and blood-brain barrier permeability were also detected.
     Results In LH group, local brain hypothermia was produced within minutes from (36.5±0.3)℃to (31.4±0.4)℃in the ipsilateral hemisphere after cooling, while the contralateral brain and rectal temperature, R, HR and MABP were not significantly altered. In SH group, the decrease of bilateral brain and rectal temperature as well as an 57.1% of shivering incidence were observed during cooling. The decrease of HR and platelet count, and the increase of whole blood viscosity under high shear and plasma viscosity were also detected in SH group. There were no significant difference in NSS score, brain water, Na~+, K~+ and Evans Blue content among groups, and no structural alterations were found in brain tissue of both LH and SH group neither.
     Conclusions This epidural cooling method can achieve the effect of brain hypothermia as well as systemic cooling technique, and dose not cause fluctuations in vital signs and acute neuronal injury. Meanwhile it may developed few complications compared with systemic hypothermia.
     Chapter 2. Therapeutic Efficacy of Epidural Local Hypothermia on Severe Traumatic Brain Injury and Comparative Study with Systemic Cooling Method
     Objective To study the therapeutic efficacy of epidural local hypothermia on mortality, body weight, neurological function, brain edema and histopathological changes on rats after traumatic brain injury, and which were compared with systemic hypothermia at the same time.
     Methods SD rats were randomly divided into normal control group(Norm), sham operation group(Sham), severe traumatic brain injury group(sTBI), local hypothermia therapy group(LHT) and systemic hypothermia therapy (SHT). Feeney's weight-drop (25 g, 60 cm) model was used to induce severe traumatic brain injury in rats. The epidural local hypothermia or systemic cooling were conducted 30min post injury and last for 10 hours. The body weight measurement, NSS score, beam balance test, beam walking test and Morris water maze were used in different time point post injury, as well as the brain water, Na~+, K~+ content and HE stain were detected to evaluate the therapeutic efficacy of hypothermia.
     Results The mortality of rats in sTBI, LHT and SHT group were 32.32%,15.19% and 19.28% respectively. The body weight loss of rats were less obvious in LHT and SHT group than sTBI group. The neurological function observed on rats in LHT and SHT group were better than sTBI group detected by NSS score, beam balance test, beam walking test and Morris water maze. At 12h、1d and 3d post injury, an increase of brain water, Na~+ content while a decrease of brain K~+ content were detected in rats of sTBI group, indicating a brain edema. Both LHT and SHT group developed less extent of brain edema in the same day. Rats developed a severe histopathological damage after severe traumatic brain injury, and both of local hypothermia therapy and systemic hypothermia therapy could reduce the extent of pathological damage of brain tissue in rats. In addition, no significant differences were found in mortality, body weight loss, neurological dysfunction and brain edema between LHT and SHT group.
     Conclusions The same as systemic hypothermia, the epidural cooling technique could slow down the weight loss, improve neurological deficits, reduce brain edema and ameliorate the histopathological damage of brain tissue after head injury. Both of local hypothermia and systemic hypothermia provide the same definite therapeutic efficacy on severe traumatic brain injury.
     Chapter 3. Effect of Epidural Local Hypothermia on Expression of PKC-delta, Synaptophysin and GAP-43 after Severe Traumatic
     Brain Injury in Rats
     Objective To study the expression of PKC-delta, after severe traumatic brain injury in rats for an investigation on the mechanisms of neuroprotection by hypothermia.
     Methods SD rats were randomly divided into normal control group(Norm), sham operation group(Sham), severe traumatic brain injury group(sTBI) and local hypothermia therapy group(LHT). Feeney's weight-drop model was used. The epidural local cooling were conducted 30 min post injury and last for 10 hours. The ultrastructure changes of brain tissues were observed under transmission electron microscope. The expressions of PKC-δwere detected by western-blotting. TUNEL staining were conducted at 12 h, 1 d and 3 d post injury. The expressions of synaptophysin and GAP-43 were detected at 7 d, 14 d and 28 d post injury by western-blotting and immunohistochemisty.
     Results Rats in sTBI group developed a serious ultrastructure damage, and the structures of nucleus, mitochondria and blood-brain barrier were improved in LHT group. The amount of constitutively activated C-terminal catalytic fragment(CF-PKC-δ) increased, as well as the translocation to the membrane of PKC-5, both of which were hallmarks of PKC-8 activation, were observed after severe traumatic brain injury. These events were blocked by hypothermia, implicating the inhibition of PKC-δactivation by hypothermia. Meanwhile, an increase of the number of apoptotic cells in brain tissue were observed by TUNEL staining in the acute stage(3 days post injury) of severe traumatic brain injury, and could be reduced by hypothermia. In addition, a reduction of synaptophysin and GAP-43 expressions due to severe traumatic brain injury were investigated in the late stage, and hypothermia could raise the expressions of synaptophysin and GAP-43, which were coincident with the results of Morris Water Maze in rats.
     Conclusions Hypothermia could reduce the ultrastructure damage caused by severe traumatic brain injury. Hypothermia protects against the traumatic damage in part dues to the suppressing PKC-δactivation by blockage of CF-PKC-δproducing and PKC-δtranslocation to the membrane. Meanwhile, hypothermia could inhibit the apoptosis after injury. In addition, hypothermia might promote nerve regeneration and remodeling in late stage of TBI by the way of increased expressions of synaptophysin and GAP-43 in brain tissue.
