电刺激小脑顶核对大鼠局灶脑缺血/再灌注后脑内成体神经干细胞增殖分化的影响及其作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     缺血性脑卒中是神经系统的常见病和多发病,在脑卒中约占75%。大多数患者中遗留有瘫痪、失语等严重后遗症,给患者带来极大的痛苦,同时也给社会和家庭带来沉重的负担。脑缺血/再灌注损伤使脑组织的功能障碍和结构损伤更加严重,使治疗效果大大降低。因此如何采取合理的措施预防和治疗缺血性脑血管病,恢复受损神经细胞功能,降低致残率和病死率,近年来已成为医学界关注的热点课题。脑缺血/再灌注损伤是一复杂的病理生理过程,神经元结构破坏和缺失可能是引起功能障碍的病理关键。目前还没有理想的治疗脑缺血/再灌注损伤的方法。研究发现电刺激小脑顶核对神经系统疾病有神经保护作用,可以抗炎症、抑制细胞凋亡、促进神经组织的结构重建等作用。目前,采用仿生物电,模拟实验性小脑顶核电刺激而研制的小脑电刺激仪已广泛应用于许多神经系统疾病的临床治疗,对多种中枢神经系统疾病都产生了比较肯定的临床效果。Notch1是控制细胞命运的信号传导途径。当Notch1被激活后,神经干细胞进行增殖,而当Notch1活性被抑制时,干细胞则进入分化程序。bHLH基因转录调控因子(包括Hes5和Mash1)是指由一个碱性螺旋-环-螺旋结构及其上游富含碱性氨基酸序列的核酸顺序组成的一类基因,可以调控许多基因的转录。研究表明,Hes5信号通路能抑制神经干细胞向神经元方向分化,促进神经干细胞增殖。Mash1的高表达可促进干细胞的分化,相反低表达则抑制干细胞的分化,使干细胞处于持续的增殖状态。核转录因子-κB对神经干细胞增殖分化作用机制十分复杂,通过对众多涉及炎症和免疫反应等方面的基因调控来影响神经干细胞增殖分化。基于以往实验研究与临床的成果,本实验从电刺激小脑顶核干预局灶脑缺血/再灌注损伤内源性神经干细胞的研究入手,进一步探讨电刺激小脑顶核对大鼠局灶脑缺血/再灌注损伤脑组织神经干细胞的增殖分化的影响及其作用机制,为缺血性脑血管病的治疗提供实验基础。
     目的
     1.观察电刺激小脑顶核对大鼠局灶脑缺血/再灌注神经行为学、神经功能缺损的影响以及脑组织的含水量、脑梗死体积的变化。
     2.观察局灶脑缺血/再灌注各时间点大鼠成体神经干细胞的增殖分化及电刺激小脑顶核对局灶脑缺血/再灌注大鼠成体神经干细胞的增殖分化的影响,探讨电刺激小脑顶对局灶脑缺血/再灌注后神经重建的作用。
     3.观察电刺激小脑顶核对大鼠局灶脑缺血/再灌注大鼠大脑缺血侧皮质Notchl、Hes5、Mash1和NF-кB p65 mRNA和蛋白表达的变化,进一步探讨电刺激小脑顶核对大鼠局灶脑缺血/再灌注后脑内成体神经干细胞增殖分化影响的作用机制。
     方法
     1.改良线栓法制备大鼠大脑中动脉局灶脑缺血1.5h再灌注模型。成年SD大鼠随机分为正常对照组(N组),假手术组(S组),缺血/再灌注组(I/R组),缺血/再灌注后小脑顶核假刺激组(SF组),缺血/再灌注后小脑顶核刺激(F)组。根据再灌注时间的不同又分为ld、3d、7d 3个亚组。对大鼠进行神经功能缺损评分以及测量脑组织的含水量、脑梗死体积的变化。
     2.制备大脑中动脉局灶脑缺血1.5h再灌注模型。成年SD大鼠随机分为正常对照组(N组),假手术组(S组),缺血/再灌注组(I/R组),缺血/再灌注后小脑顶核刺激(F)组。根据再灌注时间的不同又分为3d、7d、14d、28d 4个亚组,每个亚组动物数n=7只。免疫荧光单标和双标法检测研究局灶脑缺血/再灌注及电刺激小脑顶核对缺血/再灌注大鼠神经干细胞的增殖的动态变化和分化的结果。
     3.改良线栓法制备大脑中动脉局灶脑缺血1.5h再灌注模型。成年SD大鼠随机分为假手术组(S组),缺血/再灌注组(I/R组),缺血/再灌注后小脑顶核刺激(F)组。根据再灌注时间的不同又分为14d、28d 2个亚组,每个亚组动物数n=7只。采用RT-PCR和Western blotting检测局灶脑缺血/再灌注及电刺激小脑顶核对大鼠局灶脑缺血/再灌注后Notch1、Hes5和Mash1 mRNA及蛋白的表达,采用RT-PCR和免疫组化技术检测NF-кB p65 mRNA及蛋白的表达。
     结果
     1.电刺激小脑顶核能提高局灶脑缺血/再灌注大鼠的神经功能缺损评分,降低缺血侧脑组织中脑含水量,缩小脑梗死体积。
     2.正常对照组和假手术组侧脑室区和缺血周围皮质只存在少量Brdu阳性细胞,局灶脑缺血/再灌注脑损伤后3d大鼠侧脑室下区Brdu阳性细胞显著增加(P<0.01),7d时增加达到顶锋(P<0.01),14d和28d时后Brdu阳性细胞仍增加(P<0.01);局灶脑缺血/再灌注脑损伤后3d大鼠缺血周围皮质Brdu阳性细胞也显著增加(P<0.001),7d时增加达到顶峰(P<0.001),14d和28d时后Brdu阳性细胞仍显著增加(P<0.001);电刺激小脑顶核后大鼠侧脑室下区和缺血周围皮质Brdu阳性细胞增加更明显,与缺血/再灌注组比较,在3d、7d、14d和28d四个时间点Brdu阳性细胞增加更多,均有显著性差异(P<0.05)。免疫荧光双标法显示在正常组、假手术组仅见极少量Brdu/GFAP和Brdu/ DCX双阳性细胞,缺血/再灌注组可见少量Brdu/GFAP和Brdu/DCX双阳性细胞,小脑顶核刺激组可见大量Brdu/GFAP和Brdu/DCX双阳性细胞,Brdu/GFAP和Brdu/DCX双阳性细胞明显增多,主要分化为神经元和神经胶质细胞。
     3.与假手术组比较,脑缺血/再灌注组和脑缺血/再灌注后小脑顶核刺激组Notchl、Hes5、Mash1 mRNA和蛋白的表达量均增加(P<0. 01);与脑缺血/再灌注组比较,小脑顶核刺激组Notchl、Hes5、Mash1 mRNA和蛋白的表达量增加更明显(P<0.05)。与假手术组比较,脑缺血/再灌注组和脑缺血/再灌注后小脑顶核刺激组NF-кB p65 mRNA和蛋白的表达量均增加(P<0.01);与脑缺血/再灌注组比较,小脑顶核刺激组NF-кB p65 mRNA和蛋白的表达量明显降低(P<0. 05)。
     结论
     1.成功建立改良线栓法大鼠局灶脑缺血/再灌注模型。电刺激小脑顶核可以降低脑缺血/再灌注损伤后急性期死亡率,促进肢体功能恢复。电刺激小脑顶核能提高大脑中动脉局灶脑缺血/再灌注模型大鼠的神经功能缺损评分,降低缺血侧脑组织中脑含水量,缩小脑梗死体积,从而达到脑保护作用
     2.脑缺血后自身的神经干细胞也存在增殖。在正常对照组和假手术组大鼠SVZ和缺血侧皮质有少量神经干细胞,未见神经干细胞增殖。内源性神经干细胞增殖在脑缺血再灌注后逐渐升高,在脑梗死后7d达到高峰,以后增殖逐渐下降,28d神经干细胞仍有增殖。电刺激小脑顶核后神经干细胞增殖更明显,在7d达到高峰,28d后在SVZ和缺血周围皮质神经干细胞均还有明显增殖。电刺激小脑顶核能促进脑缺血后大鼠内源性神经干细胞的增殖。在正常组、假手术组仅见极少量神经干细胞分化,缺血/再灌注组可见少量神经干细胞分化,小脑顶核刺激组可见大量神经干细胞分化,分化明显增多,分化为神经胶质细胞和神经元。电刺激小脑顶核促进神经干细胞分化为神经胶质样细胞和神经元样细胞。电刺激小脑顶核通过促进内源性神经干细胞增殖和分化发挥脑组织神经重建作用。
     3.正常成年大鼠脑组织Notchl、Hes5、Mash1和NF-кB p65表达较少。局灶脑缺血/再灌注后,大鼠缺血侧脑皮质Notchl、Hes5、Mash1和NF-кB p65 mRNA及蛋白表达明显增强,电刺激小脑顶核后Notchl、Mash1和Hes5 mRNA及蛋白表达增强更明显,NF-кB p65 mRNA及蛋白表达增强则减弱。电刺激小脑顶核通过促进Notchl、Hes5和Mash1 mRNA及蛋白表达和抑制NF-кB p65 mRNA及蛋白表达来影响神经干细胞增殖和分化。
Backgroud
