重组E.coli γ-ggt和gs原核表达载体的构建、蛋白诱导表达与应用和Hsp70、Hsp90及TAK1相关真核表达载体的构建及鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
谷胱甘肽(Glutathione)广泛存在于各种生物体中,主要用于维持胞内正常的氧化还原状态,是生物体内的自由基清除剂,具有抗氧化、解毒、保护细胞等重要的生理作用,在临床医药、食品工业、保健品等方面有着非常广泛的用途。近年来,Glutathione的生产方法主要有溶剂萃取法、发酵法、酶转化法及化学合成法。由于直接从组织中分离提取的成本比较高,化学合成法的分离提纯过程又十分困难,酶转化法合成GSH的产率高、后续的分离提取较简单而倍受关注。
     茶氨酸(L-Theanine)学名为N-乙基-γ-氨基-L-谷氨酰胺(N-ethyl-γ-L-glutamine),是天然茶叶中的一种特殊氨基酸,也是茶叶具有鲜爽味的主要成分,于1985年得到FDA认可,并确认合成茶氨酸为GRAS,在使用时不作限制用量的规定,茶氨酸作为一种新型的食品添加剂,不仅易溶于水,还有抑制苦味物质,改善食品风味的作用,在食品工业中得到了广泛的应用。此外,茶氨酸还具有降血压、增强抗癌药物的疗效、提高免疫力、松弛神经紧张等药理作用。但由于直接从茶叶中提取高纯度茶氨酸的成本比较高昂,茶氨酸的人工合成,特别是微生物发酵合成方法一直是人们研究的热点。
     γ-谷氨酰转肽酶(γ-glutamyltranspeptidase,γ-GGT,EC 2.3.2.2)是生物体内谷胱甘肽代谢途径中的一个关键酶,广泛分布在活体组织中。在大肠杆菌中,此酶在自身信号肽的介导下被转运至周质空间中发挥其生理作用。它不仅可以催化γ-谷氨酰基化合物的水解反应生成γ-谷氨酸,还可以催化γ-谷氨酰基化合物上的γ-谷氨酰基团转移至氨基酸、多肽、H_2O等受体上。利用其这一特性,可以催化合成谷胱甘肽和茶氨酸。为了提高微生物中γ-谷氨酰转肽酶的产量及可溶组分,本实验从大肠杆菌k-12中克隆出γ-ggt基因片段,转入原核表达载体pET28a(+)、pET32a(+)和pGEX-4T-1中,构建了重组质粒,并将其转化至大肠杆菌BL21(DE3)中,以廉价、无毒的乳糖作为诱导剂,测定目的蛋白的表达特性,并在此基础上利用该酶催化合成谷胱甘肽和茶氨酸。
     实验结果表明,构建的重组质粒pGEX-4T-1/γ-ggt转化大肠杆菌BL21(DE3),乳糖诱导后表达产生的γ-谷氨酰转肽酶具有更高的蛋白可溶性和酶活,在反应条件优化基础上,利用重组大肠杆菌γ-谷氨酰转肽酶,茶氨酸最大生成量目前可达到80~90g/L,谷胱甘肽的合成仍在进一步研究中。
     已有研究报道,诱生型HSP70与细胞凋亡之间存在密切的联系,凋亡信号调节激酶ASK1(Apoptosis signal regulating kinase)是细胞凋亡途径的一个关键激酶,活化的ASK1通过线粒体途径引起细胞凋亡,诱生型HSP70可以直接与之结合,有效抑制胞内ASK1的激活及由此引起的细胞凋亡。诱生型HSP70在mRNA或蛋白水平上是否也具有调控ASK1作用,因此,本实验从人宫颈癌Hela细胞中扩增并克隆诱生型HSP70基因至真核载体pcDNA3.1(-)中,体外鉴定其表达,为后续探究其在细胞凋亡通路中一些具体的调控作用及机制奠定基础。
     热休克蛋白在细胞应激中发挥十分重要的作用,参与多种疾病的发生和发展,热休克蛋白90(HSP90)是近年来研究较多的一类热休克蛋白。目前,国际上对HSP90蛋白参与的细胞功能的研究主要集中在保护细胞,抑制细胞凋亡方面,而对它们是否参与IL-1相关的炎症信号通路的调节的研究尚少有报道。在哺乳动物中,TAK1在天然免疫和获得性免疫等细胞信号通路中具有重要作用。我们研究结果表明HSP90能与TAK1结合并影响了IL-1引起的TAK1泛素化以及稳定性,进而影响IL-1引起的下游信号的激活。细胞内的免疫共沉淀表明,HSP90能与TAK1结合,因此本实验将在前期工作的基础上找到作用于TAK1的HSP90分子的功能区,揭示HSP90作用于TAK1的分子机理。本实验成功构建了HSP90三段缺失突变体,分别为HSP90(1-232aa)、(233-732aa)、(402-732aa)以及TAK1两段缺失突变体,分别为TAKl(1-299aa)、(301-579aa),通过体内免疫共沉淀实验显示,HSP90蛋白中的1-401aa是形成HSP90-TAK1复合物所必需的。本实验证实了HSP90与TAK1相互作用的功能区,为研究炎症反应的信号网络和分子机理提供了实验基础。
Glutathione is a necessary material which maintains the environment of the body. It is the coenzyme of some enzyme in the metabolism.Its reduced thiocytidine makes the body bring about immunity by participating in the important oxidoreduction reaction of the body.Glutathione has wide use in the medicine and it has transparent effect especially in the treatment of toxic disease and liver disease.So it is thought highly of by many researchers in the medical field in the world.But the preparation of glutathione is a very difficult problem in the research and it is a hot spot up to now. From the process of the production of glutathione,there are mainly extraction, chemical synthesis,microorganism zymotechnics and chemical enzymatic synthesis.