引文
[1] Ian Appleby. Traumatic brain injury: initial resuscitation and transfer[J]. Anaesthesia & Intensive Care Medicine, 2008, 9(5): 193-196.
    [2] Bishop NB. Traumatic brain injury: a primer for primary care physicians[J]. Curr Probl Pediatr Adolesc Health Care, 2006, 36(9):318-319.
    [3] Beauchamp K, Mutlak H, Smith WR, et al. Pharmacology of traumatic brain injury - where is the "golden bullet"?[J]. Mol Med, 2008, 8 :28.
    [4] Narayan RK. Hypothermia for traumatic brain injury: a good idea proved ineffective[J]. N Engl J Med, 2001, 344:602-603.
    [5] Maas AI, Steyerberg EW, Murray GD, et al. Why have recent trials of neuroprotective agents in head injury failed to show convincing efficacy? A pragmatic analysis and theoretical considerations [J]. Neurosurgery, 1999, 44:1286-1298.
    [6] Bernard SA, Gray TW, Buist MD, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia[J]. N Engl J Med, 2002, 346:557-563.
    [7] The Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest[J]. N Engl J Med, 2002,346:549-556.
    [8] Gluckman PD, Wyatt JS, Azzopardi D, et al. Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial[J]. Lancet, 2005, 365:663-670.
    [9] Shankaran S, Laptook AR, Ehrenkranz RA, et al. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy [J]. N Engl J Med, 2005, 353:1574-1584.
    [10] Jiang JY. Clinical study of mild hypothermia treatment for severe traumatic brain injury[J]. J Neurotrauma, 2009, 26(3):399-406.
    [11] Polderman KH. Induced hypothermia and fever control for prevention and treatment of neurological injuries[J]. Lancet, 2008, 371(9628):1893-1895.
    [12]Ramani R.Hypothermia for brain protection and resuscitation[J].Curr Opin Anaesthesiol,2006,19(5):487-491.
    [13]Marion D,Bullock MR.Current and future role of therapeutic hypothermia[J].J Neurotrauma,2009,26(3):455-467.
    [14]Sahuquillo J,Vilalta A.Cooling the injured brain:how does moderate hypothermia influence the pathophysiology of traumatic brain injury[J].Curr Pharm Des,2007,13(22):2310-2322.
    [15]Jordan JD,Carhuapoma JR.Hypothermia:comparing technology[J].J Neurol Sci,2007,261(1-2):35-48.
    [16]Putzu M,Casati A,Berti M,et al.Clinical complications,monitoring and management of perioperative mild hypothermia:anesthesiological features[J].Acta Biomed,2007,78(3):163-169.
    [17]屈洪涛,刘运生,梁有明等.局灶亚低温及全脑亚低温治疗大鼠创伤性脑损伤的实验研究[J].中国耳鼻咽喉颅底外科杂志,2004,10(2):72-76.
    [18]王光伟,刘运生,梁有明等.重型颅脑外伤局灶低温疗法的实验研究[J].医学临床研究,2004,21(6):616-619.
    [19]王光伟,刘运生,李创华等.重型颅脑外伤局灶低温与全身低温疗效的对比研究[J].中国耳鼻咽喉颅底外科杂志,2004,10(4):193-195,203.
    [20]梁有明,刘运生,李创华等.局灶低温治疗大鼠脑外伤对脑组织氧自由基影响的研究[J].中国耳鼻咽喉颅底外科杂志,2004,10(5):257-259,284.
    [21]梁有明,刘运生,屈洪涛等.局灶低温治疗大鼠创伤性脑水肿及对乳酸的影响[J].中南大学学报(医学版),2004,29(6):678-681.
    [22]罗超刘运生,彭形等.伤灶局部亚低温及伤灶局部引流治疗大鼠创伤性脑损伤[J].创伤外科杂志,2006,04.
    [23]Chen JL,Li Y,Wang L,et al.Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats[J].Stroke,2001,32:1005-1011.
    [24]诸葛启钏.大鼠脑立体定位图谱[M].北京:人民卫生出版社,2005:18-36.
    [25]Henker RA,Brown SD,Marion DW.Comparison of brain temperature with bladder and rectal temperatures in adults with severe head injury[J]. Neurosurgery, 1998, 42(5): 1071-1075.
    [26] Simon E. Tympanic temperature is not suited to indicate selective brain cooling in humans: a re-evaluation of the thermophysiological basics[J]. Eur J Appl Physiol, 2007, 30:876-882.
    [27] Povlishock JT, Wei EP. Posthypothermic Rewarming Considerations following Traumatic Brain Injury[J]. J Neurotrauma, 2009, 26(3):333-340.
    [28] Berger C, Xia F, K(?)hrmann M, et al. Hypothermia in acute stroke-slow versus fast rewarming an experimental study in rats[J]. Exp Neurol, 2007, 204(1):131-137.
    [29] Badhe P, Thorat J, Diyora BD, et al. Neuroprotective effects of vitamin E in cold induced cerebral injury in guinea pigs[J]. Indian J Exp Biol, 2007, 45(2):180-184.
    [30] Ulrich AS, Rathlev NK. Hypothermia and localized cold injuries[J]. Emerg Med Clin North Am, 2004, 22(2):281-298.
    [31] Golant A, Nord RM, Paksima N, et al. Cold exposure injuries to the extremities[J]. J Am Acad Orthop Surg, 2008, 16(12):704-715.