     Ischemic stroke is the disease of nervous system,which is commonly seen and frequently occurs. Among all the types of stroke,ischemic stroke occupies the stroke disease above 75%. Most of the stroke patients have some scrious sequelas,such as paralysis,aphasia,and et al. It not only torments the stroke patients,but also bring the society and the patients, families heavy burden. Cerebral ischemia/reperfusion cause the cerebral functional impairment and structure damage become worse,which degrades the therapeutic efficacy obviously.The appropriate methods of prevention and therapy for ischemia/reperfusion to restore the function of damaged neurons and to reduce disability and mortality remain a subject of hottest focuses in recent years. Cerebral ischemia/reperfusion has complicated pathophisiological process and the specific mechanism. Functional impairment could be caused neuron disorganization and depletion which performed important pathological significance in cerebral ischemicin jury. At present,there is no satisfactal treatment of cerebral ischemia/reperfusion jury in study and clinical application. Studies showed that FNS has exact neuroprotective effects against damage of nervous system diseases, include anti-inflammatory,supress cell apoptosis and promoting nerve tissue re- construction. Cerebellum electric stimulation devices which start from experimental fastigial nucleus stimulation(FNS) and minic biological electric current have applied in clinic for treating some disease and showed the satisfied clinical effects on several central nervous system diseases recently. The signal pathway of Notch1 can control destiny of the cell. The neural stem cell carries on proliferation after Notch1 is activated and the neural stem cell enters the procedure of differentiation when the activeness of Notch1 is suppressed. The basic helix-loop-helix factor of bHLH gene richly contains an sequence of alkalinity amino acid in its upstream and regulate transcription of many genes. The research indicates that the Hes5 signal passage can inhibit differentiation of neural stem cell to the neuron and promote proliferation of neural stem cell. Mash1 may promote the differentiation of neural stem cell when the expression of Mash1 is high and cause condition of proliferation through the suppression of differentiation of nerve stem cell when the expression of Mash1 is low. There is a very complex mechanism of NF-κB in regulation proliferation and differentiation of neural stem cell which involves the aspect of inflammation and immune response. Based on the past clinical and experimental achievements, this project is to proceed with how FNS influence the endo- genesis neural stem cell and research the proliferation and differentiation of endogenous neural stem cell and mechanism with FNS. With the project carried out,we can get the experimental basis for the clinical treatment of ischemic stroke.
     Objectives
     (1) The protection of FNS was observed from the aspects of neural function comprehend evaluation, brain tissue water content and cerebral infarction size.
     (2) To identify proliferation and differentiation of neural stem cells in the adult rats which were treated with FNS at each time point of ischemia/reperfusion respectively and to investigate the possible effect of FNS on the plasticity of nerve of the brain.
     (3)The change of mRNA and protein expression of Notch1, Hes5, Mash1 and NF-кB p65 in each group was assessed to study on the mechanism of proliferation and differentiation of neural stem cells in focal cerebral ischemia/reperfusion rats.
     Methods
     (1) Focal cerebral ischemia/reperfusion injury was induced by intraluminal middle cerebral artery occlusion (MCAO) method using a monofilament thread in rats and and treated with FNS after the reperfusion was performed. Adult SD rats were randomly devided into five groups: normal control group(N group),sham-operation control grop(S group),ischemia/reperfusion group(I/R group),ischemia/ reperfusion treated with FN sham-stimulation group(SF group) and ischemia/reperfusion treated with FNS group(F group). Each group contained three time points of 1d,3d and 7d. The protective effect of FNS was observed from the aspects of neural function comprehend evaluation, brain tissue water content and cerebral infarction size.
