线粒体K_(ATP)通道介导七氟醚对局灶性脑缺血再灌注损害的保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的1990年Kitagawa首先报道了脑缺血预适应(IPC)现象,随后的研究发现药物预处理、缺血后处理、药物后处理均可模拟IPC。七氟醚作为一种临床常用的吸入麻醉药,具有麻醉诱导及苏醒迅速、麻醉状态平稳、心律失常和心血管抑制发生率低等优点,且能增加脑血流,保留中枢自主调节,对颅内压影响小。在离体培养细胞、脑片及心肌保护中,均有研究表明七氟醚预处理及后处理具有器官保护作用。线粒体是介导脑缺血再灌注后神经细胞损伤的重要细胞器,线粒体ATP敏感性钾通道(mitoK_(ATP))是预处理细胞保护的作用靶点,已证实多种吸入麻醉药对脑的保护作用与mitoK_(ATP)的开放有关。本实验通过TTC染色测定大脑梗死面积、病理切片HE染色、免疫组化分析、神经功能损害评分检测1.0MAC七氟醚预处理及后处理对大鼠局灶性脑缺血再灌注损伤的作用,并通过应用mitoK_(ATP)通道特异性阻断剂5—羟葵酸(5—HD),研究七氟醚预处理及后处理中激活mitoK_(ATP)通道产生脑保护的机制。
     方法雄性SD大鼠56只,随机分为假手术组、缺血再灌注组、七氟醚预处理组、七氟醚后处理组、5-HD组、5-HD干预七氟醚预处理组、5-HD干预七氟醚后处理组(n=8)。采用大脑中动脉线栓法阻断前脑血供2 h、再灌注24 h制备大鼠局灶性脑缺血再灌注(middlecerebral artery occlusion,MCAO)模型。七氟醚处理组于缺血前1h或恢复再灌注后立即经半密闭的吸入箱吸入七氟醚(呼吸末浓度维持2.4%),持续30min。5-HD干预组于缺血前或七氟醚预处理前经尾静脉注射mitoK_(ATP)通道阻断剂5-HD。再灌注24h后用Zea Longa评分法进行神经功能缺陷评分,TTC染色法测大鼠脑梗死体积,免疫组化法测定大脑皮质bcl-2和bax蛋白表达。
     结果七氟醚预处理组和后处理组与对照组相比,脑梗死体积减少(P<0.05),神经功能缺陷评分降低(P<0.05)。5-HD消除了七氟醚的保护作用(P<0.05),但5-HD组与对照组相比神经功能缺陷评分和脑梗死体积没有差别(P>0.05)。七氟醚预处理组及后处理组与行MCAO它组相比,bcl-2呈强表达,bax表达不明显。
     结论七氟醚预处理及后处理对局灶性脑缺血再灌注损伤均有一定程度的保护作用,且其保护作用与mitoK_(ATP)通道的激活有关,并可能是通过调控凋亡相关基因bcl-2和bax的表达来实现的。
Objective In 1990 Kitagawa discovered the phenomenon of cerebral "ischemic preconditioning(IPC)." Since then ischemic postconditioning,pharmacological preconditioning and pharmacological postconditioning have been shown to mimic the most potent protective mechanism of IPC.Sevoflurane is a commonly used volatile anesthetics. Because of its low blood gas partition coefficients,induction and emergence from sevoflurane anesthesia is rapid.Sevoflurane has little influence on cardiovascular system and the incidence of arrhythmia and hypotension is low.In addition,sevoflurane in the canine model has no effect on intracranial pressure and the autonomic regulation of the central nervous system is well kept.The protective effect of sevoflurane preconditioning and postconditioning on oxygen-glucose deprivation injury in rat hippocampal slices and myocardial ischemia is generally acknowledged.Mitochondria is an important organelle that mediates cerebral ischemia-reperfusion injury,and mitochondrial ATP-sensitive-potassium channels(mitoK_(ATP))have a critical role in pharmacological preconditioning,including many volatile anesthetics. We investigated the relationship between the protective effect of sevoflurane preconditioning and postconditioning against focal cerebral ischemia-reperfusion injury and the roles of mitochondrial ATP-sensitive-potassium channels(mitoK_(ATP)).