    [32] Oku T, Fujii M, Tanaka N, et al. The influence of focal brain cooling on neurophysiopathology: validation for clinical application[J]. J Neurosurg, 2009, 3:13.
    [33] Qian XD, Wei EQ, Zhang L, et al. A cysteinyl leukotriene receptor antagonist, protects mice against brain cold injury[J]. Eur J Pharmacol, 2006, 549(1-3):35-40.
    [34] Alty JE, Ford HL. Multi-system complications of hypothermia: a case of recurrent episodic hypothermia with a review of the pathophysiology of hypothermia [J]. Postgrad Med J, 2008, 84(992):282-286.
    [35] Zhou F, Xiang Z, Peiling L, et al. The exp ression and changes of heat shock p rotein 70, MDA and haemorheology in rat cortex after diffuse axonal injurywith secondary insults[J]. J Clin Neurosci, 2001, 8 (3):250-252.
    [36] Hall MW, Goodman PD, Alston SM, et al. Hypothermia induced platelet aggregation in heparinized flowing human blood: identification of a high responder subpopulation [J]. Am J Hematol, 2003, 69(1):45.
    [37] MacLellan CL, Girgis J, Colbourne F. Delayed onset of prolonged hypothermia improves outcome after intracerebral hemorrhage in rats[J]. J Cereb Blood Flow Metab, 2004, 24:432-440.
    [38] Feeney DM, Boyeson MG, Linn RT, et al. Responses to cortical injury: Ⅰ .Methodology and local effects of contusion in the rat[J]. Brain Res, 1981, 211:67-77.
    [39] Li J, Luan X, Lai Q, et al. Long-term neuroprotection induced by regional brain cooling with saline infusion into ischemic territory in rats: a behavioral analysis[J]. Neurol Res, 2004, 26(6):677-683.
    [40] Fukuda K, Aihara N, Sagar SM, et al. Purkinje cell vulnerability to mild traumatic brain injury[J]. J Neurotrauma, 1996, 13(5):255-266.
    [41] Venturi L, Miranda M, Selmi V, et al. Systemic sepsis exacerbates mild post traumatic brain injury in the rat[J]. J Neurotrauma, 2009, 3.
    [42] Berman RF, Verweij BH, Muizelaar JP. Neurobehavioral protection by the neuronal calcium channel blocker Ziconotide in a model of traumatic diffuse brain injury in rats[J]. J Neurosurg, 2000, 93(5):821-828.
    [43] Hatinen S, Sairanen M, Sirvio J, et al. Improved sensorimotor function by rolipram following focal cerebral ischemia in rats[J]. Restor Neurol Neurosci, 2008, 26(6):493-499.
    [44] Immonen RJ, Kharatishvili I, Grhn H, et al. Quantitative MRI predicts long-term structural and functional outcome after experimental traumatic brain injury[J]. Neuroimage, 2009,45(1): 1-9.
    [45] Chen X, Zhang KL, Yang SY, et al. Glucocorticoids Aggravate Retrograde Memory Deficiency Associated with Traumatic Brain Injury in Rats[J]. J Neurotrauma, 2009, 26(2):253-260.
    [46] Prins ML, Hovda DA. Mapping cerebral glucose metabolism during spatial learning: Interactions of development and traumatic brain injury[J]. J Neurotrauma, 2001, 18(1):31-46.
    [47] Chio CC, Kuo JR, Hsiao SH, et al. Effect of brain cooling on brain ischemia and damage markers after fluid percussion brain injury in rats[J].Shock,2007,28(3):284-290.
    [48]Stahel PF,Flierl MA,Morgan BP,et al.Absence of the complement regulatory molecule CD59a leads to exacerbated neuropathology after traumatic brain injury in mice[J].J Neuroinflammation,2009,6:2-8.
    [49]Mahmood A,Goussev A,Lu D,et al.Long-Lasting Benefits after Treatment of Traumatic Brain Injury(TBI) in Rats with Combination Therapy of Marrow Stromal Cells(MSCs) and Simvastatin[J].J Neurotrauma,2008,12:33-38.
    [50]Harting MT,Sloan LE,Jimenez F,et al.Subacute Neural Stem Cell Therapy for Traumatic Brain Injury[J].J Surg Res,2008,4:44-49.
    [51]徐如祥,王清华,李良平.大鼠不同程度脑损伤模型的建立[M].创伤外科学杂志,2002,1:42-45.
    [52]Hu ZG,Wang HD,Jin W,et al.Ketogenic diet reduces cytochrome c release and cellular apoptosis following traumatic brain injury in juvenile rats[J].Ann Clin Lab Sci,2009,39(1):76-83.
    [53]Israelsson C,Wang Y,Kylberg A,et al.Closed head injury in a mouse model results in molecular changes indicating inflammatory responses[J].J Neurotrauma,2009,5:67-70.
    [54]Sahuquillol J,Vilalta A.Cooling the Injured Brain:How Does Moderate Hypothermia Influence the Pathophysiology of Traumatic Brain Injury[J].Current Pharmaceutical Design,2007,13:2310-2322.
    [55]Summers CR,Ivins B,Schwab KA.Traumatic brain injury in the United States:an epidemiologic overview[J].Mt Sinai J Med,2009,76(2):105-110.