     (2) Animal model was made by ligating external carotidartery and inserting a piece of nylon thread into the internal carotidarter. Adult SD rats were randomly devided into four groups: normal control group(N group),sham-operation control group(S group),ischemia/reperfusion group(I/R group)and ischemia/reperfusion treated with FNS group(F group). Each group contained four time points of 3d,7d,14d and 28d . There were seven rats in each group at each time point. Single and double immunofluorescence histochemical method was used to identify proliferation and differentiation of neural stem cells in the adult rats which were treated with FNS after ischemia/reperfusion at each time point.
     (3) Focal cerebral ischemia/reperfusion injury was induced by MCAO method. Adult SD rats were randomly devided into three groups: sham-operation control group(S group),ischemia/reperfusion group(I/R group) and ischemia/reperfusion treated with FNS group(F group). Each group contained two time points of 14d and 28d. There were seven rats in each group at each time point. The mRNA and protein expression of Notch1,Hes5 and Mash1 were assessed by western blotting and RT-PCR and the mRNA and protein expression of NF-кB p65 was assessed by RT-PCR and immunohistochemistry stain.
     Results
     (1) The results showed that FNS can increase scores of comprehensive neurological function and decrease brain water content and reduce the volume of infarct volume.
     (2) Only a small amount of Brdu-labeled cells was found in SVZ and in cortex in the result of immunofluorescence histochemical method in normal control group and sham-operation control group. After three day of focal cerebral ischemia/reperfusion ,t he number of Brdu-labeled cells in SVZ increase significantly(P<0.01) and increased to a peak after seven days of focal cerebral ischemia/reperfusion(P<0.01), then the rate of increase descended after fourteen days and twenty eight days of focal cerebral ischemia/reperfusion(P<0.01). After three day of focal cerebral ischemia/reperfusion, the number of Brdu-labeled cells in cortex increase significantly(P<0.001) and increased to a peak after seven days of focal cerebral ischemia/reperfusion(P<0.001), then the rate of increase descended after fourteen days and twenty eight days of focal cerebral ischemia/reperfusion(P<0.001). Compared with group of focal cerebral ischemia/reperfusion at the time point of three days,seven days,fourteen days and twenty eight days,the number of Brdu-labeled cells in SVZ and in cortex increased more strikingly in the group of focal cerebral ischemia/reperfusion treated with FNS , the difference was significant(P<0.05). There were a very small amount Brdu/DGX- labeled and Brdu/GFAP-labeled cells which were found in normal control group and sham-operation control group and only a small amount of Brdu/DGX- labeled and Brdu/GFAP-labeled cells were found in focal cerebral ischemia/reperfusion group. A large amount of number of Brdu/DGX- labeled and Brdu/GFAP-labeled cells were found in F group. The proliferated neural stems cells were induced to differentiate into glia cells and neurons.
     (3)Compared with sham operation control group, the mRNA and protein expression of Notch1 , Hes5,Mash1 and NF-кB p65 increased in ischemia/reperfusion group and ischemia/reperfusion treated with FNS group(P<0.01). Compared with ischemia/reperfusion group, the mRNA and protein expression of Notch1,Hes5 and Mash1 increased and the mRNA and protein expression of NF-кB p65 decreased in ischemia/ reperfusion treated with FNS group(P<0.05).
     Conclusions
     (1)Focal cerebral ischemia/reperfusion injury model was established successfully. The application of FNS could lower the mortality of rats in the acute stage of ischemia/reperfusion injury.The application of FNS could increase scores of comprehensive neurological function,decrease brain water content and reduce the volume of infarct volume. FNS can protect brain after ischemia/reperfusion injury.
     (2) There was proliferation of neural stem cells in SVZ and cortex after ischemia/reperfusion injury. Only a small amount of Brdu-labeled cells were found in SVZ and in cortex in adult rats. The proliferation of endogenous neural stem cells in SVZ and cortex gradually increased after ischemia/reperfusion injury,the rate of increase gradually slowed down after the peak of 7d time point. Proliferation of neural stem cells is more obvious after focal cerebral ischemia/reperfusion treated FNS than only focal cerebral ischemia/reperfusion,the rate of increase gradually slowed down after the peak of 7d time point. There were a very small amount Brdu/DGX-labeled and Brdu/GFAP-labeled cells which were found in normal control group and sham-operation control group and only a small amount of Brdu/DGX- labeled and Brdu/GFAP-labeled cells were found in focal cerebral ischemia/reperfusion group. A large number of Brdu/DGX- labeled and Brdu/GFAP-labeled cells were found after focal cerebral ischemia/reperfusion treated FNS. The proliferated neural stems cells were induced to differentiate into neurons and glia cells. FNS could promote the differentiation of neural stem cells to into glial-like cells and neuron-like cells. FNS plays a role in nerve reconstruction of brain tissue by promoting the proliferation and differentiation of neural stem cells.
     (3) The mRNA and protein expression of Notch1,Hes5,Mash1 and NF-кB p65 was low in adult rats and the mRNA and protein expression of Notch1,Hes5 ,Mash1 and NF-кB p65 increase after ischemia/ reperfusion and ischemia/reperfusion treated with FNS. Compared with only ischemia/reperfusion,there was a significant increase of the mRNA and protein expression of Notch1,Hes5 and Mash1 and a significant de- crease of the mRNA and protein expression of NF-кB p65 after ischemia/ reperfusion treated with FNS. FNS could influence proliferation and differentiation of neural stem cells by promoting the mRNA and protein expression of Notch1,Hes5 and Mash1 and inhibiting mRNA and protein expression of NF-кB p65.
引文
[1] Altman J,Das GD. Autoradiographic and histologicaevidence of postnatal hippocampal neurogenesis in rats [J]. J Comp Neurol,1965,(124):319-335.
    [2] Wojcik L,Sawicka A,Rivera S,et al. Neurogenesis in gerbil hippocampus following brain ischemia:Focus on the involvement of metalloproteinases [J]. Acta Neurobiol Exp (Wars),2009,69(1):52-61.
    [3] Minger SL, Ekonomou A,Carta EM,et al. Endogenous neurogenesis in the human brain following cerebral infarction [J]. Regen Med,2007,2(1):69-74.
    [4] Darsalia V,Kallur T,Kokaia Z. Survival, migration and neuronal differentiation of human fetal striatal and cortical neural stem cells grafted in stroke-damaged rat striatum [J]. Eur J Neurosci,2007,26(3):605-614.
