旱稻抗旱解剖结构及其生理特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了研究旱稻品种的抗旱特性,选用旱稻品种、抗旱性强水稻品种和抗旱性弱水稻品种为材料,试验于2006~2007年在吉林农业大学试验田进行,在旱作条件下,对三种抗旱性不同的品种进行了解剖结构、光合生理特性、抗氧化系统及渗透调节等方面进行研究。综合研究了旱稻品种抗旱的特性,为进一步利用旱稻抗旱资源和发展旱稻生产提供一定理论基础。主要结果如下:
     1.旱作条件下,旱稻品种产量最高,平均为5458kg·hm~(-2);而抗旱性强水稻品种产量次之,平均为4400kg·hm~(-2);抗旱性弱水稻品种产量最低,平均为3355kg·hm~(-2)。
     2.开花-灌浆期旱稻品种根后生木质部导管的个数多,导管、中柱面积大,通气组织不发达,而水稻品种通气组织发达;旱稻品种叶片主脉维管束导管数量少,小维管束导管数量较多,总的叶中脉内所含维管束数量及束内导管直径大于水稻品种;旱稻品种与水稻品种的气腔数量相差不大,但旱稻品种气腔面积小,角质层的厚度增大明显;旱稻品种叶片气孔的长度和宽度大,气孔的密度小。这有利于旱稻品种叶片进行气体交换,增加体内水分的运输,减少蒸腾失水,增强抗旱性。
     3.旱稻品种在不同生育期叶片净光合速率、气孔导度和叶绿素含量均比水稻品种高,净光合速率与气孔导度呈显著正相关变化,与蒸腾速率和胞间CO_2浓度呈负相关变化,与水分利用效率呈极显著正相关。表现为净光合速率较高时胞间CO_2浓度却较低,而气孔导度并不低,说明旱稻品种同化CO_2的能力更强,同时也说明,旱稻品种叶片净光合速率的提高,存在非气孔因素限制。净光合速率、表观叶肉导度与产量呈显著正相关,成熟期相关系数最大(r=0.8965~(**),r=0.9962~(**))。在开花期、成熟期蒸腾速率与产量呈显著负相关(r=-0.6637~*,r=-0.8284~(**)),水分利用效率与产量呈显极著正相关(r=0.8904~(**),r=0.8986~(**)),说明旱作条件下开花期、成熟期是产量形成的重要时期。在旱作条件下,旱稻减少水分蒸腾,提高水分利用效率高,维持较高的光合生产能力,这是其适应干旱环境维持高产的生理基础。
     开花-灌浆期旱稻、水稻品种叶片净光合速率与气孔导度的日变化基本一致,净光合速率峰值出现在上午10∶00左右,12∶00时下降,下午14∶00略有回升后持续下降,呈现日下降变化,有光合“午休”现象;蒸腾速率呈单峰曲线,峰值出现在中午12∶00,主要是水分亏缺引起的气孔因素和非气孔因素的影响导致。旱稻品种光合“午休”程度较轻,维持较高的净光合速率。
     4.与水稻相比,在各个生育期旱稻品种均表现为叶片内丙二醛含量、细胞膜透性较低,超氧化物酶(SOD)活性、过氧化氢酶(CAT)活性和过氧化物酶(POD)活性高;旱稻、水稻品种从苗期到成熟期,SOD活性变化呈先升高,再下降的趋势,CAT活性和POD活性变化趋势与SOD基本一致。在过氧化物酶同工酶电泳图谱中,在生育后期,旱稻品种出现小分子量的POD同工酶谱带。旱稻品种中较高的抗氧化酶活性及高含量的小分子POD同工酶,可以减缓叶片衰老的速度,从而维持高水平的光合作用。
     5.旱稻品种叶片内可溶性蛋白含量高于水稻品种,旱稻品种可以通过合成可溶性蛋白维持正常代谢活动,适应干旱胁迫,旱稻品种在电泳图谱出现许多小分子的蛋白质谱带,小分子的蛋白质可以调节细胞的渗透性吸水,提高抗旱性;旱稻品种硝酸还原酶活性高于水稻品种,在苗期硝酸还原酶活性最高,但随着生育进程,硝酸还原酶活性下降幅度大,苗期、灌浆期叶片硝酸还原酶活性与可溶性蛋含量呈显著正相关(r=0.6409~*,r=0.5817~*)。
     6.旱稻品种在整个生育时期均表现脯氨酸含量高,这有利于提高旱稻品种的抗旱性,其含量的大小也反映了不同品种抗旱性的差异。旱稻品种苗期到灌浆期叶片内可溶性糖含量均高于水稻品种,成熟期低于水稻品种,可能在生育前期可溶性糖参与渗透调节。旱稻品种在旱作条件下,生育前期通过合成适量的脱落酸来适应干旱的胁迫,少量的脱落酸调节气孔开关,诱导大量渗透调节物质合成,提高植物抗旱能力,而成熟期旱稻体内脱落酸含量少,减缓衰老。抗旱性弱的水稻品种生育前期体内合成的脱落酸量少,抗旱性差,而成熟期体内脱落酸含量高,加快叶片衰老。
     通过对不同品种解剖结构以及生理生化指标和产量的相关分析,说明旱稻品种角质层厚度大,光合速率高,蒸腾作用弱,水分利用效率高,具有较高的光合生产能力。此外抗旱性强的水稻品种也适合旱作,可以作为旱稻品种选育的种质资源。叶片净光合速率、硝酸还原酶活性、抗氧化酶活性、POD同工酶、抗旱蛋白、ABA含量和脯氨酸含量可作为筛选抗旱高产旱稻品种的生理生化指标。
In order to research the drought resistance of upland rice, upland rice varieties, rice varieties withstrong drought resistance and rice varieties with weak drought resistance were used as experimentalmaterials, carring out in experimental plot of Jilin Agricultural University between 2006 and 2007.Anatomic structure、photosynthesis physiological nature、antioxygen system and osmoregulation of rice andupland rice varieties were studied under dry cultivation conditions. The characteristics of drought resistanceof upland rice varieties were systematically studied, which offered theoretical bases to utilize furtheranti-drought resources and develop production of upland rice. The experimental results were as followed:
     1. Under dry cultivation condition, the average yield of upland rice varieties was the highest(5458kg·hm~(-2)); the rice varieties with strong drought resistance was the secondary (4400kg·hm~(-2)), and therice varieties with weak drought resistance was the lowest (3355kg·hm~(-2)).
