ATP敏感性钾通道对胶质瘤细胞增殖调控机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景神经胶质瘤是颅内常见恶性肿瘤,国际流行病学统计资料显示,脑胶质瘤的发病率居各种肿瘤的第9位;死亡率居第2位。具有发病率、复发率、死亡率高和治愈率低的特点,其预后极差。提高脑胶质瘤的综合治疗效果是国内外医学界长期以来努力探索的课题之一,迄今为止现代医学尚未找到令人十分满意的根治方法。因此,研究神经胶质瘤的发生发展机制,寻求新的治疗靶点已成为亟待解决的问题。
     离子通道的活动是细胞增殖存活的基础之一,其参与电信号的传导、肌肉收缩、激素分泌、免疫调节、细胞周期和代谢等生物活动过程,并与诸多病理过程密切相关。离子通道与恶性肿瘤的相关性研究正日益受到重视。大量的离子通道存在于各个类型的肿瘤细胞中,某些特定离子通道可调控肿瘤细胞的膜电压和Ca~(2+)信号,调节胞质内离子浓度、pH和细胞体积,参与信号转导途径之间相互作用,调控肿瘤细胞的增殖和/或凋亡,是维持肿瘤细胞内环境稳定的重要因素。
     离子通道尤其是钾离子通道在恶性肿瘤的增殖及细胞周期的调节中发挥关键作用。然而,钾通道在此过程中的确切角色和具体的作用机制尚不明确。ATP敏感性钾通道(K_(ATP)通道)是一种重要的钾离子通道,其广泛分布于全身各个组织器官,如脑垂体、心肌、平滑肌、骨骼肌和胰腺的β细胞,参与了多种细胞功能的调控,同时也涉及神经元再生、死亡及细胞周期调控等过程。近年来,K_(ATP)通道在恶性肿瘤中的作用逐渐引起人们的关注。研究发现,K_(ATP)通道在某些恶性肿瘤中呈高表达,可影响抗脑肿瘤药物的血脑屏障通过率,并参与膀胱癌细胞的增殖调控。尽管K_(ATP)通道在肿瘤调控中的具体作用机制及信号转导通路尚不明确,但K_(ATP)通道以其在体内广泛性分布、在多种恶性肿瘤组织中高频率表达、可调控肿瘤细胞周期进展与细胞增殖的特点,已经成为无论是从基因水平还是蛋白水平的、极具价值的恶性肿瘤诊治新靶点。
     胶质瘤细胞的增殖受多条信号转导通路的调节,Ras/MAPK(mitogenactivated protein kinase)信号通路是其中最为重要的信号通路之一。ERK作为MAPK通路中介导细胞存活和增殖的重要分子,在肿瘤增殖过程中起到重要作用。因此,在研究K_(ATP)通道调控胶质瘤细胞增殖过程的分子机制时,我们首选ERK通路。
     本研究聚焦于K_(ATP)通道对胶质瘤细胞增殖调控的作用机制,分析K_(ATP)通道的功能改变与胶质瘤细胞增殖的关系,并探讨其调控胶质瘤细胞增殖的分子机制,为阐明K_(ATP)通道对肿瘤细胞的增殖调控机制提供新的理论基础,并为胶质瘤的治疗提供新的靶标。对开展以离子通道为靶点治疗神经胶质瘤提供重要的理论依据。
     目的以ATP敏感性钾通道(K_(ATP)通道)对胶质瘤细胞增殖的调控作用为切入点,从K_(ATP)通道的电生理学和分子生物学特性两方面入手,采用RNAi、免疫细胞化学、免疫印记、流式细胞术、激光共聚焦等技术,通过体内外实验,分析K_(ATP)通道的功能改变与胶质瘤细胞增殖的关系,并探讨其调控胶质瘤细胞增殖的分子机制,为阐明神经胶质瘤细胞增殖机制提供新的线索,为神经胶质瘤临床治疗提供新的治疗靶点。
     方法将胶质瘤细胞株U87与U251置于37℃培养箱内培养(5%CO_2、95%空气),分别用K_(ATP)通道的激动剂二氮嗪(100 uM),K_(ATP)通道的阻断剂甲糖宁(100 uM)或DMSO处理细胞;或MEK1的阻断剂U0126预处理30分钟后,再分别给予K_(ATP)通道的阻断剂甲糖宁及K_(ATP)通道的激动剂二氮嗪;或采用分子生物学的方法在胶质瘤细胞中过表达或干扰K_(ATP)通道。运用免疫细胞化学的方法观察K_(ATP)通道在细胞中的表达情况,运用MTT法及流式细胞术比较细胞的增殖情况;运用免疫印记方法检测K_(ATP)通道及ERK激酶在不同处理组中表达水平的差异。运用裸鼠成瘤技术观察K_(ATP)通道的活性改变对胶质瘤细胞在体内增殖情况的影响。运用激光共聚焦技术观察K_(ATP)通道的活性改变对细胞膜电位及胞内钙浓度的影响。