    [5] Hatakeyama J,Kageyama R. Notch1 expression is spatiotemporally correlated with neurogenesis and negatively regulated by Notch1-independent Hes genes in the developing nervous system [J]. Cereb Cortex,2006,16(1):132-137.
    [6] Oishi K,Kamakura S,Isazawa Y,et al. Notch promotes survival of neural precursor cells via mechanisms distinct from those regulating neurogenesis[J]. Dev Biol,2004,276(1):172-184.
    [7] Tanigaki K,Nogaki F,Takahashi J,et al. Notch1 and Notch3 instructively restrict bFGF-responsive multipotent neural progenitor cells to an astroglial fate[J]. Neuron,2001,29(1):45-55.
    [8] Oya S,Yoshikawa G,Takai K,et al. Attenuation of Notch signaling promotes the differentiation of neural progenitors into neurons in the hippocampal CA1 region after ischemic injury [J]. Neuroscience,2009,158(2):683-692.
    [9] Kageyama R,Ohtsuka T,Hatakeyama J,et al. Roles of bHLH genes in neural stem cell differentiation[J]. Exp Cell Res,2005,306(2):343-348.
    [10] Ohtsuka T,Sakamoto M,Guillemot F,et al. Roles of the basic helix-loop-helix genes Hes1 and Hes5 in expansion of neural stem cells of the developing brain[J]. J Biol Chem,2001,276(32):30467-30474.
    [11] Yi SH,Jo AY,Park CH,et al. Mash1 and neurogenin 2 enhance survival and differentiation of neural precursor cells after transplantation to rat brains via distinct modes of action[J]. Mol Ther,2008,16(11):1873-1882.
    [12] Elmi M,Faigle R,Yang W,et al. Mechanism of MASH1 induction by ASK1 andATRA in adult neural progenitors[J]. Mol Cell Neurosci,2007,36(2):248-59.
    [13] Mondal D,Pradhan L. Signal transduction pathways involved in the lineage-differentiation of NSCs:can the knowledge gained from blood be used in the brain[J]. Cancar Inves,2004,22(6):925-943.
    [14] Zhu JN,Yung WH,Kwok Chong,et al. The cerebellar hypothalami circuits:potential pathways underlying cerebellar involvement in so realic visceral integration[J]. Brain Res Rev,2006,52(1):93-106.
    [15] Onat F,Cavdar S. Cerebellar connections:hypothalamus[J]. Cerebellum,2003,2(4):263-269.
    [16] Li B,Guo CL,Tang J, et al. Cerebellar Fastigial Nuclear Inputs and Peripheral Feeding Signals Converge on Neurons in the Dorsomedial Hypothalamic Nucleus[J]. Neurosignals,2009,17(2):132-143.
    [17] Zhang S,Zhang Q,Zhang JH,et al. Electro-stimulation of cerebellar fastigial nucleus (FNS) improves axonal regeneration[J]. Front Biosci,2008,13:6999- 7007.
    [18]董为伟.电刺激小脑顶核与中枢神经源性保护[J].中国工程科学,2001, 3(11):44-50.
    [19] Yanjun Huang,Yong Luo. Effects of fastigial nucleus electrical stimulation on lateral ventricle nestin expression after focal cerebral ischemia/reperfusion in adults rats[J]. Neural Regen Res,2008,3(4):410-414.
    [1]卫生部令第55号.医学实验动物管理实施细则[J].中国卫生法制,1998, 6(34):39-40.
    [2] Longa EZ,Weinstein PR,Carlson S,et al. Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke,1989,(20):84-91.
    [3] Kawamura S,Yasui N,Shirasawa M,et al.Rat middle cerebral artery occlusion using an intraluminal thread technique[J]. Acta Neurochir (Wien),1991, 10(9):126-132.
    [4]罗勇,董为伟. Wistar大鼠插线法局灶性脑缺血/再灌注模型的实验研究[J].重庆医科大学学报,2002,27(1) :1-4.
    [5] Nakai M,Ladecola C,Ruggiero DA,et al. Electrical stimuiation of cerebellar fastigial nucleus increases cerebral cortical blood flow with out change in local metabolism:evidence for an intrinsic system in brain for Primary vasodilation [J]. Brain Res,1983,260(1) :35-49.
    [6]罗勇,董为伟.扩布性阻抑与脑缺血[J].生理科学进展,1999,30(4) :309-314.
    [7] Luo Y,Wan D,Xie P,et al. The effects of elkectrostimulation of the fastigial mucleus on the activation of nuclear kappaB after cerebral ischemia/ reperfusion[J]. Journal of Stroke,2008,17(Num5,suppl 1),S70.
    [8]罗勇,万东.电刺激小脑顶核(FNS)抗大鼠局灶脑缺血/再灌注后炎性损伤机理的研究[J].重庆医学,2003,23(11) :1441.
    [9]万东,罗勇,谢鹏.电刺激小脑顶核对抑制缺血/再灌注大鼠脑组织内NF-κB活性及其活化的影响[J].中华物理医学与康复杂志,2006,28(10):660-665.
    [10] Yu G ,Dong WW,Luo Y. Impact of electric stimulation preconditioning in fastinial nucleus on the expression of protin kinase isonenzyme in ischemiareperfusion rat[J]. Chinese Journal of Clinical Rehabilitation,2004, 8(22):4652-4653.
    [11]万东,罗勇.电刺激小脑顶核脑保护作用的分子机制[J].中国康复理论与实践,2003,9(3):161-165.
    [12] Deng ZK,Dong WW,Lou Y. Relationship between fastigial nucleus electrical stimulation and calpain activity during focal cerebral ischemia and re- perfusion[J]. Chinese Journal of Clinical Rehabilitation,2003,16(6):2276- 2277.
    [13]罗勇,董为伟.条件性中枢神经元性神经保护作用[J].杨森文库,1999,3(2): 24-26.
    [14]余刚,罗勇,彭国光,等.电刺激小脑顶核的缺血性脑保护作用研究进展[J].国外医学内科学分册,2001,28(7):304-307.
    [15]夏一鲁,罗勇,齐力,等.电刺激小脑顶核对卒中大鼠的治疗作用与机制[J].中风与神经疾病杂志,1999,16(1):3-5.
    [16]余刚,董为伟,罗勇,等.预刺激小脑顶核对脑缺血神经元凋亡的防治作用[J].现代康复,2000,5(1):60-61.
    [17]李光勤,董为伟,李国秧.小脑电刺激对脑梗塞患者抗凋亡蛋白的影响[J].脑与神经疾病杂志,2003,11(5):271-273.