     Theanine,which was first separated from green tea in 1950,is not only the main free amino acid component of tea,but also the major umami component of tea.It possesses high physiological and medical benefits.The preparation of theanine is a research hot point.It is very difficult and more expensive to extract a high purity theanine directly from tea leaves.The technics of chemosynthesis theanine is complicated and the yield of theanine by tissue culture is low.So,the biosynthesis of theanine is getting more and more attention.
     γ-glutamyltranspeptidase(GGT,EC 2.3.2.2)catalyzes not only the hydrolysis of theγ-glutamyl linkages ofγ-glutamyl compounds,but also the transfer of theirγ-glutamyl moieties to other amino acids or peptides.In this paper,we report an effective enzymatic method for synthesizing theanine and glutathione involving Escherichia coliγ-GGT.The E.coliγ-GGT encoding fragment was correctly inserted into the prokaryotic expression vector pET28a(+)、pET32a(+)and pGEX-4T-1,while with lactose as inducer,E.coli BL21(DE3)harboring pGEX-4T- 1/γ-ggt can express the best solubility and specific activity ofγ-glutamyl transpeptidase protein.Over 80~90 g/L theanine was successfully achieved and glutathione synthesis needs to further study.
     It has been reported that Hsp72 inhibits both the stress-induced activation of ASK1 and ASKl-involved apoptosis.To better understand the mechanism by which Hsp72 modulates stress-activated sig-naling,we construct the eukaryotic expression vector for human induced heat shock protein 70(HSPT0)gene and investigate the possible effects of Hsp72 on the protein or mRNA level of ASK1.
     The 90kDa Heat Shock Protein(HSPg0)is one of the most abundant cytosolic proteins in eukaryotes.It normally functions as a molecular chaperone to participate in folding of newly synthesized proteins,refolding of denatured proteins after stress and regulating of client proteins' stability and activity.Up to now,over 100 HSP90 client proteins have been found,which mainly include transcription factors,protein kinases,polymerases and so on.Transforming growth factor(TGF)-β-activated kinasel(TAK1),which was originally identified as a member of MAP kinase kinase kinase(MAPKKK)family mediating TGF-βsignaling,has been shown to be involved in the IL-1 -induced signal pathway.
     We have now demonstrated that HSP90 physically associates with TAK1, thereby affects the proteasome/ubiquitin and protein stability of this kinase induced by IL-1.Furthermore,we construct HSP90 and TAK1 truncation mutants,including HSP90(1-232aa),HSP90(233-732aa),HSP90(402-732aa),TAK1(1-299aa),and TAK1(301-579aa),and also identified that the N-terminal domain(amino acids 1-401)of HsPg0 is required for interaction of HSP90 and TAK1.
引文
[1]Meister A and Anderson M E.Glutathione[J].Annu.Rev.Biochem,1983,52:711-760.
    [2]刘惠.酵母生物转化生产S-腺苷-L-蛋氨酸辅产谷胱甘肽机理及工艺的研究[D].浙江大学.2002.
    [3]齐剑英.谷胱甘肽的光学性质及其分析测定研究[D].暨南大学,2003.