     结果数据表明,与正常的星形胶质细胞相比,在患者胶质瘤组织及胶质瘤细胞株中KATP通道均呈高表达(p<0.01)。我们的实验还发现,K_(ATP)通道的活性改变可影响胶质瘤增殖:过表达K_(ATP)通道或激活K_(ATP)通道均可促进胶质瘤细胞的增殖(过表达组增殖率为11 8.33±3.21%,对照组增殖率为100±1.22%;第六天激动剂组U-87与U251增殖率分别为1393.66±30.36%,1567.40±34.36%;对照组增殖率分别为1051.16±67.96%,1163.54±115.49%);使用RNAi技术降低K_(ATP)通道表达或抑制K_(ATP)通道活性均可抑制胶质瘤细胞的增殖(RNA干扰组相较于对照组,细胞的数目减少了75.48%~81.44%;第六天U-87与U251阻断剂组增殖率分别为889.08±27.76%,922.10±10.46%;对照组增殖率分别为1051.16±67.96%,1163.54±115.49%)(p<0.01)。同时在在体成瘤实验中也得到相同的结果(U87细胞的成瘤实验中,阻断剂组、激动剂组及对照组的肿瘤重量分别为0.30±0.09g,0.93±0.21g,0.59±0.13g;在U251细胞的成瘤实验中,阻断剂组、激动剂组及对照组的肿瘤重量分别为0.32±0.05g,1.01±0.22g,0.62±0.16g)(p<0.01)。流式细胞术结果显示,K_(ATP)通道阻断剂可将胶质瘤细胞的细胞周期阻滞在G0/G1期进而抑制胶质瘤细胞的增殖(U87细胞的流式细胞术结果显示:阻断剂组、激动剂组及对照组G0/G1期的百分比分别为63.71±1.56%,49.7±1.27%,56.96±3.34%;S期的百分比为1.96±0.16%,12.91±0.70%,6.21±1.91%;U251细胞的流式细胞术结果显示:阻断剂组、激动剂组及对照组G0/G1期的百分比分别为63.15±1.67%,50.71±1.30%,58.85±1.86%;S期的百分比为1.68±0.27%,13.12±0.31%,9.24±1.05%)。上述结果证明了K_(ATP)通道的确参与了胶质瘤细胞增殖过程的调节。
     为了探讨K_(ATP)通道调控胶质瘤细胞增殖过程的分子机制,我们选择了Ras/MAPK(mitogen activated protein kinase)信号通路ERK激酶作为研究的靶点。我们的实验结果表明,K_(ATP)通道可以通过影响ERK激酶的活性进而调控胶质瘤细胞的增殖:过表达K_(ATP)通道或激活K_(ATP)通道可以增加ERK的活性;使用RNAi技术降低K_(ATP)通道表达或抑制K_(ATP)通道活性均可降低ERK活性(p<0.01)。同时,ERK激酶的阻断剂(U0126)可以阻断K_(ATP)通道对胶质瘤细胞增殖的促进作用,而ERK的结构性激活形式(constitutively activated,CA)可以逆转K_(ATP)通道阻断剂对胶质瘤细胞增殖的抑制作用(过表达CA组的细胞数目为对照组的110.99%)(p<0.01)。这些结果表明,ERK激酶作为下游分子参与了K_(ATP)通道对胶质瘤细胞增殖的调控。
     为了进一步探讨K_(ATP)通道调节ERK通路的作用机制,我们检测了胶质瘤细胞的膜电位、胞内钙浓度以及细胞的旁分泌/自分泌功能的改变。实验结果表明,K_(ATP)通道的功能改变未能影响胶质瘤细胞的膜电位、胞内钙浓度以及细胞的旁分泌/自分泌功能(p>0.05)。这些结果提示,K_(ATP)通道对ERK的调节作用并非通过其对细胞膜电学特性的调节,而可能通过细胞内通路(如调控线粒体膜电位及自由基产生等)完成。
     结论在调控胶质瘤细胞的增殖过程中,K_(ATP)通道通过影响ERK激酶的活性调控细胞的增殖。
Background:Human malignant gliomas are aggressive tumors that are most common malignancy in brain tumor.Many patients with gliomas respond poorly to traditional radiation and chemotherapy,and recurrence rate of human malignant gliomas is 100%.Therefore,to understand the mechanism by which glioma develops is necessary for an efficient and specific inhibition of the progression of this form of cancer.