    [18]曾锦旗,董为伟.大鼠局灶脑缺血/再灌注后海马CA1区NF-κB与HSP70的表达与预刺激小脑顶核的作用[J].中国老年学杂志,2002,22(4):289-291.
    [19] Galea E,Glickstein SB,Feinstein DL,et a1. Stimulation of cerebellar fastigial nucleus inhibits interleukin-beta-nduced cerebrovascular inflammation[J]. Am J Physiol,1998,(44):2053-2063.
    [20] Reis DJ,Golanov EV,Galea E. Central neurogenic neuroprotection: central neural systems that protect the brain from hypoxia and ischemia[J]. Ann N Y Acad Sci,1997,8(35):l68-186.
    [21] Golanov,Eugene V. Stimulation of cerebellum protects hippocampal neurons from global ischemia[J]. Nurorport,1998,9(5):819-824.
    [22]喻志源,骆翔,王伟,等.小脑顶核电刺激对急性脑梗死患者血清NSE和神经功能缺损的影响[J].中国康复,2003,18(1):13-14.
    [23]王磊,黄铁柱,何国厚,等.电刺激小脑顶核治疗脑供血不足患者的经颅多普勒超声和脑电图观察[J].中国全科医学,2007,(10):794-796.
    [24]姜守军,王新志,白卫星.电刺激小脑顶核治疗椎-基底动脉供血不足性眩晕的临床研究[J].卒中与神经疾病,2002,(4):235-236 .
    [25] Golanov EV,Reis DJ. Neuroprotective electrical stimulation of cerebellar fastigial nucleus attenuates expression of periinfarction depolarizing waves (PIDs)and inhibits cortical spreading depression[J]. Brain Res,1999, 818(2):304-315.
    [26]周洪语,沈建康,罗其中.电刺激小脑顶核治疗缺血性脑损害[J].国外医学·脑血管疾病分册,2000,(8):216-218.
    [27] Li JS,Zhang W,Kang ZM,et al. Hyperbaric oxygen preconditioning reduces ischemia-reperfusion injury by inhibition of apoptosis via mitochondrial pathway in rat brain[J]. Neuroscience,2009,159(4):1309-1315.
    [28] Moldes O,Sobrino T,Millán M. High serum levels of endothelin-1 predict severe cerebral edema in patients with acute ischemic stroke treated with t-PA[J]. Stroke,2008,39(7):2006-2010.
    [29] Simard JM,Yurovsky V,Tsymbalyuk N. Protective effect of delayed treatment with low-dose glibenclamide in three models of ischemic stroke[J]. Stroke, 2009,40(2):604-609.
    [30] Reis DJ,Berger SB,Underwood,et al. Electrical stimulation of cerebellar fastigial nucleus reduces ischemic infaction elicited by middle cerebellar artery occlusion in rat[J]. J Cereb Blood Flow Metab,1991,11(5):810-818.
    [31]周洪语,沈健康,罗其中.电刺激小脑顶核治疗缺血性脑损害[J].国外医学·脑血管疾病分册,2000,8(4):216-218.
    [32]潭杰文,区丽明,许俭兴.高压氧并用小脑电刺激治疗对早期脑卒中患者的疗效[J].中国临床康复,2002,(5):648-649.
    [33] Reis DJ,Golanov EV,Galea E. Central neurogenic neuroprotection:central neural systems that protect the brain from hypoxia and ischemia[J]. Ann N Y Acad Sci,1997,83(5):l68-186.
    [34]刘韶华,周红,施咏梅,等.电刺激小脑顶核治疗急性脑梗死[J].现代医学,2004,32(6):393-395.
    [35] Galea E,Glickstein SB,Feinstein DL,et a1. Stimulation of cerebellar fastigial nucleus inhibits interleukin- beta-nduced cerebrovascular inflammation[J]. Am J Physiol,1998,(44):2053-2063.
    [1] Wojcik L,Sawicka A,Rivera S,et a1. Neurogenesis in gerbil hippocampus following brain ischemia:Focus on the involvement of metalloproteinases[J]. Acta Neurobiol Exp (Wars),2009,69(1):52-61.
    [2]黄艳君,罗勇.脑缺血后的神经发生及其调节[J].中国康复理论与实践,2005, 11(5):355-357.
    [3] Tsai PT,Ohab JJ,Kertesz N,et a1. Critical role of erythro-poietin receptor in neurogenesis and post-stroke recovery[J]. J Neuroscience,2006,26(4):1269- 1274.
    [4] Hoehn BD,Palmer TD,Steinberg GK. Neurogenesis in rats after focal cerebral ischemia is enhanced by indomethacin[J]. Stroke,2005,36:2718-2724.
    [5] Zhang RL,Zhang ZG,Chopp M. Ischemic stroke and neurogenesis in the subventricular zone[J]. Neuropharmacology,2008,55(3):345-352.
    [6] Sasaki T, Ito Y, Bringas P Jr, et al. TGFbeta-mediated FGF signaling is crucial for regulating cranial neural crest cell proliferation during frontal bone development[J]. Development, 2006,133(2):371-381.
    [7] Meng XT,Chen D,Dong ZY,et al. Enhanced neural differentiation of neural stem cells and neurite growth by amniotic epithelial cell co-culture[J]. Cell Biol Int, 2007, 31(7):691-698.
    [8] Cenciarelli C,Budoni M,Mercanti D,et al. In vitro analysis of mouse neural stem cells genetically modified to stably express human NGF by a novel multigenic viral expression system[J]. Neurol Res,2006,28(5):505-512.
    [9] Ding S,Messam CA,Li P,et al. Murine brain progenitor cells have the ability to differentiate into functional neurons and integrate into the CNS[J]. Cell Transplant,2006,15(8-9):699-710.
    [10] Shetty AK,Hattiangady B,Shetty GA. Stem/progenitor cell proliferation factors FGF-2,IGF-1, and VEGF exhibit early decline during the course of aging in the hippocampus: role of astrocytes[J]. Glia, 2005,51(3):173-186.
    [11] Kitajima H,Yoshimura S,Kokuzawa J,et al. Culture method for the induction of neurospheres from mouse embryonic stem cells by coculture with PA6 stromal cells[J]. J Neurosci Res,2005,80(4):467-474.
    [12] Kuzumaki N,Narita M,Narita M,et al. Chronic pain-induced astrocyte activationin the cingulate cortex with no change in neural or glial differentiation from neural stem cells in mice[J]. Neurosci Lett,2007,415(1):22-27.