    [56]Lu J,Goh SJ,Tng PY,et al.Systemic inflammatory response following acute traumatic brain injury[J].Front Biosci,2009,14:3795-3813.
    [57]Yao H,Yoshii N,Akira T,et al.Reperfusion-induced temporary appearance of therapeutic window in penumbra after 2 h of photothrombotic middle cerebral artery occlusion in rats[J].J Cereb Blood Flow Metab,2009 Mar,29(3):565-74.
    [58]Sharma HS,Ali SF.Acute administration of 3,4-methylenedioxy methamphetamine induces profound hyperthermia,blood-brain barrier disruption, brain edema formation, and cell injury[J]. Ann N Y Acad Sci, 2008, 1139:242-258.
    [59] Marmarou A. A review of progress in understanding the pathophysiology and treatment of brain edema[J]. Neurosurg Focus, 2007, 22(5): 156-165.
    [60] Marmarou A, Signoretti S, Fatouros PP, et al. Predominance of cellular edema in traumatic brain swelling in patients with severe head injuries[J]. J Neurosurg, 2006, 104(5):720-730.
    [61] Unerberg AW, Stover J, Kless B, et al. Edema and braintrauma . Neuroseienee[J]. 2004,129(4):1021-1029.
    [62] Marmarou A. Pathophysiology of traumatic brain edema: current concepts [J]. Acta Neurochir Suppl, 2003, 86:7-10.
    [63] Wang H, Olivero W, Wang D, et al. Cold as a therapeutic agent[J]. Acta Neurochir (Wien), 2006, 148(5):565-570.
    [64] Wainwright MS, Grundhoefer D, Sharma S, et al. A nitric oxide donor reduces brain injury and enhances recovery of cerebral blood flow after hypoxia-ischemia in the newborn rat[J]. Neurosci Lett, 2007,415(2):124-129.
    [65] Mark W. Greve, Brian JZ. Pathophysiology of Traumatic Brain Injury[J]. Mount Sinaijournal of Medicine, 2009, 76:97-104.
    [66] Guerreiro DF, Navarro R, Silva M, et al. Psychosis secondary to traumatic brain injury[J]. Brain Inj, 2009, 23(4):358-361.
    [67] Mary ET, Darlene AL. Severe Traumatic Brain Injury:Maximizing Outcomes[J]. Mount Sinaijournal of Medicine, 2009, 76:119-128.
    [68] Atkins CM, Oliva AA Jr, Alonso OF, et al. Hypothermia treatment potentiates ERK1/2 activation after traumatic brain injury[J]. Eur J Neurosci,2007,7:30-32.
    [69] Uzan M, Erman H, Tanriverdi T, et al. Evaluation of apoptosis in cerebrospinal fluid of patients with severe head injury[J]. Acta Neurochir (Wien), 2006,148(11):1157-1164.
    [70] Ohta H, Terao Y, Shintani Y, et al. Therapeutic time window of post-ischemic mild hypothermia and the gene expression associated with the neuroprotection in rat focal cerebral ischemia[J]. Neurosci Res, 2007, 57(3):424-433.
    [71] Kollmar R, Blank T, Han JL, et al. Different degrees of hypothermia after experimental stroke: short- and long-term outcome[J]. Stroke, 2007, 38(5):1585-1589.
    [72] Xie YC, Li CY, Li T, et al. Effect of mild hypothermia on angiogenesis in rats with focal cerebral ischemia[J]. Neurosci Lett, 2007, 22(2):87-90.
    [73] Shimohata T, Zhao H, Sung JH, et al. Suppression of delta-PKC activation after focal cerebral ischemia contributes to the protective effect of hypothermia[J]. J Cereb Blood Flow Metab, 2007,27(8): 1463-1475.
    [74] Harada K, Maekawa T, Tsuruta R, et al. Hypothermia inhibits translocation of CaM kinase Ⅱ and PKC-alpha, beta, gamma isoforms and fodrin proteolysis in rat brain synaptosome during ischemia-reperfusion[J]. J Neurosci Res. 2002, Mar 1, 67(5):664-9.
    [75] Perletti G, Terrian DM. Distinctive cellular roles for novel protein kinase C isoenzymes[J]. Curr Pharm Des, 2006,12(24):3117-33.
    [76] Chou WH, Messing RO. Protein kinase C isozymes in stroke[J]. Trends Cardiovasc Med. 2005, Feb, 15(2):47-51.
    [77] Perez-Pinzon MA, Dave KR, Raval AP. Role of reactive oxygen species and protein kinase C in ischemic tolerance in the brain[J]. Antioxid Redox Signal. 2005 Sep-Oct,7(9-10):1150-7.
    [78] Jackson DN, Foster DA. The enigmatic protein kinase C delta: complex roles in cell proliferation and survival[J]. FASEB J. 2004 Apr, 18(6):627-36.
    [79] Basu A. Involvement of protein kinase C-delta in DNA damage-induced apoptosis[J]. J Cell Mol Med. 2003 Oct-Dec, 7(4):341-50.
    [80] Yoshida K. PKC delta signaling: mechanisms of DNA damage response and apoptosis[J]. Cell Signal. 2007 May, 19(5):892-901.
    [81] Jackson DN, Foster DA. The enigmatic protein kinase C delta: complex roles in cell proliferation and survival[J]. FASEB J, 2004 Apr, 18(6):627-36.
