热休克蛋白90介导二氮嗪对抗心脏低温保存损伤的作用和机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     心脏移植是一种用于治疗严重冠心病等终末期心脏病患者的有效的外科手段,成功的器官保存是心脏移植手术成功的必要前提。然而,目前临床上心脏的低温保存时间局限在4至6h以内,这与其它器官如肝、肾、胰的保存时间相比要短的多。如何有效地延长供心的保存时间是当前迫切需要解决的问题。研究发现在Celsior心脏保存液中添加二氮嗪,能促进长时低温保存后心功能的恢复并减少心肌细胞凋亡。热休克蛋白90(Heat shock protein 90,Hsp90)是一类高度保守的蛋白质家族的成员之一。Hsp90表达增加可诱导细胞保护作用,其机制被认为与其抗凋亡作用相关。然而,Hsp90是否参与了二氮嗪对抗低温保存诱导的心肌细胞凋亡作用尚不明了。
     目的
     研究Hsp90是否参与了二氮嗪对抗低温保存诱导的心功能下降,同时探究其可能机制。
     方法
     (1)低温保存模型的建立及心功能测定:离体大鼠心脏于Langendorff恒压灌注装置上平衡后,经主动脉根部灌注40C的Celsior'心麻痹液,灌注时间控制在3min以内,心脏表面同时降温,待心脏停跳后分别置于不同成分的心麻痹液中(4℃)保存,3、6、或9h后心脏被重新置于Langendorff装置上再灌注60min。灌注条件同保存前保持一致。通过MedLab生物信号采集处理系统观察左心室发展压(LVDP)。
     (2)细胞凋亡测定:取复灌末期大鼠左心室心尖部分,用TUNEL法观察细胞凋亡情况。计算阳性凋亡细胞占总细胞数的百分比即为细胞凋亡指数(apoptosis index,AI)
     (3)Bid表达:取复灌末期大鼠心脏左心室心尖部分,匀浆提蛋白,用Western Blot来检测Bid和tBid蛋白表达情况。
     (4)Hsp90表达:取复灌末期大鼠心脏左心室心尖部分,用RT-PCR检测Hsp90mRNA水平,用Western Blot来检测Hsp90蛋白质水平
     结果
     (1)心脏于单纯Celsior保存液中低温保存3-9 h后,于复灌60 min末测得各组心脏LVDP'恢复率随着保存时间的延长而逐渐降低,心肌细胞凋亡指数随着保存时间的延长而逐渐升高。而与单纯Celsior保存液组相比,心脏在添加了二氮嗪(30μtM)的保存液中保存9h后LVDP'恢复率显著增高,心肌细胞凋亡指数显著下降。
     (2)心脏于单纯Celsior保存液中低温保存3h后,Bid蛋白表达量与对照组无明显差异,且无明显裂解。低温保存6h或9h后,Bid裂解后产生的tBid(truncated Bid)片段量显著增加;然而,在心脏保存液中添加二氮嗪后,Bid裂解明显受抑制。
     (3)与对照组相比,心脏于Celsior液低温保存3h,Hsp90 mRNA与蛋白表达水平均明显增加。但随着保存时间延长至6-9 h,Hsp90 mRNA与蛋白表达水平却逐渐降低。与9h单纯保存液组相比,二氮嗪组心脏Hsp90 mRNA与蛋白表达水平均显著提高。
     (4)17-AAG可部分取消二氮嗪增加低温保存心脏LVDP恢复率的作用。此外,与二氮嗪组相比,保存液中同时添加17-AAG和二氮嗪,Bid裂解产物tBid含量显著增加,心肌细胞凋亡显著增加。
     结论二氮嗪可抑制低温保存诱导的心肌细胞Bid蛋白裂解与细胞凋亡,其机制可能与Hsp90表达增加有关。
Background
     Heart transplantation is a surgical transplant procedure performed on patients with end-stage heart failure or severe coronary artery disease. Successful organ preservation is the premise for clinical organ transplantation. However, hypothermic preservation of the heart has a limit of about 4-6 h, which is much lower than that for the liver, kidney, and pancreas.Prolonged donor heart preservation becomes more important in cardiovascular surgery. We have reported that diazoxide as a supplementation in Celsior preservation solution, can improve myocardial function and decrease apoptosis during long- term hypothermic preservation. However, the exact anti-apoptotic mechanism of diazoxide is still unknown. The heat shock proteins (Hsps) are highly conserved families of proteins, the cytoprotective function of Hsp90 is largely explained by their anti-apoptotic function, since Hsp90 has been shown to interact with different key apoptotic proteins.