    [4]游建锋.从酵母细胞中分离纯化S-腺苷-L-蛋氨酸和谷胱甘肽的研究[D].浙江大学,2004.
    [5]何俊勇.高产谷胱甘肽新菌种的选育及其工艺条件的研究[D].浙江工业大学.2004.
    [6]郑云郎.谷胱甘肽的生物学功能[J].生物学通报,1995(5):22-24.
    [7]周宇光,付国平,肖仔君.谷胱甘肽的生产和应用研究进展[J].食品工业科技,2003(3):89-91.
    [8]徐汉生,奚农葆.“抗氧化物之王”谷胱甘肽的研究与开发[J].湖北化工,2000(5):1-3.
    [9]王斌,周霞秋,李立群等.谷胱甘肽代谢及其在肝脏疾病中的作用[J].国外医学临床生物化学与检验学分册,1997(2):82-84.
    [10]曹新志.谷胱甘肽的分离和干燥方法[J].广州食品工业科技,1996(2):44-46.
    [11]卢薇.谷胱甘肽的化学与医疗作用[J].化学教育,,2004(1):7-12.
    [12]郭随章.谷胱甘肽的临床应用概况[J].药学实践杂志,2001(4):204-208.
    [13]蔡俊.谷胱甘肽的研究进展[J].粮食与饲料工业,2000(10):41-42.
    [14]刘振玉.谷胱甘肽的研究与应用[J].生命的化学,1995(1):19-21.
    [15]张景硕,张鸿炼.谷胱甘肽的药理与用途[J].中国医院要学杂志,1994(8):351-352.
    [16]杨培慧,齐剑英,冯德雄等.谷胱甘肽的应用及其检测方法[J].中国生化药物杂志,2002(1):52-54.
    [17]严宏等.谷胱甘肽与白内障[J].中国实用眼科杂志,1998(10):578-580.
    [18]鲍玉洲,郭希让.晶状体与谷胱甘肽的研究进展[J].眼科研究,2000(6):571-573.
    [19]胡军,胡刚.谷胱甘肽在帕金森病治疗中的研究进展[J].中国临床药理学与治疗学,2003(5):481-484.
    [20]周厚广,陆建明,鲍远程等.还原型谷胱甘肽对帕金森病保护性治疗的实验研究[J].卒中与神经疾病,2004(1):29-33.
    [21]刘宜锋,曹新志.新型食品添加剂-谷胱甘肽[J].福州大学学报,2002:714-721.
    [22]刘振玉.运动训练和谷胱甘肽[J].天津体育学院学报,1998(1):24-27.
    [23]杨斌.谷胱甘肽在临床上的新用途[J].安徽医药,2000(4):29.
    [24]赵旭东,魏东芝,俞俊棠等.半胱氨酸共存情况下一种快速准确测定谷胱甘肽的新方法[J].华东理工大学学报,1999,(5):474-476.
    [25]范崇东,王淼,卫功元等.谷胱甘肽测定方法研究进展[J].生物技术,2004(1):68-70.
    [26]周楠迪,李寅.陈坚等.从酵母中提取谷胱甘肽的初步研究[J].生物技术,1997(4):30-33.
    [27]安贤惠.还原型谷胱甘肽提取方法初探[J].淮海工学院学报,2003(2):49-52.
    [28]贾建萍.生物合成谷胱甘肽及其发酵动力学模型的构建[D].浙江工业大学,2003.
    [29]范崇东,王淼,徐榕榕.热水提取酵母中谷胱甘肽的条件优化[J].食品工业科技,,2004(2):132-135.
    [30]刘娟,刘春秀,王雅琴等.发酵法生产谷胱甘肽的研究进展[J],微生物学通报,,2002(6):72-75.
    [31]童群义,陈坚,李华钟.高产谷胱甘肽的酵母菌选育及其培养条件研究[J].工业微生物,2002(2):13-17.
    [32]刘娟,何秀萍,王雅琴等.高产谷胱甘肽的酵母融合菌株的选育及其培养条件的研究[J].微生物学报,2003(1):99-103.
    [33]李寅,陈坚,伦世仪.高密度培养工程茵生产谷胱甘肽[J].中国医药工业杂志,1999(1):1-4.
    [34]吴坚平,林建平,岑沛霖.谷胱甘肽的生物合成[J].化工进展,1999(1):38-42.
    [35]贾建萍,裘娟萍.谷胱甘肽高产菌株的选育[J].微生物学通报,2003(4):24-29.