     Ion channels are found in a variety of cancer cells and necessary for cell cycle and cell proliferation.The roles of K~+ channels in the process are,however,poorly understood.It is commonly accepted that cells require K~+ channels to proliferate.In any case,it is intuitively acceptable that K~+ channels,as key players in controlling membrane potential,are critical in proliferation processes.In addition,K~+ channels also control cell volume to modulate cell proliferation.
     Adenosine triphosphate(ATP)-sensitive potassium channel(K_(ATP)channel)was first discovered by Akinori Noma in cardiac myocytes and was subsequently found to be expressed in many other cell types,e.g.in cardiac and smooth muscle, pancreatic beta cells and various brain regions.K_(ATP)channels are octameric proteins consisting of two different types of subunits:members of the Kir6 inwardly rectifying potassium channel family and sulfonylurea receptor(SUR)subunits,which are members of the ATP-binding cassette transporter superfamily.In functional channels, four pore-forming Kir6 subunits are joined together with four regulatory SUR subunits.In central nervous system,K_(ATP)channels are composed of Kir6.2 and SUR1 subunits.Evidence showed that expression of KATP channels is up-regulated in human uterine leiomyoma cells for estrogenmediated cell proliferation,but the effects of K_(ATP)channels on glioma cells are poorly understood.
     Mitogen-activated protein kinases(MAPKs)are a family of serine/threonine protein kinases that regulate a wide array of cellular processes.Extracellular signal-regulated kinases(ERK)are the member of MAPKs.ERK activation is associated with cell survival and cell proliferation in response to growth factors such as platelet-derived growth factor and epidermal growth factor,which makes ERK the principal candidate in the studies of cell proliferation.The classic pathway of ERK activation is characterized by the sequential phosphorylation of upstream kinases, namely,Raf-1 and mitogen-activated kinase kinase(MEK).The aim of this study is to investigate the regulation mechanisms by which K_(ATP)channels control glioma cells proliferation.Our results demonstrate that K_(ATP)channels augment glioma cell proliferation via activating ERK and suggest that K_(ATP)channels play a critical role in the development of human malignant gliomas.
     Aim:To study the mechanisms of ATP-sensitive potassium channels control glioma cells proliferation.
     Methods:Cell culture,Cell transfection,Immunocytochemistry,MTT assay, Western analysis,Cell cycle analysis,and Mice tumor model.
     Results:In the present study,we report that adenosine triphosphate (ATP)-sensitive potassium channel activity plays a critical role in the proliferation of glioma cells.The expression of K_(ATP)channels in glioma tissues was greatly increased than that in normal tissues.Treatment of glioma cells with tolbutamide,K_(ATP) channels inhibitor,suppressed the proliferation of glioma cells and blocked glioma cell cycle in G0/G1 phase.Similarly,downregulation of K_(ATP)channels by siRNA inhibited glioma cell proliferation.On the other hand,K_(ATP)channels agonist diazoxide and overexpression of K_(ATP)channels promoted the proliferation of glioma cells.Moreover,inhibiting K_(ATP)channels slowed the formation of tumor in nude mice generated by injection of glioma cells.Whereas activating K_(ATP)channels promoted development of tumor in vivo.The effect of K_(ATP)channels activity on glioma cells proliferation is mediated by extracellular signal-regulated kinase(ERK) activation.We found that activating K_(ATP)channel triggered ERK activation and inhibiting K_(ATP)channel depressed ERK activation.U-0126,the mitogen activated kinase kinase(MEK)inhibitors blocked ERK activation and cell proliferation induced by diazoxide.Furthermore,constitutively activated MEK plasmids transfection reversed the inhibitory effects of tolbutamide on glioma proliferation,lending further support for a role of ERK in mediating this process.