     Objectives
     To investigate whether heat shock protein 90 (Hsp90) plays an important role in the anti-apoptotic effect of diazoxide in hypothermic preservation rat hearts.
     Methods
     (1) In vitro hypothermic heart preservation model and cardiac function assay: Male SD rat hearts were quickly removed and washed in cold Krebs-Henseleit (KH) solution. Then hearts were mounted on the Langendorff perfusion apparatus, and perfused reversely at 76mmHg with KH solution at 37℃and gased with 95%O2-5%CO2. After balancing for 30 min, the left ventricular developed pressure was recorded as the basal value. After preservation for certain time periods, the hearts were reloaded onto the Langendorff perfusion apparatus and reperfused for another 60 min. LVDP was recorded during reperfusion.
     (2) Cell apoptosis assay:At the end of reperfusion, the cardiac apex of the left ventricle was used. Cell apoptosis was detected by TUNEL assay.
     (3) The expression of Bid:At the end of reperfusion, the cardiac apex of the left ventricle was used. The protein expression of Bid and tBid were assessed by Western Blot.
     (4) The expression of Hsp90:At the end of reperfusion, the cardiac apex of the left ventricle was used. The mRNA expression of Hsp90 was assessed by RT-PCR and the protein expression was detected by Westren Blot.
     Results
     (1) Compared with control group, LVDP recovery rate significantly decreased and cardiomyocyte apoptosis index increased after 3-9 h of hypothermic preservation in a time dependent manner. When compared with the 9 h preservation group, supplement Celsior solution with diazoxide significantly (30μM) enhanced the LVDP recovery rate and decreased the apoptosis index.
     (2) The cleavage of Bid increased after 9 h of hypothemic preservation, which was inhibited by supplying Celsior solution with diazoxide.
     (3) Compared with control group, hypothermic preservation of rat hearts for 3 h increased the expression of Hsp90 mRNA and protein. But, the expression of Hsp90 mRNA and protein was decreased when the hypothermic preservation time was prolonged to 6-9 h. After supplement with diazoxide, the expression of Hsp90 mRNA and protein was significantly increased in 9 h preserved rat hearts.
     (4) Hsp90 inhibitor 17-AAG inhibited the diazoxide-induced decrease in tBid. Meanwhile,17-AAG also partly abolished the diazoxide-induced improvement of cardiac function and decrease of apoptosis.
     Conclusion Hsp90 might mediate diazoxide-induced cardioprotection against apoptosis in hypothermic preservation heart by preventing the cleavage of Bid.
引文
1. Sadala, M.L. and N.A. Stolf, Heart transplantation experiences:a phenomenological approach. J Clin Nurs,2008.17(7B):p.217-25.
    2. McCully, J.D. and S. Levitsky, Mitochondrial ATP-sensitive potassium channels in surgical cardioprotection. Arch Biochem Biophys,2003.420(2):p.237-45.
    3. Garlid, K.D., et al., Mitochondrial potassium transport:the role of the mitochondrial ATP-sensitive K(+) channel in cardiac function and cardioprotection. Biochim Biophys Acta,2003.1606(1-3):p.1-21.
    4. Shen, Y.L., et al., Activation of mitochondrial ATP-sensitive potassium channels delays ischemia-induced cellular uncoupling in rat heart. Acta Pharmacol Sin, 2004.25(1):p.22-8.
    5. Yan ZK, H.Z., Pan XH, Chen YY, Zhang XM, Shen YL, Diazoxide supplemented Celsior solution improves hypothermic heart preservation effect in rat through activation of mitochondrial ATP-sensitive potassium channel. Pharm Biol 2009.47:p.1060-1066.
    6. Ghayour-Mobarhan, M., et al., The potential role of heat shock proteins in cardiovascular disease:evidence from in vitro and in vivo studies. Adv Clin Chem,2009.48:p.27-72.