     2. During the tilling-flowering stage, there were many vessels in deutoxylem of roots, the area ofvessels and stelae were large and aerenchyma was undeveloped in upland rice varieties, but aerenchyma ofrice varieties was developed; The amount of vessels in principal vein vascular of leaf in upland rice varietieswas decreasing, but that of small vessels was increasing and the amount of vascular and total median veindiameter of inner vessels in upland rice varieties were larger than in rice varieties. Upland rice varietiesdidn't have a big difference from rice varieties in the amount of gas cavity with small area and obviouslyaugmented cuticle thickness. Big length and width but small density of stomata in leaf in upland ricevarieties contribute to exchange gas and increase transportation of water and decrease transpiration andthus enhance the drought resistance.
     3. Net photosynthetic rate, stomatal conductance and content of chlorophyl of leaf in upland ricevarieties during different periods of duration were all higher than in rice varieties. Net Pn showedsignificantly positive correlation with Gs and significantly negative correlation with transpiration rate、intercellural CO_2 concentration and significantly positive correlation with water use efficiency. When netPn and Gs were high and Ci was lower, which indicate that it was stronger in assimilation CO_2 in uplandrice varieties and continually increasing Pn could also have limited factors from non-stomata in leaves. Theapparent mesophyll conductance showed significantly positive correlation with the yield and correlationcoefficient was the highest (r=0.8965~(**), r=0.9962~(**)) during maturation period. Transpiration rate showedsignificantly negative correlation with the yield (r=0.-6637~(**), r=0.-8284~(**)) during the flowering andmaturation stage. The water use efficiency at flowering stage and maturation stage also showed verysignificantly positive correlation with the yield(r=0.8904~(**), r=0.8986~(**)) and this correlation illustrate that the flowering stage and maturation stage are important stages for yield formation of upland rice under drycultivation condition. Reduction transpiration of water, enhancement the water use efficiency andmaintenance of higher photosynthetic productivity of upland rice varieties under dry cultivation conditionadapte them to drought and became physiological basis of high yield.
     Daily variation of net Pn and Gs of upland rice varieties and rice varieties was consistent duringfilling-flowering stage, which all showed change of daily depression and photosynthesis midday depressionunder dry cultivation condition. The maximum value of net Pn were measured at 10 am and 12 am declinedand net Pn a little increased in the afternoon14, soon began to decline. Daily variation of Tr showedunimodal curve and peak value occurred at 12 am. Midday depression of photosynthesis had happened wascaused by the effect of water deficit on stomatal and other factors. Upland rice varieties had slight degree ofphotosynthesis midday depression and net Pn was maintained to be higher value.
     4. The content of malonaldehyde and membrane permeability of leaf in upland rice varieties was lowerthan rice varieties. The activities of superoxide enzyme、catalase and peroxidase were all higher than ricevarieties. The change trend of activity of SOD was firstly increasing and then decreasing and the trend ofCAT、POD were basically consistent with that of SOD. The band of POD isoenzymes with smallmolecular weight in upland rice varieties was presented in POD isoenzymes electrophoresis pattern at latestage. The leaves senescence of upland rice were slower than rice, because upland rice have highantioxidase activities and more POD isoenzymes of small molecular weight which make photosynthesissmoothly.
     5. The content of soluble proteins in upland rice varieties was higher than in rice varieties showed thatupland rice varieties maintained normal metabolism and adapted them to drought through synthesizingsoluble proteins under drought stress. The band of many soluble proteins with small molecular weight inupland rice varieties was presented in electrophoresis pattern and these proteins could adjust cell toosmotical absorption of water and make drought resistance increasing. The activity of nitrate reductase inupland rice varieties was higher than in rice varieties. At the seedling stage the activity of enzyme was thehighest but had a big decrease accompanying with the process of growth. The activity of nitrate reductaseshowed positive correlation with the content of soluble proteins at seedling stage and filling stage(r=0.6409~*, r=0.5817~*).