    [36]王正刚,蔡正森,丁贵平.酵母天然酶系生物合成谷胱甘肽[J].生物技术,2001(1):13-16.
    [37]林建平,游建锋,盛晓霞等.利用啤酒废酵母间歇发酵合成谷胱甘肽的研究[J].高校化学工程学报,2003(6):689-694.
    [38]施碧红,黄建忠,施巧琴等.啤酒酵母M-05变株合成谷胱甘肽的研究:菌种的选育[J].福建师范大学学报,1996(4):91-95.
    [39]施碧红,黄建忠,施巧琴等.啤酒酵母M-05变株合成谷胱甘肽的研究:发酵条件的研究[J].福建师范大学学报,2000(4):74-79.
    [40]李寅,陈坚,毛英鹰等.前体氨基酸和三磷酸腺苷对重组大肠杆菌生产谷胱甘肽的影响[J].无锡轻工大学学报,1998(17):11-15.
    [41]李寅、李华钟.林金萍等.生物合成谷胱甘肽种间耦合ATP再生系统的构建[J].微生物学报2001(2):191-197.
    [42]陶锐,吴梧桐,许激扬.酶法制备谷胱甘肽工艺的研究[J].药物生物技术、199(4):203-207.
    [43]Hidehiko Kumagai,Hideyuki Suzuki,Miho Shimizu et al.Utilizytion of the gamma-Glutamyltranspeptidase reaction for glutathione synthesis[J].Journal of Biotechnology,1989(9):129-138.
    [44]酒户弥二郎.农艺化学会谈,1950,23:262
    [45]宛晓春.茶叶生物化学,第三版.北京:中国农业出版社,2003,34-35.
    [46]陈橼,制茶技术理论.上海:上海科学技术出版社,1983:22.
    [47]Yokogoshi H,Mochizuki M,Saitoh K.Theanine-induced reduction of brain serotonin concentration in rats.Biosci.Biotech.Biochem.,1998,62(4):816-817.
    [48]Sugiyama T,Sadzuka Y.Enhancing effects of green tea components on the antitumor activity of adriamycin against M5076 ovarian sarcoma.Cancer Lett,1998,133(1):19-26.
    [49]Sadzuka Y,Sugiyama T,Sonobe T.Improvement of idrarubicin induced antitumor activity and bone marrow suppression by theanine,a component of tea.Cancer Lett,2000,158(2):119-24.
    [50]Zhang G,Miura Y,Yagasaki K.Effects of dietary powdered green tea and theanine on tumor growth and endogenous hyperlipidemia in hepatoma-bearing rats.Biosci Biotechnol Biochem.2002,66(4):711-716
    [51]吕毅,郭雯飞,倪捷儿等.茶氨酸的生理作用及合成.茶叶科学,2003,23(1):1-5
    [52]李敏,沈新南,姚国英.茶氨酸延缓运动性疲劳及其作用机制研究.营养学报,2005,27(4):326-329.
    [53]Kamath AB,Wang L,Das H,et al.Antigens in tea-beverage prime human Vgamma 2Vdelta 2 T cells in vitro and in vivo for memory and nonmemory antibacterial cytokine responses[J].Proc Natl Acad Sci U S A,2003,100(10):6009-6014.
    [54]Bukowski JF,Morita CT,Brenner MB.Human gamma delta T cells recognize alkylamines derived from microbes,edible plants and tea:implications for innate immunity.Immunity,1999,11(1):57-65.
    [55]陈瑛,陶文沂.几种激素对茶茶愈伤组织合成茶氨酸的影响.无锡轻工大学学报,1998,17:74-77.
    [56]Yamade Y.Bull.Chem Soc Jap,1961,39:1999-2000.
    [57]王三永,李晓光等.L-茶氨酸的合成研究.精细化工,2000,18(4):223-224.
    [58]Matsuura T.Biosci Biotech Biochem,1994,56(10):1519-1521.
    [59]Suzuki H,Kumagai H,Echigo T,et al.Molecular cloning of Escherichia coli k-12ggt and rapid isolation of γ-glutamyl transpeptidase[J].Biochemical and biophysical research communications,1988,150(1):33-38.
    [60]Hidehiko Kumagal,Hideyuki Suzuki,Miho Shimizu,et al.Utilization of theγ-glutamyltranspeptidase reaction for glutathione synthesis[J]Journal of Biotechnology,1989,2(9):129-138.