    [13] Hattiangady B,Shetty AK. Aging does not alter the number or phenotype of putative stem/progenitor cells in the neurogenic region of the hippocampus[J]. Neurobiol Aging,2008,29(1):129-147.
    [14] Eriksson PS,Perfilieva E,Bj?rk-Eriksson T. Neurogenesis in the adult human hippocampus[J]. Nat Med,1998,4(11):1313-1317.
    [15] Gates MA,Thomas LB,Howard EM,et al. Cell and molecular analysis of the developing and adult mouse subventricular zone of the cerebral hemispheres[J]. Neurosci Lett,1995,361(2):249-266.
    [16]黄艳君,罗勇.电刺激小脑顶核对大鼠局灶脑缺血再灌注后脑内神经干细胞增殖的影响[J].中国康复医学杂志,2008年,23(3):211-215.
    [17] Yanjun Huang,Yong Luo. Effects of fastigial nucleus electrical stimulation on lateral ventricle nestin expression after focal cerebral ischemia/reperfusion in adults rats[J]. Neural Regen Res,2008,3(4):410-414.
    [18]黄艳君,罗勇.电刺激小脑顶核对成年大鼠局灶脑缺血/再灌注后脑内Nestin表达的影响[J].中国康复理论与实践,2007,13(8):706-709.
    [19] Li Y,Chen J,Chopp M. Cell proliferation and difierenatiation from ependymal,subependymal and choroids plexus cell in Response to stroke in rats[J]. J Neurol Sci,2002,19(3):137-146.
    [20] Parent JM,Vexler ZS,Gong C,et al. Rat forebrain neurogenesis and striatal neuron replacement afterfocalstroke[J]. Arm Neurol,2002,52(6):802-813.
    [21]胡晓松,周德明,周东.局灶性脑缺血再灌注大鼠Nestin的表达[J].四川大学学报(医学版) ,2005,36(5):645-648.
    [22]卢昌均,陆兵勋,王立新.大鼠脑缺血再灌注损伤后神经干细胞增殖分化和一氧化氮变化及通心络对其的影响[J].时珍国医,2006,l7(3):305-306.
    [23] Jin K,Minami M,Lan JQ,et a1. Neurogenesis in dentate subgranular zone and subventricular zone after focal Cerebral ischemia in the rat[J]. Proc Natl Acad Sci USA,2001,98(16):4710-4715.
    [24]赵永厚,唐红敏,唐宇平.养肝熄风方药对脑缺血大鼠神经干细胞增殖的影响[J].世界中西医结合杂志,2007,2(10):567-569.
    [25] Arvidsson A,Collin T,Kirik D,et a1. Neuronal replacement from endogenousprecursors in the adult brain after stroke[J]. Nat Med,2002,(9):963- 970.
    [26] Meng XT,Chen D,Dong ZY,et al. Enhanced neural differentiation of neural stem cells and neurite growth by amniotic epithelial cell co-culture[J]. Cell Biol Int,2007,8(2):562-567.
    [27] Ding S,Messam CA,Li P,et al. Murine brain progenitor cells have the ability to differentiate into functional neurons and integrate into the CNS[J]. Cell Transplant,2006,15(8):699-710.
    [28] Marty S,Carroll P,Cellerino A,et al. Brain-derived neurotrophic factor promotes the differentiation of various hippocampal nonpyramidal neurons,including Cajal-Retzius cells,in organotypic slice cultures[J]. J Neurosci,1996,16(5): 675-87.
    [1] Lardelli M,Williams R,Mitsiadis T,et a1. Expression of the Notch3 intracellular domain in mouse central nervous system progentior cells is lethal and leads to disturbed neural tube development[J]. Mech Dev,1996,59(2).177-190.
    [2] Nam Y,Weng AP,Aster JC,et a1. Structural requirements for assembly of the CSL,intracelular Notchl,mastermind like 1 transcriptional activation complex[J]. J Biol Chem,2003,278(23):21232-21239.
    [3] Oishi K,Kamakura S,Isazawa Y,et al. Notch promotes survival of neural pre- cursor cells via mechanisms distinct from those regulating neurogenesis[J]. Dev Biol, 2004, 276(1):172-184.
    [4] Hatakeyama J,Kageyama R. Notch1 expression is spatiotemporally correlated with neurogenesis and negatively regulated by Notch1-independent Hes genes in the developing nervous system[J]. Cereb Cortex,2006,16(1):132-137.
    [5] Lardelli M,Williams R,Mitsiadis T,et a1. Expression of the Notch 3 intracellar domain in mouse central nervous system progenitor cells is lethal and leads to disturbed neural tube development[J]. Mech Dev,1996,59(2):l77-190.
    [6] Okano H,lmai T,Okabe M. Musashi:a transnational regulator ofcell fate[J]. J Cell Sci, 2002, ll5(7):l355-1359.
    [7]黄艳君,罗勇.脑缺血后的神经发生及其调节[J].中国康复理论与实践,2005, 11(5):355-357.
    [8] Tanigaki K,Nogaki F,Takahashi J,et al. Notch1 and Notch3 instructively restrict bFGF-responsive multipotent neural progenitor cells to an astroglial fate[J]. Neuron,2001,29(1):45-55.
    [9] Oya S,Yoshikawa G,Takai K,et al. Attenuation of Notch signaling promotes the differentiation of neural progenitors into neurons in the hippocampal CA1 region after ischemic injury[J]. Neuroscience,2009,158(2):683-692.
    [10] Strum A,Adachi A. Nuclear access and action of notch in vivo[J]. Cell,1998, 93(4):649-660.
    [11] Kageyama R,Ohtsuka T,Hatakeyama J,et al. Roles of bHLH genes in neural stem cell differentiation[J]. Exp Cell Res,2005,306(2):343-348.
    [12] Ohtsuka T,Sakamoto M,Guillemot F,et al. Roles of the basic helix-loop-helixgenes Hes1 and Hes5 in expansion of neural stem cells of the developing brain[J]. J Biol Chem,2001,276(32):30467-30474.
    [13] Yi SH,Jo AY,Park CH,et al. Mash1 and neurogenin 2 enhance survival and differentiation of neural precursor cells after transplantation to rat brains via distinct modes of action[J]. Mol Ther, 2008,16(11):1873-1882.
    [14] Elmi M,Faigle R,Yang W,et al. Mechanism of MASH1 induction by ASK1 and ATRA in adult neural progenitors[J]. Mol Cell Neurosci,2007,36(2):248-259.