     6. The content of proline in upland rice varieties were higher than in rice varieties during the wholeperiod of duration, High content of proline contributed to increase drought resistance of varieties, whichthe content of proline reflected the differences in drought resistance among varieties. The solublesaccharides content of leaves was higher than rice varieties from seedling stage to filling stage, but it waslower at maturation stage. Soluble saccharides in leaf might participate in osmoregulation at early periodof duration. The synthesis of opportune abscisic acids adapted upland rice varieties to drought stress and increase drought resistance of plants by which regulated stomata on-off and induced a large amount ofsynthesis of regulatory substances under dry cultivation condition at early period of duration. However,the content of abscisic acid became decreased and slow down insenecence during maturation period. Therice varieties synthesized small amount of abscisic acid had weak drought resistance at early period ofduration, but high content of abscisic acid speeded up insencence at maturation stage.
     Through analysing anatomic structure、yield and physiological and biochemical indexes, the resultsshow that thick cuticle of upland rice and small stoma density can diminish transpiration, increase WUE,and maintenance higher photosynthesis productivity. Some rice varieties with strong drought resistancecould be suitable for dry cultivation and become germplasm resource for selection of upland rice varieties.In addition, net photosynthetic rate, the activity of nitrate reductase and antioxidase, POD isoenzymes,anti-drought proteins and the content of abscisic acid and proline could be used as physiological andbiochemical indexes for selecting upland rice varieties with high-yield and drought resistance.
引文
[1]刘洪.中国统计年鉴[M].北京:中国统计出版社.1999,386-387.
    [2]杨守仁.水稻高产栽培及高产育种论丛[M].北京:农业出版社.1988,46-56.
    [3]山仑.节水农业的研究与实施[J].北京:中国科学院院刊,1996,6:430-435.
    [4]王一凡.北方节水稻作[M].沈阳:辽宁科学技术出版社,2000,6
    [5]梁光高.水稻生态学[M].北京:农业出版社,1983.
    [6]丁颖.中国水稻栽培学[M].北京:农业出版社,1961.
    [7]王岳钧.直播早稻亩产450公斤配套技术[J].中国稻米,1996,5:13-15.
    [8]涂以芳,林贤青.晚稻旱直播亩产超400公斤的肥水管理[J].中国稻米.1996,3:25-26.
    [9]杨建昌,朱庆森.土壤水分对水稻产量与生理特性的影响[J].作物学报,1995,21(1):110-114.
    [10]SandraL Posttel.Waterforfoodproduction:Willtherebeenough in2025?[J].Bioscience, 1998,8:629-637.
    [11]何庆富,徐正焕.水稻免耕直播栽培技术探析[J].中国稻米,2001,3:24-25。
    [12]许越兰,陈印军.黄淮海平原粮食生产特点及增产能力分析[J].作物杂志,1998(4):1-5.
    [13]张燕之.北方水稻旱作栽培技术[M].金盾出版社,2003,6.142-144.
    [14]王贵才,李明生,李朝峰.吉林省早稻发展的思路[J].垦殖与稻作,2006(6):75-77.
    [15]袁玉岫.吉林统计年鉴[M].北京:中国统计出版社,2000,174-180.
    [16]王永锐.水稻生理育种[M].北京:科学技术文献出版社,1995,460-505.
    [17]彭永康.陆稻和水稻苗期根系的比较研究[J].植物学通报,1989,69(1):33-36.
    [18]凌祖铭,李自超.水、陆稻根部性状研究[J].中国农业大学学报,2002,7(3):7-11.
    [19]王锋尖,黄英金,李德荣,等.水稻形态解剖性状间的相关分析研究[J].江西农业大学学报,2004,26(4):477-484.
    [20]许明子,全雪丽,石铁源,等.不同水稻品种穗颈维管束性状及其相关研究[J].延边大学农学学报,2000,22(2):81-85.
    [21]林鉴钊,陶春娘,何礼健,等.新式旱育秧苗根的解剖学观察[J].广西农业大学学报,1998,17(1):15-19.
    [22]卢布,周殿玺.稻抗旱机理的研究:早稻水稻根解剖结构比较[J].作物杂志,1994(2):39.
    [23]封克,司将英,汪晓丽,等.不同水分条件下水稻根解剖结构的比较分析[J].植物营养与肥料学报,2006,12(3):346-351.
    [24]潘瑞炽.植物生理学[M].北京:高等教育出版社,2000,56-57,84-86.
    [25]徐克章.植物生理学[M].北京:中国农业出版社,2007,335-339.
    [26]Buttery B.R.and BuzzeH R.I.(赵福洪译)1979.大豆光合作用速率和叶绿素含量之间的关系.光合作用[M].北京:科学出版社,72-75.