    [61]Suresh S.Tate and Alton Meiste.γ-Glutamyl transpeptidase:catalytic,structural and function aspects[J].Molecular and Cellular Biochemistry,1981,(39):357-368.
    [62]Identification of Catalytic Nucleophile of Escherichia coli γ-Glutamyltranspeptidase by Mechanism-Based Affinity Label[J].ICR Annual Report,2000,(7):44-45.
    [63]Reiko Nakayama,Hidehiko Kumagai,Tasurokuro Tochikura.Leakage of Glutathione from Bacterial Cells Caused by Inhibition of γ-Glutamyltranspeptidase[J].Applied and Environmental Microbiology,1984,(4):653-657.
    [64]Naima Chikhi,Nathalie Holic,Georges Guellaen,Yannick Laperche.Gamma-glutarnyl transpeptidase gene organization and expression:a comparative analysis in rat,mouse,pig and human species[J].Comparative Biochemistry and physiology,1999(122):367-380.
    [65]Paul D Comwell,John B Watkins Ⅲ.Changes in the kinetic parameters of hepatic γ-glutamyltransferase from streptozotocin-induced diabetic rats[J].Biochimica et Biophysica Acta(BBA)-Protein Structure and Molecular Enzymology,2001,1545:184-191.
    [66]Hideyruki Suzuki,Hidehiko Kumagai,Takashi Echigo et al.DNA Sequence of the Escherichia coli k-12γ-Glutamyltranspeptidase Gene,ggt[J].American Society for Microbiology,1989(9):5169-5172.
    [67]Moshe Y Goore,John F Thompson.γ-glutamyl transpeptidase from kidney bean fruit Ⅰ,Purification and Mechanism of action[J].Biochimica et Biophysica Acta,1967,132:15-26.
    [68]Kenji Tomita,Toshihiro Yano,Jixi Zhu,et al.Synthesis of γ-glutamyltaurine by γ-glutamyl transpeptidase of Penicillium roqueforti[J].Agric Biol Chem,1989,53(12):3239-3244.
    [69]Yoshihiro Ogawa,Hiroshi Hosoyama,Mitsutoshi Hamano et al.Purification and Properties of γ-Glutamyltranspeptidase from Bacillus subtills[J].Agric.Biol.Chem,1991(12):2971-2977.
    [70]Kenji Tomita,Masae Ito,Toshihiro Yano.γ-Glutamyltranspeptidase Activity and Properties of the Extracellular Glutaminase from Aspergillus oryzae[J].Agric.Biol.Chem,1988(5):1159-1163.
    [71]Tatsuo Watanabe and Masahiro Kohashi.Effective Formation of Di and Triγ-glutamates byγ-Glutamyltranspeptidase[J].Biosci.Biotech.Biochem,1995(1):115-116.
    [72]Hideyuki Suzuki,Wataru Hashimoto,Hidehiko Kumagai.Escherichia coli k-12Can Utilize and Exogenousγ-Gltamyl Peptide as an Amino Acid Source,for whichγ-Glutamyltranspeptidase is Essential[J].Journal of Bacteriology,1993(18):6038-6040.
    [73]Jaswant Singh.Jagdish Chander.Surjeet Singh.γ-Glutmayltranspeptidase:A novel biochemical marker in inflammation[J].Biochemical Pharmacology,1986(21):3753-3760.
    [74]Hidehiko Kumagai,Satoko Nohara,Hideyuki Suzuki et al.Crystallization and Preliminary X-ray Analysis ofγ-Glutamyltranspeptidase from Escherichia coli k-12[J].J.Mol.Biol,1993(234):1259-1262.
    [75]Hideyuki Suzuki,Hidehiko Kumagai,Tatsurokuro Tochikura.Isolation,Genetic Mapping and Characterization of Escherichia coli k-12 Mutants Lackingγ-Glutamyltranspeptidase[J].Journal of Bacteriology,1987(9):3926-3921.
    [76]Suzuki H,Kumagai H,Tochikura T.γ-Glutamyl transpeptidase from Escherichia coli K-12:Formation and Location[J].Journal of Bacteriology,1986,168(3):1332-1335.
    [77]Wataru Hashimoto,Hideyuki Suzuki,Satoko Nohara et al.Subunit Association ofγ-Glutamyltranspeptidase of Escherichia coli k-12[J].J.Biochem,1995(6): 1216-1223.
    [78]Abraham M.Karkowsky,Michael V.W.Bergamini,Marlan Orlowski.Kinetic Studies of Sheep Kidneyγ-Glutamyltranspeptidase[J].The Journal of Biological Chemistry,1976(15):4736-4743.