     Methods Fifty-six male SD rats weighting 250~280g were randomly allocated into seven groups(n=8).Rats were subjected to 2 hours of middle cerebral artery occlusion(MCAO)followed by 24 hours of reperfusion.The following protocols were used:1)preconditioning (S-Pre,achieved by 2.4%sevoflurane(1MAC)inhalation for 30min before MCAO);2)postconditoning(S-Post,2.4%sevoflurane given for 30min at the beginning of reperfusion).Protocols 1-2 were repeated in the presence of 5-hydroxydecanoate(5-HD),a specific mK_(ATP)-channel-blocker(S-Pre+5-HD,S-Post+5-HD).Eight rats served as sham operation group(Sham),untreated controls(CON)or received 5-HD alone(5-HD).Neurological deficit of the rats was assessed by Zea Longa's scoring system,infarct size was determined by TTC staining, and the expression of bcl-2 and bax in the frontal lobe of cerebral cortex was evaluated by immunohistochernistry.
     Results Both S-Pre and S-Post reduced infarct size and neurologic deficit compared with CON.5-HD diminished the protection in all two sevoflurane treated groups,but given alone had no effect on infarct size and neurologic deficit.Sevoflurane preconditioning and postconditioning induce the expression of bcl-2 and relatively inhibit the expression of bax.
     Conclusion Sevoflurane preconditioning and postconditioning protects against cerebral ischemia-reperfusion injury by regulating the expression of bcl-2 and bax protein,and is mediated,at least in part,by mitoK_(ATP)-channels.
引文
[1]Murry CE,Jennings RB,Reimer KA.Preconditioning with ischemia:A delay of lethal cell injury in ischemia myocardium.Circulation,1986;74:1124-36
    [2]Kitagawa G,Matsumoto M,Tagaya M,et al."Ischemic tolerance" phenomenon found in the brain.Brain Res,1990;528(1):21-24.
    [3]Zhao ZQ,Corvera JS,Halkos ME,Kerendi F,Wang NP,Guyton RA,et al.Inhibition of myocardial injury by ischemia postconditioning during reperfusion:comparison with ischemic preconditioning.Am J Physiol Heart Cite Physiol 2003;285:579-88
    [4]Wells,B.A.,Keats,A.S,Cooley,D.A.,.Increased tolerance to cerebral ischemia produced by general anesthesia during temporary carotid occlusion.Surgery 1963;54:216-223.
    [5]Haelewyn B,Yvon A,Hanouz J.L,et al.Desflurane affords greater protection than halothane against focal cerebral ischemia in the rat.Br J Anaesth 2003;91:390-396
    [6]Warner,D.S.,McFarlane C,Todd,M.M.,Ludwig,P.,McAllister,A.M..Sevoflurane and halothane reduce focal ischemic brain damage in the rat.Possible influence on thermoregulation.Anesthesiology 1993;79(5):985-992.
    [7]Zheng S,Zuo Z,.Isoflurane preconditioning reduces purkinje cell death in an in vitro model of rat cerebellar ischemia.N euroscience 2003;118(1):99-106.
    [8]Zheng S,Zuo Z.Isoflurane preconditioning induces neuroprotection against ischemia via activation of P38 mitogen-activated protein kinases.Molecular Pharmacology 2004:65(5):1172-80.