    [15] Chenn A,Walsh CA. Regu lation of cerebral cortical size by control of cell cycle exit in neural precursors[J]. Science,2002,297(5580):365-369.
    [16] Ross SE,Greenberg ME,Stiles CDV. Basic helix-1oop-helix factorsin cortical development[J]. Neuron,2003,39(1):13-25.
    [17] Kageyama R. Transcription factor network that regulates neural development[J]. Brain Nerve,2008,60(4):329-333.
    [18] Ito H. Priming of neuronal differentiation of cultured neural stem cells by neutrophins[J]. Nihon Shinkei Seishin Zasshin,2004, 24(4):181-185.
    [19] Lai HC,Johnson JE. Neurogenesis or neuronal specification: phosphorylation strikes again[J]. Neuro,2008,58(1):3-5.
    [20] Kageyama R. Roles of bHLH genes in neural stem cell differentiation[J]. Exp Cell Res,2005, 306(2):343-348.
    [21]万东,罗勇,谢鹏.电刺激小脑顶核对缺血/再灌注大鼠脑组织内NF-KB活性及其活化的影响.中华物理医学与康复杂志, 2006, 28(10):660-665.
    [22] Hang CH,Shi JX. Up-regulation of intestinal nuclear factor kappa B and intercellular adhesion molecule-1 following traumatic brain iniury in rats[J]. World J Gastroenterol ,2005,11(8):1149-1154.
    [23] Imitola J,Raddassik. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor lalpha/CXC chemokine receptor 4 pathway[J]. Proc Natt Acad Sci USA,2004,101(52):18117-18122.
    [24]赵振强,罗勇.脑缺血损伤和神经干细胞的增殖、迁移、分化[J].中国康复理论与实践,2003,9(11):654-658.
    [25] Korobowicz A. Biology of tumor necrosis factor type alpha (TNF-alpha) [J]. Pol Merkur Lekarski,2006,21(124):358-361.
    [26] Potter ED,Ling ZD,Carvey PM, et a1. Cytokine-induced conversion of mescen-phalic-derived progenitor cells into dopamine neurons[J]. Cell Tissue Res,1999,296(2):235-246.
    [27] Carvey PM,Ling ZD,Sorwell CE,et a1. A clonal line of mesencephalic pro- genitor cells converted to dopamine neurons by hema topoietic cytokines:a source of cells for transplantation in Parkinson disease[J]. Exp Neurol,2001, 171(1):98-108.
    [1] Alexson TO,Hitoshi S,Coles BL,et al. Notch signaling is required to maintain all neural stem cell populations-irrespective of spatial or temporal niche[J]. Dev Neurosci,2006,28(12):34-48.
    [2] Chen J,Zacharek A,Li A,et al. Atorvastatin promotes presenilin-1 expression and Notch1 activity and increases neural progenitor cell proliferation after stroke[J]. Stroke,2008,39(1):220-226.
    [3] Hatakeyama J,Kageyama R. Notch1 expression is spatiotemporally correlated with neurogenesis and negatively regulated by Notch1-independent Hes genes in the developing nervous system[J]. Cereb Cortex,2006,16(1):132-137.
    [4] Nam Y,Weng AP,Aster JC,et a1. Structural requirements for assembly of the CSL,intracelular Notch l,mastermind like transcriptional activation complex[J]. J Biol Chem,2003,278(23):21232-21239.
    [5] Lardelli M,Williams R,Mitsiadis T,et a1. Expression of the Notch 3 intracellar domain in mouse central nervous system progenitor cells is lethal and leads to disturbed neural tube development[J]. Mech Dev,1996,59(2):l77-190.
    [6] Okano H,lmai T,Okabe M. Musashi:a transnational regulator ofcell fate[J]. J Cell Sci,2002,ll5(7):l355-1359.
    [7] anigaki K,Nogaki F,Takahashi J,et al. Notch1 and Notch3 instructively restrict bFGF-responsive multipotent neural progenitor cells to an astroglial fate[J]. Neuron,2001,29(1):45-55.
    [8] Oya S,Yoshikawa G,Takai K,et al. Attenuation of Notch signaling promotes the differentiation of neural progenitors into neurons in the hippocampal CA1 region after ischemic injury[J]. Neuroscience,2009,158(2):683-92.
    [9] Zhou Q,Anderson DJ. The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification[J]. Cell,2002,99(1):61-73.
    [10] Zhou Q,Wang S,Anderson DJ. Identification of a novel family of oligoden- drocyte lineage-specific basic helix-loop-helix transcription factors[J]. Neuron, 2000,25(2):331-343.
    [11] Kageyama R,Ohtsuka T,Hatakeyama J,et al. Roles of bHLH genes in neural stem cell differentiation[J]. Exp Cell Res,2005,306(2):343-8.
    [12] Ohtsuka T,Sakamoto M,Guillemot F,et al. Roles of the basic helix-loop-helix genes Hes1 and Hes5 in expansion of neural stem cells of the developing brain[J]. J Biol Chem,2001,276(32):30467-74.
    [13] Yi SH,Jo AY,Park CH,et al. Mash1 and neurogenin 2 enhance survival and differentiation of neural precursor cells after transplantation to rat brains via distinct modes of action[J]. Mol Ther,2008,16(11):1873-82.
    [14] Elmi M,Faigle R,Yang W,et al. Mechanism of MASH1 induction by ASK1 and ATRA in adult neural progenitors[J]. Mol Cell Neurosci,2007, 36(2):248- 59.
    [15] Kim EJ,Battiste J,Nakagawa Y,et al. Ascl1 (Mash1) lineage cells contribute to discrete cell populations in CNS architecture[J]. Mol Cell Neurosci,2008, 38(4): 595-606.
    [16] Uda M,Ishido M,Kami K. Features and a possible role of Mash1 immuno- reactive cells in the dentate gyrus of the hippocampus in the adult rat[J]. Brain Res,2007,1171(3):9-17.
    [17] Chenn A,Walsh CA. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors[J]. Science,2002,297(9):365-369.
    [18] Lee HY,Khbet M,Hari L,et a1. Instructive role of Wnt/beta-catenin in sensory fate specication in neural crest stem cells[J]. Science,2004,303(57):1020 -1023.
    [19] Castelo-Branco G,Wagner J,Rodriguez FJ,et a1. Differential regulation of mid- brain dopaminergic neuron development by Wnt-1a,Wnt-3a and Wnt-5a[J]. Proc Nail Acad Sci USA, 2003, 100(13):12747-12752.