    [79]Susan J.Sulakhe.The activity ofγ-Glutamyltranspeptidase in regenerating rat liver[J].Febs Letters,1986(2):198-204.
    [80]Hidehiko Kurnagai,Takashi Echigo,Hideyuki Suzuki,et al.Synthesis of γ-glutamyl-DOPA from L-Glutamine and L-DOPA byγ-glutamyl transpeptidase of Escherichia coli K-12[J].Agricultural and Biological Chemistry,1988,52(7):1741-1745.
    [81]Hideyuki Suzuki,Nobukazu Miyakawa,Hidehiko Kumagai.Enzymatic production of γ-L-glutamyltaurine through the transpeptidation reaction of γ-glutamyltranspeptidase from Escherichia coli K-12[J].Enzyme and Microbial Technology,2002(30):883-888.
    [82]Hidehiko Kumagai,Yakashi Echigo,Hideyuki Suziku,et al.Enzymatic synthesis ofγ-glutamyl-tyrosine methyl ester from L-glutamine and L-Tyrosine methyl ester with Escherichia coli K-12 γ-glutamyl transpeptidase[J].Agricultural and Biological Chemistry,1989,55(5):1429-1430.
    [83]Hideyuki Suzuki,Shunsuke Izuka,Nobukazu Miyakawa et al.Enzymatic production of theanine,an "umami" component of tea,from glutamine and ethylamine with bacterialγ-glutamyltranspeptidase[J].Enzyme and Microbial Technology,2002(6):884-889.
    [84]Hideyuki Suzuki,Yoko Kajimoto,Hidehiko Kurnagai.Improvement of the bitter taste of amino acids through the transpeptidation reaction of bacterial γ-Glutamyl-transpeptidase[J].Journal of Agricultural and Food Chemistry,2002,50:313-318.
    [84]Novagen.pET System Manual[M].11th Edition.2006.
    [1]Lindquist S,Craig NE,The heat shock protein,[J]Annu Rev Genet,1998,22:671-677.
    [2]Ying CL.Zhen Z,et al,Impact of HSP70 on immunity for cancer and its gene expression modulation,China Cancer,2004,13(7):430-433.
    [3]张晓鹏,HSP70的生物学功能新进展,国外医学卫生学分册,2002,29(6):337-343.
    [4]Tanpakushi KK,Regulation of apoptosis by molecular chaperones,2004,49(7):1010-1013.
    [5]Morimoto RI,et al,Stress proteins in biology and medicine,CSHL-Press,1990,1-36.
    [6]张玉秀,柴团耀.HSP70分子伴侣系统研究进展,生物化学与分子生物物理研究进展.1999.26(6):554-558.
    [7]Burdon R H.Heat shock proteins in relation to medicine[J].Mol Aspects Med,1993,14(2):83-165.
    [8]张君岚,黄善生,凌亦凌.不同家族热休克蛋白的生理功能及病理意义[J].中国病理生理杂志,1998.14(5):549-553.
    [9]Ellis R J.The molecular chaperone concept[J].Semin Cell Biol,1990,1(1):1-9.
    [10]Mc Cully J D,Myremel T,LotzMM.The rapid expression of myocardial hsp70mRNA and the heat shock 70KD protein can beachieved after only a brief period of retrograde hypertherm icperfusion[J].Mol Cell Cardiol,1995,27(3):873.
    [11]Lee J E,Kim YJ,Kim J Y,et al.The 70 kDa heat shock protein suppresses matrix metalloproteinases in astrocytes[J].Neuroreport,2004,15(3):499-502.
    [12]邹伟,史榕荇,于学平.针刺对急性高血压脑出血大鼠HSP70mRNA表达的调整作用[J].中医药学报,2003,31(1):46-49.
    [13]Yang WL,Nair D G,Makizumi R,et al.Heat shock protein 70 is induced in mouse human colon tumor xenografts after sublethal radiofrequency ablation[J].Ann Surg Oncol,2004,11(4):399-406.
    [14]Gabai V L,Meriin A B,Mosser D D,et al.Hsp70 prevents activation of stress kinases.A novel pathway of cellular thermotolerance[J].Biol Chem,1997,272 (29):18033-18037.
    [15]郑磊,颜晓慧.热应激时热休克蛋白70及其细胞保护作用[J].国外医学-卫生学分册,1999,(26)4:209-212.