    [9]吴明春,熊利泽,朱正华,等.异氟醚预处理脑保护作用的剂量-效应关系.第四军医大学学报,2002,23:1357-1359
    [10]Wang J,Eel B,et al.Sevoflurane immediate preconditioning alters hypoxic membrane potential changes in rat hippocampal slices and improves recovery of CA1 pyramidal cells after hypoxia and global cerebral ischemia.Neuroscience 2007,145,1097-1107
    [11]Franz K,Ralphiel S,Norbert R,et al.Sevoflurane-induced preconditioning of rat brain in vitro and the role of KATP channels.Brain Research 2004,1021,76-81
    [12]Detlef O,Saskia D,Christian F,Horst S,et al.The influence of Mitochondrial KATP-channels in the Cardioprotection of Preconditioning and Postconditioning by Sevoflurane in the Rat In Vivo.Anesth Analg 2005;101;1252-60
    [13]Wouter D,Rene J.P,Musters,et al.The cardioprotective effect of sevoflurane depends on protein kinase C activation,opening of mitochondrial KATP channels,and the production of reactive oxygen species~ Anesth Analg 2003;97;1370-6
    [14]Ralphiel S,Akca O,Roewer N,et al.Sevoflurane-induced preconditioning protects against cerebral ischemic neuronal damage in rats.Brain research,2005,1034,147-152
    [15]Jianzhong An,Zeljko J,et al.Myocardial protection by isoflurane preconditioning preserves Ca2+ cycling proteins independent of sarcolemmal and mitochondrial KATP channels.Anesth Analg 2007;105;1207-13
    [16]Shimizu,K.,Lacza,Z.,Rajapakse,N.,Horiguchi,T.,Snipes,J.,Busija,D.W.,MitoK(ATP)opener,diazoxide,reduces neuronal damage after middle cerebral artery occlusion in the rat.American Journal of Physiology.Heart and Circulatory Physiology 2002,283(3),1005-1011.
    [17]Shimizu K,Lacza Z,Rajapakse N,et al.MitoK(ATP)opener,diazoxide,reduces neuronal damage after middle cerebral artery occlusion in the rat.Am J Phusiol.2002;283:1005-11
    [18]张俊杰,顾虎,李士通,黄施伟。线粒体ATP敏感性钾通道开放预防脑缺血—再灌注引起的神经细胞凋亡。临床麻醉学杂志。2004,20,420-22
    [19]赵晕,董海龙,熊利泽等。线粒体ATP敏感性钾离子通道参与远程预处理对大鼠脑保护作用的机制。第四军医大学学报。2007,28(18)1633-35
    [20]Xiong LZ,Zheng Y,Wu M,Hou L,Zhu Z,Zhang X,Lu Z.Preconditioning with isoflurane produces dose-dependent neuroprotection via activation of adenosine triphosphate-regulated potassium channels after focal cerebral ischemia in rats.Anesthesia and Analgesia 2003;96(1),233-237.
    [21]Bajgar R,Seetharaman S,Kowaltowski A.J,et al.indentification and properties of a novel intracellular(mitochondrial)ATP-sensitive potassium channel in brain,J.Biol.Chem.2001,276(36):33369-74
    [22]王伟。严格控制实验条件,建立标准化脑缺血动物模型。中华神经杂志1998.31(5):261
    [23]Longa EZ,Weinstein PR,Carlson S,et al.Reversible middle cerebral artery occlusion without craniotomy in rats.Stroke.1989;20(1):84-91.
    [24]Tsuchidate R,He QP,Smith ML,et al.Regional cerebral blood flow during and after 2 hour middle cerebral artery occlusion in the rat.J Chromatogr,1992;577:289-298
    [25]胡凌,高培毅。线拴法制备大鼠局灶性脑缺血模型影响因素的探讨。中国医学影响技术。2004;10:1624-26
    [26]卞杰勇,王宇惠等。17β-雌二醇对大鼠局灶性脑缺血bcl-2、bax表达及凋亡的影响。江苏医药杂志。2007;29:813-815
    [27]Kapinya KJ,Lowl D,Futterer C,et al.Tolerance against ischemic neuronal injury can be induced by volatile anesthetics and is inducible NO synthase dependent.Stroke,2002,33(7):1889-1898
    [28]叶明,吴浩等。不同吸入麻醉方式对局灶性大脑中动脉缺血—再灌注模型制作的影响。中国现代神经疾病杂志。2007:7(3):228-233
    [29]Van Lookere N,Campagne M,Thomas GR,et al.Secondary reduction in the apparent diffusion coefficient of water,increase in cerebral blood volume,and delayed neuronal death after middle cerebral artery occlusion and early reperfusion in the rat.J Cere Blood Flow Metab,1999,19:1354-1364