    [27]唐树延.大豆光合作用中叶绿素a、b间的能量传递[J].大豆科学,1985,4(3):185-192.
    [28]董钻.叶绿素含量及比叶重与大豆单株生物产量的相关性[J].沈阳农学院学报,1979,(2):7-9.
    [29]W.Louwerse and W,V.D.Zweerde. Photosynthesis ,Transpiration and leaf morphology of phaeolus vulgaris and Zea mays grown at different irradiances in artificial and sun-light[J]. Photosynthetic, 1977, 11(1):11-14.
    [30]孟军,陈温福,徐正进,等,水稻剑叶净光合速率与叶绿素含量的研究初报[[J].沈阳农业大学学报,2001,32(4):247-249.
    [31]徐根娣,蔡妙珍,刘鹏.硼、锰营养对大豆光合特性的影响[J].浙江师范大学学报(自然科学版),2004,27(1):62-65.
    [32]徐惠风,金研铭,徐克章.向日葵叶片叶绿素和比叶重及其产量研究[J].农业系统科学与综合研究.2003,2(19):97-100.
    [33]王继安,宁海龙,李文滨,等.大豆品种间叶绿素含量、RUBP活性、希尔反应活力及其与产量间的关系[J].东北农业大学学报,2004,35(2):129-134.
    [34]武维华.植物生理学[M].北京:科学出版社,2003:123-126.
    [35]王沙生.植物生理学[M].北京:中国林业出版社,1991:364-365.
    [36]王群英,胡昌浩.玉米不同叶位叶片叶绿体超微结构与光合性能的研究[J].植物学报,1988,30(2):146-150.
    [37]周海燕.中国东北科尔沁沙地两种建群植物的抗旱机理[M].植物研究,2002,22(1):51-55.
    [38]张明生,谈锋.水分胁迫下甘薯叶绿素a/b比值的变化及其与抗旱性的关系[J].种子,2001,4:23-25.
    [39]邹春静,韩士杰,徐文铎,等.沙地云杉生态型对干旱胁迫的生理生态响应[J].应用生态学报,2003,14(9):1446-1450.
    [40]Stoskopf N C.Understanding Crop Production.[J].Reston, Virginia: Reston Publishing Company, 1981.1-12.
    [41]许大全.光合速率、光合效率与作物产量[J].生物学通报,1999,34(8):8-10.
    [42]Mann C C. Genetic engineering aim to soup up crop photosynthesis[J].Science, 1999,283:314-316.
    [43]吕燕东,郭晓红.水稻的光合特性与高光效育种[J].黑龙江八一农恳大学学报,2005,17(4):26-30.
    [44]康绍忠,张富仓.土壤水分和CO_2浓度增加对小麦、玉米、棉花蒸散、光合及生长的影响[J].作物学报,1999,25(1):55-63.
    [45]Jeffrey S. Amthor. Perspective on the relative insignifcance of increasing atmospheric CO_2 concentration to Crop yield[J]. Field crops research,1998,58:109-127.
    [46]王建林,于贵瑞,王伯伦,等.北方粳稻光合速率、气孔导度对光强和CO_2浓度的响应[J].植物生态学报,2005,29(1):16-25.
    [47]于海秋,武志海,沈秀瑛,等.水分胁迫下玉米叶片气孔密度、大小及显微结构的变化[J].吉林农业大 学学报,2003,25(3):239-242.
    [48]谷俊涛,刘桂茹,栗雨勤,等.不同抗旱类型小麦品种开花期光合速率与抗旱性的比较研究[J].河北农业大学学报,2001,24(3):1-4.
    [49]黄文江,王纪华.旱作水稻幼穗发育期若干生理特性及节水机理的研究[J].作物学报2002,28(3):411-416.
    [50]张秋平,杨晓光,杨婕,等.不同灌溉处理下旱稻光合生理特征及水分利用效率[J].干旱地区农业研究,2005,23(6):67-72.
    [51]蔡永平,杨其光.水稻水作与旱作对抽穗后剑叶光合特性、衰老及根系活力的影响[J].中国水稻科学,2000,14(4):219-224.
    [52]彭世彰.水稻节水栽培技术[M].北京:水利水电出版社,1997
    [53]谢庚华.稻作科学[M].北京:中国农业出版社,1985
    [54]吴尧鹏(译).水稻的生理生态-水稻译文集之三[M].上海:上海科学技术出版社,1981.
    [55]梁光商.水稻生态学[M].北京:中国农业出版社,198.
    [56]Ritchie J . T. Atmosphere and soil water influences on the plant water balance. Agric. Meteorol [J].1974,14:183-198.
    [57]Dingkuhn M. Net photosynthesis , water use efficiency , leaf water potential and leaf rolling as affected by water deficit in tropical upland rice[J].Aust Journal of Experimental Agriculture ,1989,40 (6) :1171-1181.
    [58]周拾禄.稻作科学技术[M].北京:中国农业出版社,1981.
    [59]杨艳敏,刘小京.早稻夏季地膜覆盖栽培的生态学效应[J].干旱地区农业研究,2000,18(3):50-54.