    [16]Sreedhar A S,Pardhasaradhi B V,Begum Z,et al.Lack of heat shock response triggers programmed cell death in a rat histiocytic cell line[J].FEBS Lett,1999,456(2):339-342.
    [17]Bernelli-Zazzera A,Cairo G,Schiaffonati L,et al.Stress proteins and reperfusion stress in the liver[J].Ann N YAcad Sci,1992,663:120-124.
    [18]Scarim A L,Heitmeier M R,Corbett J A.Heat shock inhibits cytokine-induced nitric oxide synthase expression by rat and human islets[J].Endocrinology,1998,139(12):5050-5057.
    [19]Mehlen P,Kertz R C,Preville X,et al.Human HSP27,Drosophila HSP27 and human alpha B-crystallin expression-mediate dincrease in gultathione is essential for the protective activity of these proteins against TNF alpha-induced celt death.[J].EMBO,J,1996,15:2695-2706.
    [20]Cao Y,Ohwatari N,Matsumoto T,et al.TGF-betal mediates 70-KDaheat shock protein induction duetoul traviolet irradiation in human skin fibroblasts[J].Pfl Ugers-Arch,1999,438(3):239-244.
    [21]Xiao C,Chen S,Yuan M,et al.Expression of the 60kDa and 71kDa heat shock proteins and presence of antibodies against the 71kDa heat shock protein in pediatric patients with immune thrombocytopenic purpura[J].BMC Blood Disord,2004,4(1):1-10.
    [22]Hartl F.U.and Hayer-Hartl M.Molecular chaperones in the cytosol:from nascent chain to folded protein.Science,2002,295,1852-1858.
    [23]Wegele H.,Muller L.and Buchner J.HSP70 and HSP90-a relay team for protein folding.Rev.Physiol.Biochem.Pharmacol,2004,151.1-44.
    [24]Pratt W.B.and Toft D.O.Regulation of signaling protein function and trafficking by the HSP90/HSP70 based chaperone machinery,.Exp.Biol.Med.(Maywood),2003,228,111-133.
    [25]Rutherford S.L.and Lindquist S.HSP90 as a capacitor for morphological evolution.Nature,1998,396,336-342.
    [26]周纯.热休克蛋白90与肿瘤,国外医学肿瘤学分册,1997,24,257-259.
    [27]Xu W.,Mimnaugh E.G.et al.HSP90,notGrp94,regulates the intracellular trafficking and stability of nascent ErbB2.Cell Stress Chaperones,2002,7,91-96.
    [28]Evan G.I.and Vousden K.H.Roliferation,cell cycle and apoptosis in cancer.Nature,2001,6835,342-348.
    [29]崔云.热休克蛋白90抑制剂研究进展,国外医学肿瘤学分册,2005.32.86-88.
    [30]Yanaaguchi K,Shirakabe K,Shibuya H et al.Identification of a member of the MAPKKK family as a potential mediator of TGF-β signal transduction.Science,1995,270(5244):2008-2011.
    [31]Irie T,Muta T,Takeshige K.TAK1 mediates an activation signal from toll-like receptor to nuclear factor-UB in lipopolysaccharide-stimulated macrophages.FEBS Lett,2000,467(467):160-164.
    [32]Edlund S,Bu S,Schuster N,et al.Transforming growth factor-β1 induced apoptosis of prostate cancer cells involves smad 7-dependent activation of p38 by TGF-β-activated kinase1 and mitogen-activated protein kinase kinase3.MBC,2003,14(2):529-544.
    [33]Shirakabe K,Yamaguchi K,Shibuya J,et al.TAK1 mediates the ceramide signaling to stress-activated protein kinase/c-Jun N-terminal kinase.J Biol Chem,1997,272(13):8141-8144.
    [34]Shibuya H,Yamaguchi K,and Shirakabe K,et al.TAB1:an activator of the TAK1MAPKKK in TGF-β signal transduction.Science,1996,272(2):1179-1182.
    [35]Sakurai H,Miyoshi H,Mizukami J,et al.Phosphorylation dependent activation of TAK1 mitogen-activated protein kinase kinase kinase by TAB1.FEBS Letters,2000,474(23):141-145.
    [36]Komatsu Y,Shibuya H,Takeda N.Targeted disruption of the Tabl gene causes embryonic lethality and defects in cardiovascular and lung morphogenesis.Mech Dev,2002,119(2):239-249.