     Conclusion:Our results suggest that K_(ATP)channels control glioma cell proliferation via regulating ERK pathway.We concluded that K_(ATP)channels are important in pathological cell proliferation and open a promising pathway for novel targeted therapies.
引文
1.Altaner C.(2008) Glioblastoma and stem cells.Neoplasma.55:369-74.
    2.Kleihues,P,Cavenee,WK(Eds),(2000) Pathology and genetics of tumours of the nervous system.In:World Health Organization Classification of Tumours of the Nervous System,Editorial and Consensus Conference Working Group.IARC Press,Lyon,France.
    3.Li-Tian Yin,Yue-Jun Fu,Qiao-Ling Xu,Jun Yang,Zeng-Li Liu,Ai-Hua Liang,Xiao-Jun Fan,Cheng-Gang Xu.(2007) Potential biochemical therapy of glioma cancer.Biochemical and Biophysical Research Communications 362:225-229
    4.Wong ET,Brem S(2007).“Taming glioblastoma:targeting angiogenesis”.J.Clin.Oncol.25(30):4705-6.
    5.Stupp R;Mason WP;Bent MJ;et al.(2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma.N Engl J Med 352:987-96.
    6.Rainov N,Ren H(2003).“Gene therapy for human malignant brain tumors”.Cancer journal 9(3):180-8.
    7.Stewart LA.(2002) Chemotherapy in adult high-grade glioma:a systematic review and meta-analysis of individual patient data from 12 randomised trials.Lancet.359:1011-8.
    8.Tannous BA,Christensen AP,Pike L,Wurdinger T,Perry KF,Saydam O,Jacobs AH,Garcia-Anoveros J,Weissleder R,Sena-Esteves M,Corey DP,Breakefield XO.(2009) Mutant Sodium Channel for Tumor Therapy.Mol Ther.2009 Mar 3.[Epub ahead of print]
    9.Ross SB,Fuller CM,Bubien JK,Benos DJ.(2007) Amiloride-sensitive Na+ channels contribute to regulatory volume increases in human glioma cells.Am J Physiol Cell Physiol.293(3):C1181-5.
    10.S.Shen,M.B.Khazaeli,G.Y.Gillespie,V.L.Alyarez,(2005)Radiation dosimetry of 1311-chlorotoxin for targeted radiotherapy in gliomabearing mice,J.Neurooncol.71:113-119.
    11.A.N.Mamelak,S.Rosenfeld,R.Bucholz,A.Raubitschek,(2006)Phase Ⅰsingle-does study of intracavitary-administered iodine-131-TM-601 in adults with recurrent high-grade glioma,J.Clin.Oncol.24:3644-3650.
    12.Shao C,Lyng FM,Folkard M,Prise KM.(2006)Calcium fluxes modulate the radiation-induced bystander responses in targeted glioma and fibroblast cells.Radiat Res.166(3):479-87
    13.Shin SY,Choi BH,Ko J,Kim SH,Kim YS,Lee YH.(2006)Clozapine,a neuroleptic agent,inhibits Akt by counteracting Ca2+/calmodulin in PTEN-negative U-87MG human glioblastoma cells.Cell Signal.18(11):1876-86.
    14.Rane SG.(1999)Ion channels as physiological effectors for growth factor receptor and Ras/ERK signaling pathways.Adv.Second Messenger Phosphoprotein Res.33,107-127.
    15.Deutsch,C.(1990)K+ channels and mitogenesis.Prog.Clin.Biol.Res.334,251-271.
    16.Ousingsawat J,Spitzner M,Puntheeranurak S,et al.(2007)Expression of voltage-gated potassium channels in human and mouse colonic carcinoma.Clin Cancer Res 13:824-831
    17.St(u|¨)hmer W,Alves F,Hartung F,Zientkowska M,Pardo LA.(2006)Potassium channels as tumour markers.FEBS Lett.580,2850-2
    18.Noma A.(1983)ATP-regulated K+ channels in cardiac muscle.Nature 305,147-148.