    7. Lanneau D, B.M., Frisan E, Solary E, Fontenay M, Garrido C, Heat shock proteins:essential proteins for apoptosis regulation. J Cell Mol Med,2008.12:p. 743-61.
    8. Lanneau, D., et al., Apoptosis versus cell differentiation:role of heat shock proteins HSP90, HSP70 and HSP27. Prion,2007.1(1):p.53-60.
    9. Muhlbacher, F., F. Langer, and C. Mittermayer, Preservation solutions for transplantation. Transplant Proc,1999.31(5):p.2069-70.
    10. Feng, X.N., X. Xu, and S.S. Zheng, Current status and perspective of liver preservation solutions. Hepatobiliary Pancreat Dis Int,2006.5(4):p.490-4.
    11. Hicks, M., et al., Organ preservation. Methods Mol Biol,2006.333:p.331-74.
    12. Maathuis, M.H., H.G. Leuvenink, and R.J. Ploeg, Perspectives in organ preservation. Transplantation,2007.83(10):p.1289-98.
    13. Deja, M.A., et al., Diazoxide protects myocardial mitochondria, metabolism, and function during cardiac surgery:a double-blind randomized feasibility study of diazoxide-supplemented cardioplegia. J Thorac Cardiovasc Surg,2009.137(4): p.997-1004,1004e1-2.
    14. Wittwer, T. and T. Wahlers, Marginal donor grafts in heart transplantation: lessons learned from 25 years of experience. Transpl Int,2008.21(2):p.113-25.
    15. Huang, J., et al., Bcl-xL gene transfer inhibits Bax translocation and prolongs cardiac cold preservation time in rats. Circulation,2005.112(1):p.76-83.
    16. Ichinose, M., et al., Diazoxide triggers cardioprotection against apoptosis induced by oxidative stress. Am J Physiol Heart Circ Physiol,2003.284(6):p. H2235-41.
    17. Xu, M., et al., Mitochondrial K(ATP) channel activation reduces anoxic injury by restoring mitochondrial membrane potential. Am J Physiol Heart Circ Physiol, 2001.281(3):p. H1295-303.
    18. Takashi, E., Y. Wang, and M. Ashraf, Activation of mitochondrial K(ATP) channel elicits late preconditioning against myocardial infarction via protein kinase C signaling pathway. Circ Res,1999.85(12):p.1146-53.
    19. Kuznetsov, A.V., et al., Mitochondrial defects and heterogeneous cytochrome c release after cardiac cold ischemia and reperfusion. Am J Physiol Heart Circ Physiol,2004.286(5):p. H1633-41.
    20. Brady NR, H.-B.A., Gottlieb RA., Proapoptotic BCL-2 family members and mitochondrial dysfunction during ischemia/reperfusion injury, a study employing cardiac HL-1 cells and GFP biosensors. Biochim Biophys Acta,2006. 1757:p.667-78.
    21. Billen, L.P., A. Shamas-Din, and D.W. Andrews, Bid:a Bax-like BH3 protein. Oncogene,2008.27 Suppl 1:p. S93-104.
    22. Li, H., et al., Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell,1998.94(4):p.491-501.
    23. Luo, X., et al., Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell, 1998.94(4):p.481-90.
    24. Gross, A., et al., Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-Rl/Fas death. J Biol Chem,1999.274(2):p.1156-63.
    25. Chae, S.U., et al., Estrogen attenuates cardiac ischemia-reperfusion injury via inhibition of calpain-mediated bid cleavage. Arch Pharm Res,2007.30(10):p. 1225-35.
    26. Lee, S.D., et al., The coexistence of nocturnal sustained hypoxia and obesity additively increases cardiac apoptosis. J Appl Physiol,2008.104(4):p.1144-53.
    27. Haudek, S.B., et al., TNF provokes cardiomyocyte apoptosis and cardiac' remodeling through activation of multiple cell death pathways. J Clin Invest, 2007.117(9):p.2692-701.
    28. Lien, Y.C., et al., Tumor necrosis factor receptor deficiency exacerbated Adriamycin-induced cardiomyocytes apoptosis:an insight into the Fas connection. Mol Cancer Ther,2006.5(2):p.261-9.