    [30]Koizumi J,Yoshida Y,Nakazawa T,et al.Experimental studies of ischemic brain edema:A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area.Stroke,1986,80(3):559-62
    [31]刘广义,付志新,郝娟芝,等.大鼠脑缺血再灌注后Bcl-2,Caspase-3mRNA水平表达与大脑皮质及纹状体区炎性细胞浸润的影响.神经疾病与精神卫生,2004,4(4):252-255
    [32]Yao H,Takasawa R,Fukudu K et al.DNA fragmentation in ischemic core and penumbra in focal cerebral ischemia in rats.Mol Brain Res,2001,91:112
    [33]Bariage M.Stroke damaged neurons may commit cellular suicide.Science,1998:281;1303-1309
    [34]储照虎,吴家幕,刘富东,等。大鼠局灶性脑缺血再灌注损伤神经细胞凋亡及其调控基因的表达。临床神经病学杂志,2000;13(3):134-136
    [35]Tsujimoto Y,Finger LR,Yunis J,et al.Cloning of the chromosome breakpoint of neoplastic B cell with the t(14;18) chromosome translocation. Science 1984; 226 (4678): 1097-9
    [36] Kitagawa K, Matsumoto M, Tsujimoto Y, et al. Amelioration of hippocampal neuronal damage after global ischemia by neuronal overexperssion of bcl-2 in transgenic mice.Stroke,1998,29(12):2616-2621
    [37] Gibson ME, Han BH, Choi J, et al. Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci U S A 1998; 95(9):4997-5002
    [38] Warner, D.S., McFarlane, C, Todd, M.M., Ludwig, P., McAllister, A.M., 1993.
    [39] Warner, D.S., Takaoka, S., Wu, B., Ludwig, P.S., Pearlstein, R.D., Brinkhous, A.D., Dexter, F., 1996. Electroencephalographic burst suppression is not required to elicit maximal neuroprotection from pentobarbital in a rat model of focal cerebral ischemia. Anesthesiology 84 (6), 1475-1484.
    [40] Sevoflurane and halothane reduce focal ischemic brain damage in the rat.Possible influence on thermoregulation. Anesthesiology 79 (5), 985-992.
    [41] Bhardwaj A,Castro AF,Alkayed NJ,et al. Anesthetic choice of halothane versus propofol: impact on experimental perioperative stroke.Stroke 2001 ;32:1920- 1925
    [42] Puig N.R, Ferrero P, Bay ML, et al. Effects of sevoflurane general anesthesia: immunological studies in mice. International Immunopharmacology 2(2002),95-104
    [43] Crawford MW,Lerman J,et al.Hemodynamic and organ blood flow responses to halothane and sevoflurane anesthesia during spontaneous ventilation.Anesth Analg 1992;75(6): 1000-1006
    [44] Payne RS,Akca O,Roewer N,et al.Sevoflurane-induced preconditioning protects against cerebral ischemic neuronal damage in rats. Brain Res,2555,1034(1-2):147-152
    
    [45] Yellon DM,Baxter GF. A "second window of protection" or delayed preconditioning phenomenon: future horizons for myocardial protection? Journal of molecular and cellular cardiology 1995;27(4):1023-34
    [46] Heurteaux C,Lauritzen I,Widmann C,et al.Essential role of adenosine, adenosine Al receptors, and ATP-sensitive K+ channels in cerebral ischemic preconditioning.Proc Natl Acad Sci 1995;92:4666-70
    [47] Kuzuya T,Hoshida S,Yamashita N,et al.Delayed effects of sublethal ischemia on the acquisition of tolerance to ischemia. Circ Res 1993; 72:1293-99
    [48] Roscoe AK,Christensen JD,Lynch C. Isoflurane, but not halothane, induces protection of human myocardium via adenosine Al receptors and adenosine triphosphate-sensitive potassium channels. Anesthesiology 2000;92:1692-701
    [49] Kersten JR,Orth KG, Pagel PS, Mei DA, et al. Role of adenosine in isoflurane-induced cardioprotection. Anesthesiology 1997:86:1128-39
    [50] Toller WG,Montgomery MW,Pagel PS,Hettrick DA,et al. Isoflurane-enhanced recovery of canine stunned myocardium: Role forprotein kinase C? Anesthesiology 1999:91:713-22