    [60]许开华,姚毛龙,范丁岳.早稻黑膜覆盖增产机理及栽培技术初探[J].中国稻米,2002(1):25.
    [61]Campbell W H. Nitrate reductase and its role in nitrate assimication in plan [J].Plant Physiol 1988, 74:214-219.
    [62]Schrader, L.E.,G.L.Ritenour, G.L.Eildch,et al.Some characteristics of nitrate reductase from bighter plants[J]. Plant Physiol, 1968(43):930-940.
    [63]Lenard Beevers,Hageman R H.Nitrate reduction in higher plants Ann.Rev[J].Plant Physiol, 1969,20:495-498.
    [64]汤玉玮,林振武,陈敬祥.硝酸还原酶活力与作物耐肥性的相关性及其在生化育种上应用的探讨[J].中国农业科学,1985,18(6):39-45.
    [65]林振武.硝酸还原酶活力与作物耐肥性的研究[J].中国农业科学,1983,(8):37-43.
    [66]李豪喆.大豆叶片硝酸还原酶活力的研究[J].植物生理学通讯,1986,(4):30-32.
    [67]余让才,李明启.高等植物硝酸还原酶活力的光调控[J].植物生理学通讯,1997,33(1):61-65.
    [68]刘丽,甘志军,王宪泽.植物氮代谢硝酸还原酶水平调控机制的研究进展[J].西北植物学报,2004,24(7):1355-1361.
    [69]郭定成.植物生物化学[M].太原:山西教育出版社,1988.310-312.
    [70]阎隆飞.基础生物化学[M].北京:农业出版社,1985.271-272.
    [71]马瑞昌,宋书娟.冰草属牧草硝酸还原酶的活性与其产量营养的关系[J].中国草地,1998,(2):52.
    [72]樊卫国,安华明,刘国琴.养分和水分状况对刺梨树体硝酸还原酶活性与氮素营养的影响[J].果树学报2007,24(2):162-167.
    [73]斯琴巴特尔,吴红英.不同逆境对玉米幼苗根系活力及硝酸还原酶活性的影响[J].干旱地区农业研究,2001,19(2):67-70.
    [74]谢寅峰,沈惠娟.水分胁迫下3种针叶树幼苗抗旱性与硝酸还原酶和超氧化物酶活性的关系[J].浙江林学院学报,2000,17(1):24-27.
    [75]史建国,赵思齐.春小麦幼苗硝酸还原酶活性与品种抗旱性的关系[J].西北师范大学学报,1991,27(1):56-60.
    [76]Deckard E.L.,Bush R.H.,Nitrate Reductase Assays as a Prediction Test for Corsses and Lines in Spring Wheat[J].Crop Science, 1973,18(2):289-293.
    [77]李合生.植物生理学[M].北京:高等教育出版社,2002,399-404.
    [78]上官周平,陈培元.水分胁迫对小麦叶片光合作用的影响及其与抗旱性的关系[J].西北植物学报,1990,(10):1-7.
    [79]Voethberg G S, Sharp R E, Growth of themaize primary root at low water potentials1[J].Plant Physiol, 1991, 96, (4): 1125-1130.
    [80]DelauneyA J, Verma D P S, Proline biosynthesis and osmoregulation in plants[J]. Plant J, 1993, 4 (2) : 215-223.
    [81]王宝山.作物耐盐机理研究进展及提高作物抗盐性的对策[J].植物学报,1997,14(增刊):25-30.
    [82]汤章城.逆境下植物脯氨酸的累积及其可能的意义[J].植物生理学通讯,1984,1:15-21.
    [83]张明生,谢波,谈锋,等.甘薯可溶性蛋白、叶绿素及ATP含量变化与品种抗旱性关系的研究[J].中国农业科学,2003,36(1):13-16.
    [84]王晓琦,沙伟,徐忠文.亚麻幼苗对干旱胁迫的生理响应[J].作物杂志,2005(2):13-16.
    [85]高青海,徐坤,吴燕.茄子砧木品种对低温胁迫的反应[J].中国蔬菜,2005(9):12-15.
    [86]杨文钰,项祖芬,任万君.烯效唑对水稻氮代谢及稻米蛋白质含量的影响[J].中国水稻科学,2005,19(1):63-67.
    [87]冯佰利,高小丽,赵琳.干旱条件下小麦冠层温度及其性状的关联研究[J].生态学杂志,2005,24(5):508-512
    [88]BOWLER C, VANMON T G. Superoxide dismutase and stress tolerance [J].Annu Rev Plant Mol Biol,1992,43:83-116.
    [89]陈少裕.脂膜过氧化对植物细胞的伤害[J].植物生理学通讯,1991,27(2):84-90.
    [90]林永英.水分胁迫对青冈叶片活性氧的伤害[J].福建林学院学报,2002,22(1):1-3.
    [91]毛培利,曹帮华,张明如.干旱胁迫下刺槐保护酶活性的研究[J].内蒙古农业大学学报,2004,25(1):106-108.