    [20] Sommer L. Multiple roles of canonical Wnt signaling in cell cycle progression and cell lineage specification in neural development[J]. Cell Cycle,2004, 3(1): 701-703.
    [21] Muroyama Y,Kondoh H,Takada S,et a1. Wnt proteins promote neuronal differentiation in neural stem cell culture[J]. Biochem Biophys Res Commun,2004,313(4):915-921.
    [22] Hang CH,Shi JX. Up-regulation of intestinal nuclear factor kappa B and inter- cellular adhesion molecule-1 following traumatic brain iniury in rats[J]. World J Gastroenterol,2005,11(8):1149-1154.
    [23] Haughey NJ,Nath A. Disruption of neurogenes is by amyloid Beta-peptide and perturbed neuraI progenitor cell homeostasis in models of Alzheimer's disease[J]. J Neurochem,2002,83(6):1509-1524.
    [24] Imitola J,Raddassik. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor lalpha/CXC chemokine receptor 4 pathway[J]. Proc Natt Acad Sci USA,2004,101(52):18117-18122.
    [25] Korobowicz A. Biology of tumor necrosis factor type alpha (TNF-alpha) [J]. Pol Merkur Lekarski,2006,21(124):358-361.
    [26] Su X,Gopalakrishnan V,Stearns D,et al. Abnormal expression of EST/NRSF and Myc in neural stem/progenitor cells causes cerebellar tumors by blocking neuronal differentiation. Mol Cell Biol,2006,26(5):1666-1678.
    [27] Shimojo M,Hersh LB. Characterization of the REST/NRSF-interacting LIM domain protein (RILP):localization and interaction with REST/NRSF. J Neurochem,2006,96(8):1130-1138.
    [28] Related Articles,Kosaka N,Kodama M,et al. FGF-4 regulates neural progenitor cell proliferation and neuronal differentiation[J]. FASEB J,2006,20(9):1484- 1485.
    [29] Chung S,Shin BS,Hwang M,et al. Neural precursors derived from embryonic stem cells, but not those from fetal ventral mesencephalon, maintain the potential to differentiate into dopaminergic neurons after expansion in vitro[J]. Stem Cells,2006,24(6):1583-1593.
    [30] Chojnacki A,Weiss S. Production of neurons, astrocytes and oligodendrocytes from mammalian CNS stem cells[J]. Nat Protoc,2008,3(6):935-940.
    [31] Cenciarelli C,Budoni M,Mercanti D,et al. In vitro analysis of mouse neural stem cells genetically modified to stably express human NGF by a novel multigenic viral expression system[J]. Neurol Res, 2006,28(2):505-512.
    [32] Sasaki T,Ito Y,Bringas P J,et al. TGFbeta-mediated EGF signaling is crucial for regulating cranial neural crest cell proliferation during frontal bone develop- ment [J]. Development,2006,133(4):371-381.
    [33] Shetty AK,Hattiangady B,Shetty GA. Stem/progenitor cell proliferation factors FGF-2,IGF-1,and VEGF exhibit early decline during the course of aging in the hippocampus: role of astrocytes[J]. Glia,2005,51(6):173-186.
    [34] Kang MK,Kang SK. Interleukin-6 induces proliferation in adult spinal cord- derived neural progenitors via the JAK2/STAT3 pathway with EGF-induced MAPK phosphorylation[J]. Cell Prolif,2008,41(3):377-392.
    [35] Meng XT,Chen D,Dong ZY,et al. Enhanced neural differentiation of neuralstem cells and neurite growth by amniotic epithelial cell co-culture[J]. Cell Biol Int,2007,8(2):562-567.
    [36] Ding S,Messam CA,Li P,et al. Murine brain progenitor cells have the ability to differentiate into functional neurons and integrate into the CNS[J]. Cell Trans- plant,2006,15(8):699-710.
    [37] Marty S,Carroll P,Cellerino A,et al. Brain-derived neurotrophic factor promotes the differentiation of various hippocampal nonpyramidal neurons, including Cajal-Retzius cells,in organotypic slice cultures[J]. J Neurosci,1996,16(5):675- 687.
    [38] Nakajima K,Hida H,Shimano Y,et al. GDNF is a major component of trophic activity in DA-depleted striatum for survival and neurite extension of daergic neurons[J]. Brain Res,2001,916(15):76-84.
    [39] Di-Gregorio A,Sancho M,Stuckey DW,et al. BMP signalling inhibits premature neural differentiation in the mouse embryo[J]. Development,2007,134(18): 3359-3569.
    [40] Mathieu C,Sii-Felice K,Fouchet P,et al. Endothelial cell-derived bone morpho- genetic proteins control proliferation of neural stem/progenitor cells[J]. Mol Cell Neurosci,2008,38(4):569-577.
    [41] Brannvall K,Korhonen L,Lindholm D. Estrogen.receptor.dependent regulation of neural stem cell proliferation an d difierentiation[J]. Mol Cell Neurosci,2002, 21(3):512-520.
    [42] Brand AH,van Roessel PJ. Region-specific apoptosis limits neural stem cell proliferation[J]. Neuron,2003,37(2):185-187.
    [43] Nishino H,Hida H,Takei N,et a1. Mesencephalic neural stem(progenitor) cells develop to dopaminergic neurons more strongly in dopamine-depleted striatum than in intact striatum[J]. Exp Neural,2000,164 (1):209-214.
    [44] Franklin RJ,Blakemore WF. Transplanting oligodendrocyte progenitors into the adult CNS[J]. J Anat,1997,190(Pt 1):23-33.
    [45] Lou S,Gu P,EllenF,et a1. Effect of bone marrow strorrml cells on nc ta'onal diffierentiation of mesencephalic neural stem cells in Spragdawley rats [J]. Brain Res,2003,968:114-l21.
    [46] Rosario CM,Yandava BD,Kosaras B,et a1. Differentiation of engrafted multi- potent neural progenitors towards replacement of missing granule neurons inmeander tail cerebelhm may help determine the locus of mutant gene action [J]. Development,1997,124(23):4213-4224.
    [47] Horie N,Moriya T,Mitome M,et a1. Lowered glucose suppressed the pro- liferation and increased the differentiation of murine neural stem cells in vitro[J]. FEBS Lett,2004,1571(1-3):237-242.
    [48] Kely S,Bliss TM,Shah AK,et a1. Transplanted human fetal neural stem cells survive,migrate,and differentiate in ischemic rat cerebral cortex[J]. Proc Natl Acad Sci USA,2004,101(32):11839-11844.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700