    [51] Arther R,Rene J.P,Brechje J,et al.Reactive oxygen species precede protein kinase C-Sactivation independent of adenosine triphoshpate-sensitive mitochondrial channel opening in sevoflurane-induced cardioprotection. Anesthesiology 2004; 100:506-14
    [52] De Ruijter W,Musters RJP,et al.The cardioprotective effect of sevoflurane depends on protein kinase c activation,opening of mitochondrial K+ATP channels and the production of reactive oxygen species. Anesth Analg 2003; 97: 1370-6
    [53] Kevin LG,Novalija E,Riess ML,et al.Sevoflurane exposure generates superoxide but leads to decreased superoxide during ischemia and reperfusion in isolated hearts. Anesth Analg 2003;96:949-55
    [54] Forbes RA,Steenbergen C,Murphy E. Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism.Circ Res 2001 88:802-809
    [55] Becker LB. New concepts in reactive oxygen species and cardiovascular reperfusion physiology.Cardiovasc Res 2004 61:461-470
    [56] Rebecchi MJ,Pentyala SN.Anaesthetic actions on other targets:Protein kinase C and guanine nucleotide-binding proteins.Br J Anaesth 2002;89:62-78
    [57] Zhang DX,Chen YF,Campbell WB,et al.Characteristics and superoxide-induced activation of reconstituted myocardial mitochondrial ATP-sensitive potassium channels.Circ Res 2001;89:1177-83
    [58] More M.C, Brains R.B, Vinje M.L, et al. Sevoflurane depolarizes pre-synaptic mitochondria in the central nervous system. Acta Anaesthesiol Scand,2004, 48(5):562-8
    [59] Debaka G, May R, Kicinnska A, et al. Potassium channel openers depolarize hippocampal mitochondria. Brain Res,2001,892:42-50
    
    [60] Kis B, Rajapakse N.C, Snipes JA, et al. The mitochondrial KATP channel opener BMS191095 induces neuronal preconditioning, NeuroReport, 2004,15: 345-349.
    [61] Garlid KD, Santos PD, Xie ZJ, et al. Mitochondrial potassium transport: the role of the mitochondrial ATP sensitive K+ channel in cardiac function and cardioprotection.Biochemica et biophysica acta.2003; 1606:1-21
    [62] Yokoshiki H, Sunagawa M, Seki T, et al.ATP-sensitive K channels in pancreatic, cardiac, and vascular smooth muscle cells. Am Physiol, 1998,274: 25-37
    [63] Garlid KD,Paucek P,Yarov-Yarovoy,et al.The mitochondrial KATP channel as a receptor for potassium channel openers.J Biol Chem,1996,271(15):8796-8799
    [64] Katsuya T,Dorothee Weihrauch,et al. Mitochondrial adenosine triphosphate-regulated potassium channel opening acts as a trigger for isoflurane-induced preconditioning by generating reactive oxygen species. Anesthesiology 2003 ;98:935-43
    [65] Pain T, Yang XM, Critz SD, et al. Opening of mitochondrial KATP channels triggers the preconditioned state by generating free radicals. Circ Res 2000; 87:460-6
    [66] Carroll R, Gant VA, Yellon DM. Mitochondrial KATP channel opening protects a human atrial-derived cell line by a mechanism involving free radical generation. Cardiovasc Res 2001;51:691-700
    [67] Fryer RM,Hsu AK,Gross GJ. Mitochondrial K(ATP) channel opening is important during index ischemia and following myocardial reperfusion in ischemic preconditioned rat hearts. J Mol Cell Cardiol 2001;33:831-4
    [68] Fryer RM,Eells JT,Hsu AK,et al.Ischemic preconditioning in rats:Role of mitochondrial KATP channel in preservation of mitochondrial function.Am J Physiol 2000;278: 305-12
    [69] Liu Y, Sato T, O'Rourke B, Marban E. Mitochondrial ATP-dependent potassium channels: Novel effectors of cardioprotection? Circulation 1998;97:2463-9