    19.Yokoshiki H,Sunagawa M,Seki T,Sperelakis N(1998)ATP-sensitive K1channels in pancreatic,cardiac,and vascular smooth muscle cells.Am J Physiol Cell Physiol 274:C25-C37
    20.Katsuya Yamadal and Nobuya Inagaki.(2002)ATP-Sensitive K+ Channels in the Brain:Sensors of Hypoxic Conditions.Am J Physiol 17,127-130,
    21.Liss B,Roeper J.(2001)ATP-Sensitive Potassium Channels in Dopaminergic Neurons:Transducers of Mitochondrial Dysfunction.News Physiol.Sci.16,214-217.
    22.Donley VR,Hiskett EK,Kidder AC,Schermerhorn T.(2005)ATP-sensitive potassium channel(K_(ATP) channel) expression in the normal canine pancreas and in canine insulinomas.BMC Vet Res.1,8.
    23.Ningaraj NS,Sankpal UT,Khaitan D,Meister EA,Vats T.(2009) Activation of KATP channels increases anticancer drug delivery to brain tumors and survival.Eur J Pharmacol.602:188-93
    24.Wonderlin WF,Woodfork KA,Strobl JS.(1995) Changes in membrane potential during the progression of MCF-7 human mammary tumor cells through the cell cycle.J Cell Physiol.165(1):177-85
    25.Klimatcheva E,Wonderlin WF.(1999) An ATP-sensitive K(+) current that regulates progression through early G1 phase of the cell cycle in MCF-7 human breast cancer cells.J Membr Biol.171:35-46.
    26.Park SH,Ramachandran S,Kwon SH,Cha SD,Seo EW,Bae I,Cho C,Song DK.(2008) Upregulation of ATP-sensitive potassium channels for estrogen-mediated cell proliferation in human uterine leiomyoma cells.GynecoL Endocrinol.24(5):250-6.
    27.Wondergem R,Cregan M,Strickler L,Miller R,and Suttles J.(1998) Membrane potassium channels and human bladder tumor cells:Ⅱ.Growth properties.J.Membr.Biol.161,257-262.
    28.Garrington TP and Johnson GL.(1999) Organization and regulation of mitogen-activated protein kinase signaling pathways.Curr Opin Cell Biol.11,211-8
    29.Gutkind JS.(1998) The pathways connecting G protein-coupled receptors to the nucleus through divergent mitogen-activated protein kinase cascades.J Biol Chem.273,1839-1842
    30.Seger R and Krebs EG.(1995) The MAPK signaling cascade.FASEB J.9,726-735.
    31.Huang L,Li W,Li B,Zou F.(2006) Activation of ATP-sensitive K channels protects hippocampal CA1 neurons from hypoxia by suppressing p53 expression.Neurosci Lett.398,34-38.
    32.Samavati L,Monick MM,Sanlioglu S,Buettner GR,Oberley LW,Hunninghake GW.(2002)Mitochondrial K_(ATP)channel openers activate the ERK kinase by an oxidant-dependent mechanism.Am J Physiol Cell Physiol.283,273-281.
    33.Fujimura N,Tanaka E,Yamamoto S,Shigemori M,Higashi H.(1997)Contribution of ATP-Sensitive Potassium Channels to Hypoxic Hyperpolarization in Rat Hippocampal CA1 Neurons In Vitro.J Neurophysiol.77,378-385.
    34.Hotokezaka H,Sakai E,Kanaoka K,Saito K,Matsuo K,Kitaura H,Yoshida N,Nakayama K.(2002)U0126 and PD98059,Specific Inhibitors of MEK,Accelerate Differentiation of RAW264.7 Cells into Osteoclast-like Cells.J.Biol.Chem.277,47366-47372.
    35.Wang ZH,Shen B,Yao HL,Jia YC,Ren J,Feng YJ and Wang YZ.(2007)Blockage of intermediate-conductance-Ca~(2+)-activated K~+ channels inhibits progression of human endometrial cancer.Oncogene.26,5107-5114.
    36.Monick M,Staber J,Thomas K,and Hunninghake G.(2001)Respiratory syncytial virus infection results in activation of multiple protein kinase C isoforms leading to activation of mitogen-activated protein kinase.J Immunol 166,2681-2687.
    37.Monick MM,Carter AB,Flaherty DM,Peterson MW,and Hunninghake GW.(2000)Protein kinase Cζ plays a central role in activation of the p42/44mitogen-activated protein kinase by endotoxin in alveolar macrophages.J Immunol 165,4632-4639.