    29. Zhang, H.M., et al., Nip21 gene expression reduces coxsackievirus B3 replication by promoting apoptotic cell death via a mitochondria-dependent pathway. Circ Res,2002.90(12):p.1251-8.
    30. Yi, X., X.M. Yin, and Z. Dong, Inhibition of Bid-induced apoptosis by Bcl-2. tBid insertion, Bax translocation, and Bax/Bak oligomerization suppressed. J Biol Chem,2003.278(19):p.16992-9.
    31. Laufs, U., Beyond lipid-lowering:effects of statins on endothelial nitric oxide. Eur J Clin Pharmacol,2003.58(11):p.719-31.
    32. Scarabelli, T. and R. Knight, Urocortins:take them to heart. Curr Med Chem Cardiovasc Hematol Agents,2004.2(4):p.335-342.
    33. Rodriguez-Sinovas, A., et al., Translocation of connexin 43 to the inner mitochondrial membrane of cardiomyocytes through the heat shock protein 90-dependent TOM pathway and its importance for cardioprotection. Circ Res, 2006.99(1):p.93-101.
    34. Gray, C.C., M. Amrani, and M.H. Yacoub, Heat stress proteins and myocardial protection:experimental model or potential clinical tool? Int J Biochem Cell Biol,1999.31(5):p.559-73.
    35. Schmitt, E., et al., Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy. J Leukoc Biol,2007.81(1):p.15-27.
    36. Zhao, C. and E. Wang, Heat shock protein 90 suppresses tumor necrosis factor alpha induced apoptosis by preventing the cleavage of Bid in NIH3T3 fibroblasts. Cell Signal,2004.16(3):p.313-21.
    1. F, R., A new puffing pattern induced and temperature shock and DNP in Drosophila.. Experiential,1962.18:p.571-573.
    2. Lindquist, S. and E.A. Craig, The heat-shock proteins. Annu Rev Genet,1988. 22:p.631-77.
    3. Rebbe, N.F., et al., Nucleotide sequence of a cDNA for a member of the human 90-kDa heat-shock protein family. Gene,1987.53(2-3):p.235-45.
    4. Li GC, L.A., Amino acid analogues while inducing heat shock protein sensitive cells to thermal damage. J Cell Physiol 1985.122:p.91-97.
    5. Polla, B.S., A role for heat shock proteins in inflammation? Immunol Today, 1988.9(5):p.134-7.
    6. Prodromou, C., et al., Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell,1997.90(1):p. 65-75.
    7. Picard, D., Heat-shock protein 90, a chaperone for folding and regulation. Cell Mol Life Sci,2002.59(10):p.1640-8.
    8. McClellan, A.J., et al., Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell,2007.131(1):p.121-35.
    9. Zhao, R., et al., Navigating the chaperone network:an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell,2005. 120(5):p.715-27.
    10. Maloney, A., et al., Gene and protein expression profiling of human ovarian cancer cells treated with the heat shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin. Cancer Res,2007.67(7):p. 3239-53.
    11. Jakob, U., et al., Transient interaction of Hsp90 with early unfolding intermediates of citrate synthase. Implications for heat shock in vivo. J Biol Chem,1995.270(13):p.7288-94.
    12. Wiech, H., et al., Hsp90 chaperones protein folding in vitro. Nature,1992. 358(6382):p.169-70.
    13. Chadli, A., et al., Dimerization and N-terminal domain proximity underlie the function of the molecular chaperone heat shock protein 90. Proc Natl Acad Sci U S A,2000.97(23):p.12524-9.
    14. Prodromou, C., et al., The ATPase cycle of Hsp90 drives a molecular 'clamp' via transient dimerization of the N-terminal domains. EMBO J,2000.19(16):p. 4383-92.
    15. Hessling, M., K. Richter, and J. Buchner, Dissection of the ATP-induced conformational cycle of the molecular chaperone Hsp90. Nat Struct Mol Biol, 2009.16(3):p.287-93.