    [82] Steinberg SF. Distinctive activation mechanisms and functions for protein kinase C delta[J]. Biochem J. 2004 Dec 15, 384(Pt 3):449-59.
    [83] Raval AP, Dave KR, Prado R, et al. Protein kinase C delta cleavage initiates an aberrant signal transduction pathway after cardiac arrest and oxygen glucose deprivation[J]. J Cereb Blood Flow Metab, 2005 Jun, 25(6):730-41.
    [84] Bright R, Raval AP, Dembner JM, et al. Protein kinase C delta mediates cerebral reperfusion injury in vivo[J]. J Neurosci, 2004 Aug 4, 24(31):6880-8.
    [85] Humphries MJ, Limesand KH, Schneider JC, et al. Suppression of apoptosis in the protein kinase C delta null mouse in vivo[J]. J Biol Chem, 2006 Apr 7, 281(14):9728-37.
    [86] Deszo EL, Brake DK, Cengel KA, et al. CD45 negatively regulates monocytic cell differentiation by inhibiting phorbol 12-myristate 13-acetate-dependent activation and tyrosine phosphorylation of protein kinase C delta[J]. J Biol Chem. 2001 Mar 30, 276(13):10212-7.
    [87] Sitailo LA, Tibudan SS, Denning MF. Bax activation and induction of apoptosis in human keratinocytes by the protein kinase C delta catalytic domain[J]. J Invest Dermatol, 2004 Sep, 123(3):434-43.
    [88] Rink A, Fung KM, Trojanowski JQ, et al. Evidence of a poptotic cell death after experimental traumatic brain injury in the rat[J]. Am J Pathol, 1995, 147:1575-1583.
    [89] Ng I, Yeo TT, Tang WY, et al. Apoptosis occurs after cerebral contusions in humans[J]. Neurosurgery, 2000,46:949-956.
    [90] Shaw K, Marckinnon MA, Raghupathi R, et al. TUNEL positive staining in white and grey matter after fatal head injury in man[J]. Clin Neuropathol, 2001, 20:106-112.
    [91] Williams S, Raghupathi R, Mackinnon MA, et al. In situ DNA fragmentation occurs in white matter up to 12 months after head injury in man[J]. Acta Neuro Pathol, 2001,102:581-590.
    [92] Wong J, Hoe NW, Zhiwei F, Ng I. Apoptosis and traumatic brain injury[J]. Neurocrit Care, 2005, 3(2): 177-82.
    [93] Valtorta F, Pennuto M, Bonanomi D, et al. Synaptophysin: leading actor or walk-on role in synaptic vesicle exocytosis[J]? Bioessays, 2004, 26, 445-453.
    [94] Daly C, Sugimori M, Moreira JE, et al. Synaptophysin regulates clathrin-independent endocytosis of synaptic vesicles[J]. Proc Natl Acad Sci USA2000,97,6120.
    [95] Tarsa L, Goda Y. Synaptophysin regulates activity-dependent synapse formation in cultured hippocampal neurons[J]. Proc Natl Acad Sci USA. 2002, 99, 1012-1016.
    [96] Gobbel GT, Bonfield C, Carson-Walter EB. Diffuse alterations in synaptic protein expression following focal traumatic brain injury in the immature rat[J]. Childs Nerv Syst, 2007, Oct, 23(10):1171-9.
    [97] Murdoch I, Perry EK, Court JA, et al. Cortical cholinergic dysfunction after human head injury[J]. J Neurotrauma, 1998, 15, 295-305.
    [98] Lu D, Goussev A, Chen J. Atorvastatin reduces neurological deficit and increases synaptogenesis, angiogenesis, and neuronal survival in rats subjected to traumatic brain injury[J]. J Neurotrauma, 2004 Jan, 21(1):21-32.
    [99] Chytrova G, Ying Z, Gomez-Pinilla F. Exercise normalizes levels of MAG and Nogo-A growth inhibitors after brain trauma[J]. Eur J Neurosci, 2008 Jan,27(1):1-11.
    [100]Benowitz LI, Routtenberg A. GAP-43: an intrinsic determinant of neuronal development and plasticity [J]. Trends Neurosci, 1997,20:84-91.
    [101] Hughes-Davis EJ, Cogen JP, Jakowec MW, et al. Differential regulation of the growth-associated proteins GAP-43 and superior cervical ganglion 10 in response to lesions of the cortex and substantia nigra in the adult rat[J]. Neuroscience, 2005,135:1231-1239.
    [102] Chytrova G, Ying Z, Gomez-Pinilla F. Exercise normalizes levels of MAG and Nogo-A growth inhibitors after brain trauma[J]. Eur J Neurosci, 2008 Jan,27(1):1-11.
    [103] Thompson SN, Gibson TR, Thompson BM, et al. Relationship of calpain-mediated proteolysis to the expression of axonal and synaptic plasticity markers following traumatic brain injury in mice[J]. Exp Neurol, 2006 Sep, 201(1):253-65.
    [104] Marklund N, Bareyre FM, Royo NC, et al. Cognitive outcome following brain injury and treatment with an inhibitor of Nogo-A in association with an attenuated downregulation of hippocampal growth-associated protein-43expression[J].J Neurosurg,2007 October,107(4):844-853.
    [105]Hulsebosch CE,DeWitt DS,Jenkins LW,et al.Traumatic brain injury in rats results in increased expression of GAP-43 that corelates with behavioral recovery[J].Neurosci Lett 1998,255:83-86.