    38.Monick MM,Carter AB,Robeff PK,Flaherty DM,Peterson MW,and Hunninghake GW.(2001)Lipopolysaccharide activates Akt in human alveolar macrophages resulting in nuclear accumulation and transcriptional activity of β-catenin.J Immunol 166,4713-4720.
    39.Wachsberger PR,Burd R,Marero N,Daskalakis C,Ryan A,McCue P and Dicker AP.(2005)Effect of the tumor vascular-damaging agent,ZD6126,on the radioresponse of U87 glioblastoma.Clin Cancer Res.11,835-42.
    40.Silacci M,Brack SS,Sp(a|¨)th N,Buck A,Hillinger S,Arni S,Weder W,Zardi L,Neri D.(2006)Human monoclonal antibodies to domain C of tenascin-C selectively target solid tumors in vivo.Protein Eng Des Sel.19,471-8.
    41.Mason W.T.(1999) Fluorescent and Luminiscent Probes.Academic Press,San Diego,California.
    42.Reimann F,Ashcroft FM,Gribble FMX2001 Structural basis for the interference between nicorandil and sulfonylurea action.Diabetes,50:2253 - 2259.
    43.Song DK,A shcroft FM.(2001) Glimep iride block of cloned beta - cell,cardiac and smooth muscle K(ATP) channels.B r J Pharm acol,133:193 - 199.
    44.Dabrowski M,Wahl P,Holmes WE,et al.(2001) Effect of repaglinide on cloned beta cell,cardiac and smooth muscle types of ATP - sensitive potassium channels.Diabetes,;44:747- 756
    45.Luis A.Pardo.(2004).Voltage Gated Potassium Channels in Cell proliferation.Physiology 19:285-292.
    46.Pearson G,Robinson F,Beers2Gibson T,et al.(2001)Mitogen-activated protein(MAP) kinase pat hways:regulation and physiological functions.Endocr Rev,22(2):153-183.
    47.Zhou JN,Ljungdahl S,Shoushan MC,et al.(1998) Activating of tissue-factor gene expression in breast carcinoma cells by stimulation of the RAF-ERK signaling pathway.Mol Carcinog,21(4):234-243.
    48.Giehl K,Skripczynski B,Mansard A,et al.(2000) Growth factor dependent activation of the Ras-Raf-MEK-MAPK pathway in the human pancreatic carcinoma cell line PANC21 carrying activated K-ras:implications for cell proliferation and cell migration.Oncogene,,19(25);2930-2942.
    49.Okajima E,Thorgeirsson UP.(2000) Different regulation of vascular endothelial growth factor expression by the ERK and p38 kinase pathways in V-ras,v -raf,and v-myc transformed cells.Biochem Biophys Res Commun,270(1):108-111.
    50.Zi X,Agarwal R.(1999) Modulation of mitogen2activated protein kinase activation and cell cycle regulations by the potent skin cancer preventive agent silymarin.Biochem Biophys Res Commun,263(2):528-536.
    51.Baek JH,Jang J E,Kang CM,et al.(2000) Hypoxia-induced VEGF enhances tumor survivability via suppression of serum deprivation-induced apoptosis. Oncogene,19(40):4621-4631
    52.Brian O'Rourke.(2004)Evidence for Mitochondrial K+ Channels and Their Role in Cardioprotection.Circulation Research.;94:420-432
    53.Brian O'Rourke,Sonia Cortassa and Miguel A.Aon.(2005)Mitochondrial Ion Channels:Gatekeepers.Physiology.20:303-315
    54.Oldenburg O,Cohen MV,Yellon DM,Downey JM.(2002).Mitochondrial K(ATP)channels:role in cardioprotection.Cardiovasc Res.55(3):429-37
    55.Busija DW,Lacza Z,Rajapakse N,Shimizu K,Kis B,Bari F,Domoki F,Horiguchi T.(2004)Targeting mitochondrial ATP-sensitive potassium channels--a novel approach to neuroprotection.Brain Res Brain Res Rev.46(3):282-94
    56.Liss B,Haeckel O,Wildmann J,Miki T,Seino S,Roeper J.(2005)K-ATP channels promote the differential degeneration of dopaminergic midbrain neurons.Nat Neurosci.8(12):1742-51.