    16. Wandinger, S.K., K. Richter, and J. Buchner, The Hsp90 chaperone machinery. J Biol Chem,2008.283(27):p.18473-7.
    17. Pearl, L.H., Prodromou, C. and Workman, P., The Hsp90 molecular chaperone: an open and shut case for treatment. Biochem. J.,2008.410:p.439-453.
    18. Ali, M.M., et al., Crystal structure of an Hsp90-nucleotide-p23/Sbal closed chaperone complex. Nature,2006.440(7087):p.1013-7.
    19. Meyer, P., et al., Structural and functional analysis of the middle segment of hsp90:implications for ATP hydrolysis and client protein and cochaperone interactions. Mol Cell,2003.11(3):p.647-58.
    20. Pearl, L.H. and C. Prodromou, Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu Rev Biochem,2006.75:p.271-94.
    21. MacLean, M. and D. Picard, Cdc37 goes beyond Hsp90 and kinases. Cell Stress Chaperones,2003.8(2):p.114-9.
    22. Roe, S.M., et al., The Mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50(cdc37). Cell,2004.116(1):p.87-98.
    23. Shirasu, K., The HSP90-SGT1 chaperone complex for NLR immune sensors. Annu Rev Plant Biol,2009.60:p.139-64.
    24. Kadota, Y., et al., Structural and functional analysis of SGT1-HSP90 core complex required for innate immunity in plants. EMBO Rep,2008.9(12):p. 1209-15.
    25. Lee, Y.T., et al., Human Sgtl binds HSP90 through the CHORD-Sgtl domain and not the tetratricopeptide repeat domain. J Biol Chem,2004.279(16):p. 16511-7.
    26. Zhang, M., et al., Structural and functional coupling of Hsp90- and Sgtl-centred multi-protein complexes. EMBO J,2008.27(20):p.2789-98.
    27. Dubacq, C., et al., Sgtlp contributes to cyclic AMP pathway activity and physically interacts with the adenylyl cyclase Cyrlp/Cdc35p in budding yeast. Eukaryot Cell,2002.1(4):p.568-82.
    28. Azevedo, C., et al., The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science,2002.295(5562):p.2073-6.
    29. Hahn, J.S., Regulation of Nod1 by Hsp90 chaperone complex. FEBS Lett,2005. 579(20):p.4513-9.
    30. da Silva Correia, J., et al., SGT1 is essential for Nod1 activation. Proc Natl Acad Sci U S A,2007.104(16):p.6764-9.
    31. Mayor, A., et al., A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses. Nat Immunol, 2007.8(5):p.497-503.
    32. Franchi, L., et al., Function of Nod-like receptors in microbial recognition and host defense. Immunol Rev,2009.227(1):p.106-28.
    33. Ye, Z. and J.P. Ting, NLR, the nucleotide-binding domain leucine-rich repeat containing gene family. Curr Opin Immunol,2008.20(1):p.3-9.
    34. DeYoung, B.J. and R.W. Innes, Plant NBS-LRR proteins in pathogen sensing and host defense. Nat Immunol,2006.7(12):p.1243-9.
    35. Shirasu, K., et al., A novel class of eukaryotic zinc-binding proteins is required for disease resistance signaling in barley and development in C. elegans. Cell, 1999.99(4):p.355-66.
    36. Hubert, D.A., et al., Specific Arabidopsis HSP90.2 alleles recapitulate RAR1 cochaperone function in plant NB-LRR disease resistance protein regulation. Proc Natl Acad Sci U S A,2009.106(24):p.9556-63.
    37. Boter, M., et al., Structural and functional analysis of SGT1 reveals that its interaction with HSP90 is required for the accumulation of Rx, an R protein involved in plant immunity. Plant Cell,2007.19(11):p.3791-804.
    38. Panaretou, B., et al., Activation of the ATPase activity of hsp90 by the stress-regulated cochaperone ahal. Mol Cell,2002.10(6):p.1307-18.
    39. Meyer, P., et al., Structural basis for recruitment of the ATPase activator Ahal to the Hsp90 chaperone machinery. EMBO J,2004.23(3):p.511-9.