    [92]王宝山.生物自由基与植物膜伤害(J).植物生理学通讯,1988,24(2):12-16.
    [93]Dhindsa A S, MutoweW.Drought tolerance in two mosses;Correlated with enzymaticdefense against lipid peroxidation[J]. J Exp Bo t,1981,32:79-91.
    [94]武宝轩,格林·托德.小麦幼苗中过氧化物岐化酶活性与幼苗脱水忍耐力相关性的研究[J],植物学报.1985,27(2):152-160.
    [95]Price A H, Hendry G A. Stress and the role of active oxygen scavengers and protection enzymes in plants subjected to drought[J]. Biochem Soc Trans, 1992, 17: 493.
    [96]Senaratna,T, et al.Desiccation and Free Radical Mediated Changes in Plant Membranes [J].J.EXP.BOT, 1987,38(197): 2005-2014.
    [97]徐世昌,沈秀瑛,顾惠连,等.土壤干旱后玉米叶细胞膜脂过氧化和膜磷脂脱酯化反应及膜超微结构的变化[J].作物学报.1994,20(5):564-569.
    [98]唐连顺,李广敏.水分胁迫下玉米叶肉细胞超微结构的变化及其与膜脂过氧化伤害的关系[J].植物学报.1994,36:43-49.
    [99]Nanarizzo F, Quartacci M F, Izzo R. Lipid changes in maize seedling in responses to field water deficits [J].Botany, 1989,40: 675-680.
    [100]曾福礼,李玉峰.干旱胁迫下小麦叶片微粒体活性氧自由基的产生及其对膜的伤害[J].植物学报,英文版.1997,(39),12:1105-1109.
    [101]李奕松,黄仲青.两系籼型杂交水稻齐穗后光合作用和衰老特性的研究[J].中国水稻科学,2002,16(2):141-145.
    [102]Badger M R. Photosynthetic oxygen exchange [J]. Plant Physiol, 1985, 36:27-53.
    [103]王瑞兰,易俗,王映,等.铀尾矿对水稻种子萌发率及幼苗过氧化氢酶的影响[J].农业环境科学报,2004,23(2):221-223.
    [104]曾富华,吴岳轩,罗泽华,等.活性氧及其清除剂诱导抗病作用与影响膜脂过氧化作用的关系[J].中国农业科学,2000,33(4):103-105.
    [105]Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inze D,Van Breusegem F. Dualaction of the active oxygen species during plant stress responses[J]. Cell Mol Life Sci, 2000, 57(5):779-795.
    [106]O'Kane D, Gill V, Boyd P,Burdon R. Chilling, oxidative stress and antioxidant responses in Arabidopsis thaliana callus[J]. Planta, 1996, 198(3):371-377.
    [107]Nakano Y,Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant & Cell Physiology, 1981, 22(5):867-880.
    [108]Prasad T K. Role of Catalase in Inducing Chilling Tolerance in Pre-Emergent Maize Seedlings[J]. Plant Physiol, 1997, 114(4):1369-1376.
    [109]Gechev T, Willekens H, Montagu M v, Inze D, Camp W v, Toneva V,Minkov I. Different responses of tobacco antioxidant enzymes to light and chilling stress[J]. Journal of Plant Physiology, 2003, 160(5):509-515.
    [110]复丽华,郭继勋.磁场对羊草过氧化物酶的激活效应及同工酶分析[J].应用生态学报,2000,11:699-702.
    [111]杨肇驯,王文宏,谭克辉,等.冬小麦幼苗春化期间过氧化物酶的变化[J].植物生理学报,1981.7(4):311-316.
    [112]慎玫,王彩莲,徐刚,等.辐射对大麦过氧化物酶同工酶谱影响的初步研究[J].遗传,1991,13(1):7-9.
    [113]童哲,崔郁英,王健菊,等.小麦幼根和幼苗中几种同工酶的研究[J].植物学报,1980,22(2):147-150.
    [114]Seandafios,J G. Isozyme in Development and Differentiation[J].Ann Rev Plant Physiol. 1974,25:225-258.
    [115]姬生栋,夏民,李吉学,等.小麦三叶期前后过氧化物酶同工酶的动态研究[J].河南师范大学学报,2000,28:65-68.
    [116]王启明.干旱胁迫对大豆苗期叶片保护酶活性和膜脂过氧化作用的影响[J].农业环境科学学报,2006,25(4):918-921.
    [117]顾继杰,陈富裕,郑荣梁.干旱诱导作物叶片膜损伤和膜脂过氧化的关系[J].兰州大学学报,1996,32(2):90-94.
    [118]熊正英,张志勤.水分胁迫对全生育期早稻SOD活性的影响及其与抗旱性的关系[J].陕西师范大学学报,1996,24(3):7-10.
    [119]王贺正,马均,刘慧远.水稻抗旱性研究现状及展望[J].中国农学通报,2005,21(1):110-113.
    [120]朱杭申 黄丕生.土壤水分胁迫与水稻活性氧代谢[J].南京农业大学学报,1994,17(2):7-11.