    57.Lei H,Kazlauskas A.(2009)Growth factors outside of the PDGF family employ ROS/SFKs to activate PDGF receptor alpha and thereby promote proliferation and survival of cells.J Biol Chem.[Epub ahead of print].
    58.Wang Y,Lou MF(2009)The Regulation of NADPH oxidase and its Association with Cell Proliferation in Human Lens Epithelial Cells.Invest Ophthalmol Vis Sci..[Epub ahead of print]
    59.Hordijk PL.(2006)Regulation of NADPH Oxidases:the role of Rac proteins.Circ Res.98(4):453-62
    60.M.W.McDermott,P.K.Sneed,P.H.Gutin,(1998)Interstitial brach therapy for malignant brain tumors,Semin.Surg.Oncol.14:79-87.
    61.T.W.Vitaz,P.C.Warnke,V.Tabar,P.H.Gutin,(2005)Brach therapy for brain tumors,J.Neurooncol.73:71-86.
    1.Christopher J.Schofield et al.Oxygen sensing by HIF hydroxylases.Nature Review Mol cell bio 2004,5(5):343-354.
    2.Greggl semenza.HIF-1:mediator of physiological and pathophysiological responses to hypoxia.J Appl Physiol 2000,88(4):1474-1480.
    3.Ivan M,Kondo K,et al.HIF targeted for VHL-mediated destruction by proline hydroxylation:implications for O_2 sensing.Science 2001,292(5516):464-468.
    4.Jaakkola P,Mole DR,et al.Targeting of HIF-1 to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation.Science 2001,292(5516):468-472.
    5.Yuan F,Chen Y,et al.Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody.Proc Natl Acad Sci USA 1996,93(25):14765-14770.
    6.Epstein AC,Gleadle JM,et al.C.elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation.Cell 2001,107(1):43-54.
    7.Krek W.VHL takes HIF's breath away.Nat Cell Biol 2000,2(7):E121-123.
    8.Stroka DM,Burkhardt T,et al.HIF-1 is expressed in normoxic tissue and displays an organ-specific regulation under systemic hypoxia.FASEB J 2001,15(13):2445-2453.
    9.Gisele Ho¨pfl,Omolara Ogunshola,et al.HIFs and tumors—causes and consequences.Am J Physiol Regul Integr Comp Physiol 2004,286(4):R608-R623.
    10.Mottet D,Dumont V,et al.Regulation of HIF-1 protein level during hypoxic conditions by the PI3K/AKT/GSK3 pathway in HepG2 cells.J Biol Chem 2003,278(33):31277-31285.
    11.Jie Zhou,Tobias Schmid,et al.PI3K/Akt Is Required for Heat Shock Proteins to Protect Hypoxiainducible Factor la from pVHL-independent Degradation.J Biol Chem 2004,279(14):13506-13513.
    12.Jennifer S.Isaacs,et al.Hsp90 Regulates a von Hippel Lindau-independent Hypoxia-inducible Factor-ladegradative Pathway.J Biol Chem 2002,277(33):29936-29944.
    13.Vivanco I and Sawyers CL.The phosphatidylinositol 3-Kinase AKT pathway in human cancer.Nat Rev Cancer 2002,2(7):489-501.
    14.Jeong JW,Bae MK,et al.Regulation and destabilization of HIF-laby ARD1-mediated acetylation.Cell 2002,111(5):709-720.
    15.Mabjeesh NJ,Escuin D,et al.2ME2 inhibits tumor growth and angiogenesis by disrupting microtubulesand dysregulating HIF.Cancer Cell 2003,3(4):363-375.
    16.Dames SA,Martinez-Yamout M,et al.From the Cover:structural basis for Hif-1/CBP recognition in the cellular hypoxic response.Proc Natl Acad Sci USA 2002,99(8):5271-5276.
    17.Hur E,Chang KY,et al.Mitogen-activated protein kinase kinase inhibitor PD98059 blocks the trans-activation but not the stabilization or DNA binding ability of hypoxia-inducible factor-1alpha.Mol Pharmacol 2001,59(5):1216-1224.
    18.Sang N,Stiehl DP,et al.MAPK signaling up-regulates the activity of hypoxia-inducible factors by its effects on p300.J Biol Chem 2003,278(16):14013-14019.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700