    [37]Ge B,Xiong Xin-sheng,Jing Q,et al.TAB1 beta,a novel splicing variant of TAB1 that interacts with p38 alpha but not TAK1. J Biol Chem, 2003, 278(3): 2286-2293.
    [38] Hanada M, Ninomiya-Tsuji J, Komaki K, et al. Regulation of the TAK1 signaling pathway by protein phosphatase 2C. J Biol Chem, 2001, 276(8):5753-5759.
    [39] Takaesu G, Kishida S, Hiyama A, et al. TAB2, a novel adaptor protein, mediates activation of TAK1 by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol Cell, 2000, 5(4): 649-658.
    [40] Kimura N. Matsuo Ritsuko, Shibuya H, et al. BMP2-induced apoptosis is mediated by activation of the TAK1-p38 kinase pathway that is negatively regulated by smad6. J Biol Chem, 2000, 275(23): 17647-17652.
    [41] Ninomiya-Tsuji J, Kishimoto K, Hiyama A. et al. The kinase TAK1 can activate the NIK-IκB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature, 1999, 398(6724):252-256.
    
    [42] Baeuerle PA. Baltimore D. NF-kappa B: ten years after. Cell, 1996. 87(1):13-20.
    [43] Sakurai H, Miyosh H. Functional interactions of transforming growth factorP-activated kinase 1 with IκB kinases to stimulate NF-kB activation. J Biol Chem, 1999,274(15):10641-10648.
    [44] Widmann C, Gibson S. Jarpe MB, et al. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev, 1999, 79(1): 143-180.
    [45] Takatsu Y, Nakamura M, Stapleton M. TAK1 participates in c-Jun N-Terminal kinase signaling during drosophila development. Molecular and Cellular Biology, 2000, 20(9): 3015-3026.
    
    [46] Lee J, Mira-Arbibe L, Ulevitch RJ. TAK1 regulates multiple protein kinase cascades activated by bacterial lipopolysaccharide. J Leukoc Biol, 2000, 68(6): 909-915.
    
    [47] Edlund S, Bu S, Schuster N, et al. Transforming growth factor-β1-induced apoptosis of prostate cancer cells involves smad7-dependent activation of p38 by TGF-β1 activated kinasel and mitogen activated protein kinase kinase3. MBC, 2003, 14(2): 529-544.
    
    [48] Sakurai H, Miyoshi H, Toriumi W, et al. Functional interactions of transforming growth factor-activated kinase 1 with IκB kinase to stimulate NF-κB activation. J Biol Chem, 1999, 274(15): 10641-10648.
    [49] Sakurai H, Shigemori N, Hasegawa K. TGF-P-activated kinasel stimulates NF-KB-inducing kinase-independent mechanism. Biochem Biophys Res Commun, 1998, 243(2): 545-549.
    [50] Veraia IM, Stevenson JK, Schwarz EM, et al. Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation. Genes Dev, 1995, 9(22):2723-2735.
    [51] Zhang D, Gaussin V, Taffet GE. et al. TAK1 is activated in the myocardium after pressure overload and is sufficient to provoke heart failure in transgenic mice. Nat Med, 2000, 6(5): 556-563.
    [52] Ono K, Ohtomo T, Ninomiya-Tsuji J, et al. A dominant negative TAK1 inhibits cellular fribrotic responses induced by TGF-β. Biochemical and Biophysical Res Communic, 2003, 307(2): 332-337.
    [53] Park HS, Cho SG Kim CK. Hwang HS. Heat Shock Protein Hsp72 Is a Negative Regulator of Apoptosis Signal-Regulating Kinase 1[J]. Mol Cell Biol, 2002, 22(22):7721-7730.
    [54] Dinarello CA. Biologic basis for interleukin-1 in disease. Blood, 1996, 87:2095-2147.
    [55] Hsu HY, Wu HL, Tan SK et al. Geldanamycin interferes with the 90-kDa heat shock protein, affecting lipopolysaccharide-mediated interleukin-1 expression and apoptosis within macrophages. Mol Pharmacol, 2007, 71:344-56.
    [56] Wax S, Piecyk M, Maritim B, Anderson P. Geldanamycin inhibits the production of inflammatory cytokines in activated macrophages by reducing the stability and translation of cytokine transcripts. Arthritis Rheum, 2003,48:541-50.
    [57] Broemer M, Krappmann D, Scheidereit C. Requirement of Hsp90 activity for IkappaB kinase (IKK) biosynthesis and for constitutive and inducible IKK and NF-kappaB activation.Oncogene, 2004, 23:5378-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700