    40. Johnson, B.D., et al., Hop modulates Hsp70/Hsp90 interactions in protein folding. J Biol Chem,1998.273(6):p.3679-86.
    41. Richter, K., et al., Stil is a non-competitive inhibitor of the Hsp90 ATPase. Binding prevents the N-terminal dimerization reaction during the atpase cycle. J Biol Chem,2003.278(12):p.10328-33.
    42. Chinkers, M., Protein phosphatase 5 in signal transduction. Trends Endocrinol Metab,2001.12(1):p.28-32.
    43. Yang, J., et al., Molecular basis for TPR domain-mediated regulation of protein phosphatase 5. EMBO J,2005.24(1):p.1-10.
    44. Wandinger, S.K., et al., The phosphatase Pptl is a dedicated regulator of the molecular chaperone Hsp90. EMBO J,2006.25(2):p.367-76.
    45. Vaughan, C.K., et al., Hsp90-dependent activation of protein kinases is regulated by chaperone-targeted dephosphorylation of Cdc37. Mol Cell,2008.31(6):p. 886-95.
    46. Wang, Z., et al., Modulation of glucocorticoid receptor phosphorylation and transcriptional activity by a C-terminal-associated protein phosphatase. Mol Endocrinol,2007.21(3):p.625-34.
    47. Gong, C.X., et al., Dephosphorylation of microtubule-associated protein tau by protein phosphatase 5. J Neurochem,2004.88(2):p.298-310.
    48. von Kriegsheim, A., et al., Regulation of the Raf-MEK-ERK pathway by protein phosphatase 5. Nat Cell Biol,2006.8(9):p.1011-6.
    49. McDonough, H. and C. Patterson, CHIP:a link between the chaperone and proteasome systems. Cell Stress Chaperones,2003.8(4):p.303-8.
    50. Scroggins, B.T., et al., An acetylation site in the middle domain of Hsp90 regulates chaperone function. Mol Cell,2007.25(1):p.151-9.
    51. Garcia-Cardena, G., et al., Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature,1998.392(6678):p.821-4.
    52. Dougherty, J.J., et al., Identification of the 90 kDa substrate of rat liver type II casein kinase with the heat shock protein which binds steroid receptors. Biochim Biophys Acta,1987.927(1):p.74-80.
    53. Kovacs, J.J., et al., HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell,2005. 18(5):p.601-7.
    54. Martinez-Ruiz, A., et al., S-nitrosylation of Hsp90 promotes the inhibition of its ATPase and endothelial nitric oxide synthase regulatory activities. Proc Natl Acad Sci U S A,2005.102(24):p.8525-30.
    55. Iannotti, A.M., D.A. Rabideau, and J.J. Dougherty, Characterization of purified avian 90,000-Da heat shock protein. Arch Biochem Biophys,1988.264(1):p. 54-60.
    56. Legagneux, V., M. Morange, and O. Bensaude, Heat shock increases turnover of 90 kDa heat shock protein phosphate groups in HeLa cells. FEBS Lett,1991. 291(2):p.359-62.
    57. Kim, Y.S., et al., Update on Hsp90 inhibitors in clinical trial. Curr Top Med Chem,2009.9(15):p.1479-92.
    58. Molife, L.R., et al., Phase Ⅱ, two-stage, single-arm trial of the histone deacetylase inhibitor (HDACi) romidepsin in metastatic castration-resistant prostate cancer (CRPC). Ann Oncol,2010.21(1):p.109-13.
    59. Zoubeidi, A., et al., Cooperative interactions between androgen receptor (AR) and heat-shock protein 27 facilitate AR transcriptional activity. Cancer Res, 2007.67(21):p.10455-65.
    60. Frebel, K. and S. Wiese, Signalling molecules essential for neuronal survival and differentiation. Biochem Soc Trans,2006.34(Pt 6):p.1287-90.
    61. Gallegos Ruiz, M.I., et al., Integration of gene dosage and gene expression in non-small cell lung cancer, identification of HSP90 as potential target. PLoS One,2008.3(3):p. e0001722.
    62. Shimamura, T. and G.I. Shapiro, Heat shock protein 90 inhibition in lung cancer. J Thorac Oncol,2008.3(6 Suppl 2):p. S152-9.
    63. Pandey, P., et al., Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J, 2000.19(16):p.4310-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700