    [121]魏炜,赵欣平,吕辉,等.三种抗氧化酶在小麦抗干旱逆境中的作用初探[J].四川大学学报,2003,40(6):1172-1175.
    [122]林植芳,李双顺,林桂株.水稻叶片的衰老与超氧化物歧化酶活性及脂质过氧化的关系.[J]植物学报,1984,26:605-615.
    [123]山仑.旱地农业生理生态基础[M].北京:科学出版社,1998,9.
    [124]熊振民.世界水稻[M].杭州:浙江新华出版社,1989,1-39.
    [125]吴宪章,谈推广水稻直播栽培技术[J].中国农学通报,1996,12.
    [126]郑国.生物显微技术[M],北京:高等教育出版社1993.
    [127]杨孔平,等.水、陆稻在水田、旱地栽培的生态适应性研究I.稻株生育、形态与组织结构的生态适应性[J].北京农业大学学报,1991,17(2):19-29.
    [128]杨建昌,乔纳圣.水分胁迫对水稻叶片气孔频率、气孔开度及脱落酸含量影响.[J]作物学报,1995,21(1):111-114.
    [129]张治安.植物生理学实验指导[M].中国农业科学技术出版社,2004.
    [130]唐启义,冯明光.实用统计分析及其DPS数据处理系统[M].中国农业出版社,1997.
    [131]王天铎.马立望.贺东祥.小麦对水的利用效率的实验研究-单叶与群体测定结果的对比分析[A].中国科学院.中国科学院禹城试验站年报[EC].北京;气象出版社,4-13.
    [132]杜占池,扬宗贵,崔骁勇.草原植物光合生理生态研究[J].中国草地,1999,3:20-27.
    [133]刘玉华,贾志宽,史纪安,等.旱作条件下不同苜蓿品种光合作用的日变化[J].生态学报,2006,26(5):1468-1477.
    [134]翁晓燕,蒋德安,陆庆,等.影响水稻光合午休的因素分析与响应曲面分析[J].生物数学学报,1998,13(2):234-238.
    [135]郑丕尧,蒋钟怀,王经武.夏播“京早七号”玉米叶片叶绿素含量消长规律的研究[J].华北农学报,1988,3(1):21-27.
    [136]Anderson,J.M.,D.T.Goodchild and N.K.Bordman,Composition of the photosystems and chloroplast structure in extreme shade plants[J]. Biochim. Biophys. Acta, 1973, 325: 573-585.
    [137]魏书奎,于继洲,宣有林,等.核桃叶片的叶绿素含量与光合速率关系的研究[J].北京农业科学,1994,12(5):31-33.
    [138]Turner N C Drought resistance and adapation to water deficus in crop plants[A]. Harry Mussall Stress Physiology in Crop Plants[C]. New York: John Willey and Sons 1979. 343-372.
    [139]薛崧,汪沛洪,许大全,等,水分胁迫对冬小麦CO_2同化作用的影响[J].植物学报,1992,18:1-2.
    [140]胡文新,彭少兵,高荣.新株型水稻的光合效率[J].中国农业科学,2005,38(11):2205-2210.
    [141]卢从明,张其德,匡廷云,等.水分胁迫抑制水稻光合作用的机理[J].作物学报19994,20(5),601-606
    [142]崔喜艳.基础生物化学实验方法和技术[M].北京:中国林业出版社,2008.
    [143]刘保国 蔡锡贵.水稻旱种的生理基础研究[J].西南农业大学学报,1993,15(6):477-482.
    [144]Wilcox,J.R.,W.T.Schapaugh,Jr.,R.L.Bemard,R.L. Cooper,W.R.Fehr, and M.H.Niehau. Geneticimprovement of soybeans in the Midwest[J]. Crop Sci, 1979,19:803-805.
    [145]Skriver K,Mundy J. Gene expression in response to abscisic acid and osmotic stress[J]. Plant Cell,1990, 2: 503-512.
    [146]李雪梅,朱长甫,苗以农,等.大豆植株发育过程中不同部位的硝态氮含量和硝酸还原酶活力的变化[J].植物生理学通讯,1993,29(4):263-265.
    [147]李春喜,李友军,谷登斌.不同基因型小麦生育期硝酸还原酶活性的比较[J].麦类作物,1997,17(7):60-63.
    [148]余让才,李明启,范燕萍.高等植物硝酸还原酶的光调控[J].植物生理学通讯,1997,33(1):61-65.
    [149]李秋祝,赵宏伟,魏永霞,等.春玉米不同生育时期干旱对主要生理参数的影响[J].东北农业大学学报,2006,37(1):8-11.
    [150]赵宏伟,李秋祝,魏永霞.不同生育时期干旱对大豆主要生理参数及产量的影响[J].大豆科学,2006,25(3):329-332.
    [151]邹琦.植物生理学实验指导[M].北京:中国农业出版社,2000.
    [152]李合生.植物生理生化实验原理与技术[M].北京:高等教育出版社,2005.