    [1] Chou WH, Messing RO. Protein kinase C isozymes in stroke[J]. Trends Cardiovasc Med, 2005,15(2):47-51.
    [2] Gschwendt M, Kittstein W, Marks F. Protein kinase C activation by phorbol esters: do cysteine-rich regions and pseudosubstrate motifs play a role[J]. Trends Biochem Sci. 1991 May, 16(5):167-9.
    [3] Ono Y, Fujii T, Ogita K, et al. Identification of three additional members of rat protein kinase C family: delta-, epsilon- and zeta-subspecies. FEBS Lett[J]. 1987 Dec 21,226(1): 125-8.
    [4] Goodnight J, Mischak H, Bodenteich A, Kolch W, et al. Mouse protein kinase C-delta, the major isoform expressed in mouse hemopoietic cells: sequence of the cDNA, expression patterns, and characterization of the protein.Biochemistry. 1991 Aug13,30(32):7925-31.
    [5] Huppi K, Siwarski D, Goodnight J, et al. Assignment of the protein kinase C delta polypeptide gene (PRKCD) to human chromosome 3 and mouse chromosome 14[J]. Genomics. 1994 Jan,19(1):161-2.
    [6] Basu A. Involvement of protein kinase C-delta in DNA damage-induced apoptosis[J]. J Cell Mol Med, 2003, 7(4):341-350.
    [7] Yoshida K. PKC delta signaling: mechanisms of DNA damage response and apoptosis[J]. Cell Signal, 2007,19(5):892-901.
    [8] Jackson DN, Foster DA. The enigmatic protein kinase C delta: complex roles in cell proliferation and survival[J]. FASEB J. 2004 Apr;18(6):627-36.
    [9] Humphries MJ, Limesand KH, Schneider JC, et al. Suppression of apoptosis in the protein kinase C-delta null mouse in vivo[J]. J Biol Chem. 2006 Apr 7, 281(14):9728-37.
    [10] Blass M, Kronfeld I, Kazimirsky G, et al. Tyrosine phosphorylation of protein kinase C delta is essential for its apoptotic effect in response to etoposide[J]. Mol Cell Biol. 2002 Jan, 22(1):182-95.
    [11] Konishi H, Yamauchi E, Taniguchi H, et al. Phosphorylation sites of protein kinase C delta in H2O2-treated cells and its activation by tyrosine kinase in vitro[J]. Proc Natl Acad Sci USA. 2001 Jun 5, 98(12):6587-92.
    [12] Deszo EL, Brake DK, Cengel KA, et al. CD45 negatively regulates monocytic cell differentiation by inhibiting phorbol 12-myristate 13-acetate-dependent activation and tyrosine phosphorylation of protein kinase C delta[J]. J Biol Chem. 2001 Mar 30, 276(13):10212-7.
    [13] Denning MF, Wang Y, Tibudan S, et al. Caspase activation and disruption of mitochondrial membrane potential during UV radiation-induced apoptosis of human keratinocytes requires activation of protein kinase C[J]. Cell Death Differ. 2002 Jan, 9(1 ):40-52.
    [14] Sitailo LA, Tibudan SS, Denning MF. Bax activation and induction of apoptosis in human keratinocytes by the protein kinase C delta catalytic domain[J]. J Invest Dermatol. 2004 Sep, 123(3):434-43.
    [15] Seimon-DeVries TA, Ohm AM, Humphries MJ. et al. J. Biol. Chem. 2007, 282, 22307-22314
    [16] Reyland ME, Anderson SM, Matassa AA, et al. Protein kinase C delta is essential for etoposide-induced apoptosis in salivary gland acinar cells[J]. J Biol Chem. 1999 Jul 2, 274(27): 19115-23.
    [17] Yoshida K, Miki Y, Kufe D. Activation of SAPK/ JNK signaling by protein kinase C delta in response to DNA damage[J]. Biol Chem. 2002 Dec 13, 277(50):48372-8.
    [18] Anantharam V, Kitazawa M, Wagner J, et al. Caspase-3-dependent proteolytic cleavage of protein kinase C-delta is essential for oxidative stress-mediated dopaminergic cell death after exposure to methylcyclopentadienyl manganese tricarbonyl[J]. J Neurosci, 2002 Mar 1, 22(5): 173 8-51.
    [19] Yoshida K, Wang HG, Miki Y, et al. Protein kinase C-delta is responsible for constitutive and DNA damage-induced phosphorylation of Rad 9[J]. EMBO J, 2003 Mar17,22(6):1431-41.
    [20] Cross T, Griffiths G, Deacon E, et al. PKC-delta is an apoptotic lamin kinase[J]. Oncogene. 2000 May 4, 19(19):2331-7.
    [21] KOrr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon withwide-ranging implications in tissue kinetics[J]. Br J Cancer, 1972, 26(4):239-257.
    [22] Rink A, Fung KM, Trojanowski JQ, et al. Evidence of a poptotic cell death after experimental traumatic brain injury in the rat[J]. Am J Pathol, 1995, 147:1575-1583.
    [23] Ng I, Yeo TT, Tang WY, et al. Apoptosis occurs after cerebral contusions in humans[J]. Neurosurgery, 2000,46:949-956.
    [24] Shaw K, Marckinnon MA, RaghupathiR, et al. TUNEL positive staining in white and grey matter after fatal head injury in man[J]. Clin Neuropathol, 2001, 20:106-112.