    [153]蒋明义.干旱胁迫与植物膜脂过氧化[M].西北农业大学出版社,1991,19(2):88-93.
    [154]任文伟,罗岫泉,郑师章.不同种源羊草的SOD、POD的活性及丙二醛含量的比较[J].植物生态学报,1997,21(1):77-82.
    [155]王洪春.生物膜结构功能和渗透调节[M].上海:上海科学技术出版社,1987,13-16.
    [156]莫饶,郑成.水分胁迫下稻作幼苗酯酶等同工酶的分析[J].热带作物学报,1999,20(4):32-37.
    [157]谢可军,李阳春,吴天德.10种早熟禾属植物的过氧化物酶同工酶分析[J].中国草地,2003,25:30-33.
    [158]Koehn R K, Hilbish T J.The adaptive importance of genetic variation[J].Am.Sci.1987, 75:134-141.
    [159]Teare Peet. Crop-Water Relation[M].A Wiley Interseienee Publieation. John Wiley&Sons, 1983
    [160]李关荣,何凤发.William H.Outlaw Jr.外源蔗糖促进蚕豆离体表皮上气孔开放的研究[J].西南农业大学学报,2000,22(1):10-13.
    [161]Sun JY, Wang QM, Chen J,et al.Characteristics of Trios Phosphate/Phosphate Translocator formWheat and Its Role in the Distribution of Assimilates[J]. Acta Botanica Sinica,2004,46(3):294-301.
    [162]蒲光兰,周兰英,胡学华,等.土壤干旱胁迫对杏树渗透调节物质的影响[J].北方园艺,2005(2):50-51.
    [163]Blevins R L, et al. Influence of no-tillage on. soil moisture[J]. Agron. J. ,1971,41:796-807.
    [164]Jones O R,Hanser V L. No-tillage effects on infiltration, run off and water conservation on dry land[J]. American Society of Agriculture Engineers,1994,37(2):473- 479.
    [165]孙大业,郭艳林,马力耕.细胞信号转导(第2版)[M].北京:科学出版社,1998:229.
    [166]谭云,叶庆生,李玲.植物抗旱过程中ABA生理作用的研究进展[J].植物学通报,2001,18(2):197-201.
    [167]刘丹,姜中珠,陈祥伟.水分胁迫下脱落酸的产生、作用机制及应用研究进展[J].东北林业大学学报,2003,31(1):34-38.
    [168]权密,施和平,李玲.脱落酸诱导气孔关闭的信号转导研究[J].植物学通报,2003,20(6):664-670.
    [169]刘璞,陈珈.植物激素脱落酸的信号转导[J].植物生理学通讯,2000,36(2):165-170.
    [170]余光辉,李玲,曾福华.水分胁迫的基因表达和信号转导[J].亚热带植物科学,2002,31(1):57-62.
    [171]姜孝成,周广洽 陈良碧,等.开花灌浆期干旱胁迫对水、早稻细胞膜透性和产量性状的影响[J].Crop Research,1993,(3):4-6.
    [172]Zhang J,Tardieu F.Relative contribution of apices and mature tissues to ABA synthesis in drought maize root systems ,Plant and Cell physiology.
    [173]张承烈,周瑞莲.芦苇耐脱水能力的生理生态学分析[J].植物生态学与地植物学学报,1992,16(4):311-316.
    [174]丁文江,海淑珍,蒋尤泉.七种禾本科牧草耐旱性状的研究[J].草业科学,1991,(2):41-43.
    [175]丁文江,海淑珍,徐柱,等.牧草种质资源抗旱性鉴定方法的初步研究[J].草业科学,1992,(5):57-60.
    [176]林永英.水分胁迫对青冈叶片活性氧的伤害[J].福建林学院学报,2002,22(1):1-3.
    [177]毛培利,曹帮华,张明如.干旱胁迫下刺槐保护酶活性的研究[J].内蒙古农业大学学报,2004,25(1):106-108.
    [178]冀宪领,盖英萍,牟志美,等.干旱胁迫对桑树生理生化特性的影响[J].蚕业科学,2004,30(2):117-122.
    [179]王邦锡,孙莉,黄久常.渗透胁迫引起的膜损伤与膜脂过氧化和某些自由基的关系[J].中国科学(B辑),1992,4:364-368.
    [180]李锦树,王洪春,王文英,等.干旱对玉米叶片细胞透性及膜脂的影响[J].植物生理学报,1983,9:223-229.
    [181]Hsiao T C. Plant responses to water stress[J]. Annu Rev Plant Physiol, 1973, 24: 519.
    [182]杨书运,严平,梅雪英.水分胁迫对冬小麦抗性物质可溶性糖与脯氨酸的影响[J].中国农学通报,2007,23(12):229-233.
    [183]Wang X C,Ren H Y,Lou C H.Signal transduction among the plant root and shot in drought condition[J]. Plant Physiology Communication, 1992,28(6):397-402.
    [184]J,Liang J S,Zhang J H,Wong M H.How do roots control xylem sap ABA concentration in response to soil drying[J]. Plant Cell Physiolog. 1997,38(1): 10-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700