    [25] Williams S, Raghupathi R, Mackinnon MA, et al. In situ DNA fragmentation occurs in white matter up to 12 months after head injury in man[J]. Acta Neuro Pathol, 2001,102:581-590.
    [1] Summers CR, Ivins B, Schwab KA. Traumatic brain injury in the United States: an epidemiologic overview[J]. Mt Sinai J Med, 2009, 76(2):105-110.
    [2] Maas AI, Stocchetti N, Bullock R. Moderate and severe traumatic brain injury in adults[J]. Lancet Neurol, 2008, 7(8):728-741.
    [3] Riggio S, Wong M. Neurobehavioral sequelae of traumatic brain injury[J]. Mt Sinai J Med, 2009, 76(2):163-172.
    [4] Fujimoto ST, Longhi L, Saatman KE, et al. Motor and cognitive function evaluation following experimental traumatic brain injury[J]. Neurosci Biobehav Rev, 2004, 28(4):365-378.
    [5] Scherbel U, Raghupathi R, Nakamura M, et al. Differential acute and chronic responses of tumor necrosis factor-deficient mice to experimental brain injury [J]. Proc Natl Acad Sci USA, 1999, 96:8721-8726.
    [6] Schmidt RH, Scholten KJ, Maughan PH. Cognitive impairment and synaptosomal choline uptake in rats following impact acceleration injury[J]. J Neurotrauma, 2000,17(12):1129-1139.
    [7] Panikashvili D, Simeonidou C, Ben Shabat S, et al. An endogenous cannabinoid (2-AG) is neuroprotective after brain injury[J]. Nature, 2001, 413 (6855):527-531.
    [8] Rancan M, Otto VI, Hans VH, et al. Upregulation of ICAM-1 and MCP-1 but not of MIP-2 and sensorimotor deficit in response to traumatic axonal injury in rats[J]. J Neurosci Res, 2001, 63(5):438-446.
    [9] Furukawa T, Hoshino S, Kobayashi S, et al. The glutamate AMPA receptor antagonist,YM872, attenuates cortical tissue loss, regional cerebral edema, and neurological motor deficits after experimental brain injury in rats[J]. J Neurotrauma, 2003, 20(3):269-278.
    [10] Rancan M, Otto VI, Hans VH, et al. Upregulation of ICAM-1 and MCP-1 but not of MIP-2 and sensorimotor deficit in response to traumatic axonal injury in rats[J]. J Neurosci Res, 2001, 63(5):438-446.
    [11] Eijkenboom M, Gerlach I, Jork R, et al. Effects of subdural hematoma on sensorimotor functioning and spatial learning in rats[J]. Neuropharmacology, 2000,39:817-834.
    [12] Riess P, Bareyre F, Saatman KE, et al. Effects of chronic, post-injury cyclosporin A administration on motor and sensorimotor function following severe, experimental traumatic brain injury[J]. Restor Neurol Neurosci, 2001, 18:1-8.
    [13] Beaumont A, Marmarou A, Czigner A, et al. The impact-acceleration model of head injury: injury severity predicts motor and cognitive performance after trauma[J]. Neurol Res, 1999, 21(8):742-754.
    [14] Zhao LR, Duan WM, Reyes M, et al.Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats[J].Exp Neurol, 2002,174(1):11-20.
    [15] Liu H., Honmou O, Harada K. Neuroprotection by P1GF gene-modified human mesenchymal stem cells after cerebral ischaemia[J]. Brain, 2006, 129:2734-2745.
    [16] Schallert T, Fleming SM, Leasure JL, et al. CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury[J]. Neuropharmacology, 2000, 39(5): 777-787.
    [17] Blanco JE, Anderson KD, Steward O. Recovery of forepaw gripping ability and reorganization of cortical motor control following cervical spinal cord injuries in mice[J]. Exp Neurol, 2007,203(2):333-348.
    [18] Anderson KD, Abdul M, Steward O. Quantitative assessment of deficits and recovery of forelimb motor function after cervical spinal cord injury in mice[J]. Exp Neurol, 2007, 190:184-191.
    [19] Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniotomy in rats [J]. Stroke, 1989, 20(1):84-91.
    [20] Li J, Luan X, Lai Q, et al. Long-term neuroprotection induced by regional brain cooling with saline infusion into ischemic territory in rats: a behavioral analysis[J]. Neurol Res, 2004, 26(6):677-683.
    [21] Fukuda K, Aihara N, Sagar SM, et al. Purkinje cell vulnerability to mild traumatic brain injury[J]. J Neurotrauma, 1996,13(5):255-266.
    [22] Venturi L, Miranda M, Selmi V, et al. Systemic sepsis exacerbates mild post-traumatic brain injury in the rat[J]. J Neurotrauma, 2009, 5:13-16.
    [23] Oku T, Fujii M, Tanaka N, et al. The influence of focal brain cooling on neurophysiopathology: validation for clinical application[J]. J Neurosurg. 2009, 5: 24-27.
    [24] Berman RF, Verweij BH, Muizelaar JP. Neurobehavioral protection by the neuronal calcium channel blocker Ziconotide in a model of traumatic diffuse brain injury in rats[J]. J Neurosurg, 2000,93(5):821-828.
    [25] Hatinen S, Sairanen M, Sirvio J, et al. Improved sensorimotor function by rolipram following focal cerebral ischemia in rats[J]. Restor Neurol Neurosci, 2008, 26(6):493-499.
    [26] Ding J, Li Q, Lai J, et al. Motor balance and coordination training enhances functional outcome in rat with transient middle cerebral artery occlusion [J]. Neuroscience, 2004,123:667-674.
    [27] Ballermann M, Tompkins G, Whishaw IQ. Skilled forelimb reaching for pasta guided by tactile input in the rat as measured by accuracy, spatial adjustments, and force[J]. Behav Brain Res, 2000,109(1):49-57.
    [28] Mahmood A, Lu D, Wang L, et al. Treatment of traumatic brain injury in female rats with intravenous administration of bone marrow stromal cells[J]. Neurosurgery, 2001,49(5): 1196-1203.
    [29] Kamiya N, Ueda M, Igarashi H, et al. Intra-arterial transplantation of bone marrow mononuclear cells immediately after reperfusion decreases brain injury after focal ischemia in rats[J]. Life Sci, 2008, 83(11-12):433-437.
    [30] Doll H, Truebel H, Kipfmueller F, et al. Pharyngeal Selective Brain Cooling Improves Neurofunctional and Neurocognitive Outcome after Fluid Percussion Brain Injury in Rats[J]. J Neurotrauma, 2009, 6:28-31.
    [31] Mattiasson GJ, Philips MF, Tomasevic G, et al. The rotating pole test: evaluation of its effectiveness in assessing functional motor deficits following experimental brain injury in the rat[J]. J Neurosci Meth, 2000,95(1):75-82.
    [32] Hoover RC, Motta M, Davis J, et al. Differential effects of the anticonvulsant topiramate on neurobehavioral and histological outcomes following traumatic brain injury in rats[J]. J Neurotrauma, 2004, 21(5):501-512.
    [33] Ruttan L, Martin K, Liu A, et al. Long-term cognitive outcome in moderate to severe traumatic brain injury: a meta-analysis examining timed and untimed tests at 1 and 4.5 or more years after injury[J]. Arch Phys Med Rehabil, 2008, 89(12 Suppl):69-76.
    [34] Till C, Colella B, Verwegen J. Postrecovery cognitive decline in adults with traumatic brain injury[J]. Arch Phys Med Rehabil, 2008, 89(12 Suppl):25-34.
    [35] Draper K, Ponsford J. Cognitive functioning ten years following traumatic brain injury and rehabilitation[J].Neuropsychology,2008 Sep;22(5):618-625.
    [36] [36] Immonen RJ, Kharatishvili I, Gr?hn H,et al. Quantitative MRI predicts long-term structural and functional outcome after experimental traumatic brain injury[J].Neuroimage,2009,45(1):1-9.
    [37] Chen X, Zhang KL, Yang SY, et al. Glucocorticoids Aggravate Retrograde Memory Deficiency Associated with Traumatic Brain Injury in Rats[J].J Neurotrauma, 2009, 26(2):253-260.
    [38] Prins ML, Hovda DA. Mapping cerebral glucose metabolism during spatial learning: Interactions of development and traumatic brain injury[J]. J Neurotrauma, 2001,18(1):31-46.
    [39] Simoes PF, Silva AP, Pereira FC, et al. Methamphetamine induces alterations on hippocampal NMDA and AMPA receptor subunit levels and impairs spatial working memory[J]. Neuroscience, 2007,150(2):433-41.
    [40] Lloyd E, Somera-Molina K, Van Eldik LJ, et al. Suppression of acute proinflammatory cytokine and chemokine upregulation by post-injury administration of a novel small molecule improves long-term neurologic outcome in a mouse model of traumatic brain injury [J]. J Neuroinflammation, 2008,5:28.
    [41] Wu HY, Xu JP, Li L,et al. Effects of Yizhi Capsule on learning and memory disorder and beta-amyloid peptide induced neurotoxicity in rats[J]. Chin J Integr Med, 2006,12(2): 137-141.
    [42] Ferguson JN, Young LJ, Insel TR. The neuroendocrine basis of social recognition[J]. Front Neuroendocrinol, 2002,23:200-224.
    [43] Xikota JC, Rial D, Ruthes D, et al. Mild cognitive deficits associated to neocortical microgyria in mice with genetic deletion of cellular prion protein[J]. Brain Res, 2008 ,1241:148-156.
    [44] Zhao P, Peng L, Li L, et al. Isoflurane preconditioning improves long-term neurologic outcome after hypoxic-ischemic brain injury in neonatal rats[J]. Anesthesiology, 2007,107(6):963-970.
    [45] Stahel PF, Flierl MA, Morgan BP,et al. Absence of the complement regulatory molecule CD59a leads to exacerbated neuropathology after traumatic brain injury in mice[J]. J Neuroinflammation, 2009, 6:2.
    [46] Mahmood A, Goussev A, Lu D,et al. Long-Lasting Benefits after Treatment of Traumatic Brain Injury (TBI) in Rats with Combination Therapy of Marrow Stromal Cells (MSCs) and Simvastatin[J]. J Neurotrauma, 2008,12:15.
    [47] Harting MT, Sloan LE, Jimenez F,et al. Subacute Neural Stem Cell Therapy for Traumatic Brain Injury[J]. J Surg Res, 2008,4:23.
    [48] Chen JL, Li Y, Wang L, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats[J]. Stroke, 2001, 32:1005-1011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700