    [70] Lacza T,Snipe J.A,Kis B,et al.Calcium in ischemic cell death. Stroke. 1998,29:705-718
    [71] Ozcan C,Bienengraeber M, Dzeja P.P,et al.Potassium channel openers protect cardiac mitochondria by attenuating oxidant stress at reoxygenation.Am J Physiol, Heart Circ.Physiol.2002,282: 531-539
    [72] Liu D,Lu C,Wan R,et al.Activation of mitoKATP channels protects neurons against ischemia-induced death by a mechanisms involving suppression of Bax translocation and cytochrome C release.J Cereb Blood Flow Metab.2002, 22:431-433
    [73] Hanley PJ,Mickel M,Brandt U,Daut J. KATP channel-independent targets of diazoxide and 5-hydroxydecanoate in the heart.J Physiol 2002;542:735-41
    [1] Morris, Marilyn C: Temperature regulation after cardiac arrest[horizontal ellipsis] Timing is everything! Critical Care Medicine. 2003, 31(2) :654-655
    [2] Nozari A, Safar P: Mild hypothermia during prolonged cardiopulmonary cerebral resuscitation increases conscious survival in dogs. Critical Care Medicine. 2004, 32(10):2110-2116
    [3] Safar P, Kochanek P: Therapeutic hypothermia after cardiac arrest. N Engl J Med 2002, 346:612-613.
    [4] Karibe H, Sato K, Shimizu H, Tominaga T, Koshu K, Yoshimoto T: Intraoperative mild hypothermia ameliorates postoperative cerebral blood flow impairment in patients with aneurismal subarachnoidal hemorrhage. Neurosurgery 2000; 47:594-601.
    [5] Eisenburger P, Sterz F, Holzer M, et al.: Therapeutic hypothermia after cardiac arrest. Curr Opin Crit Care 2001, 7:184-188.
    [6] Nagao K, Hayashi N, Kanmatsuse K, et al.: Cardiopulmonary cerebral resuscitation using emergency cardiopulmonary bypass, coronary reperfusion therapy and mild hypothermia in patients with cardiac arrest outside the hospital. J Am Coll Cardiol 2000,36:776-783.
    [7] Nozari A, Safar P: Mild hypothermia during prolonged cardiopulmonary cerebral resuscitation increases conscious survival in dogs. Critical Care Medicine. 2004, 32(10):2110-2116
    [8] Yang X, Hachimi I: Effect of resuscitative mild hypothermia and oxygen concentration on the survival time during lethal uncontrolled haemorrhagic shock in mechanically ventilated rats. European Journal of Emergency Medicine. 2004, 11(4):210-216
    [9] Callaway CW, Tadler SC, Katz LM, et al.: Feasibility of external cranial cooling during out-of-hospital cardiac arrest. Resuscitation: 2002, 52:159-165.
    [10]Hachimi-Idrissi S, Corne L, Ebinger G, et al.: Mild hypothermia induced by a helmet device: a clinical feasibility study. Resuscitation 2001, 51:275-281.
    [11] Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, Smith K: Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 2002; 346:557-563.
    [12] The Hypothennia after Cardiac Arrest Study Group: Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 2002; 346:549-556.
    [13]Holzer M, Behringer W: Therapeutic hypothermia after cardiac arrest. Current Opinion in Anaesthesiology. 2005,18(2):163-168
    [14] Fisher M, Dalton D: New Research in the Field of Stroke: Therapeutic Hypothermia after Cardiac Arrest. Stroke. 2003, 34(4) ;1051-1053
    [15]Clifton GL, Miller ER, Choi SC, et al.: Lack of effect of induction of hypothermia after acute brain injury. N Engl J Med 2001, 344:556-563.
    [16]Oddo M, Schaller M-D, Feihl F, et al: From evidence to clinical practice :Effective implementation of therapeutic hypothermia to improve patient outcome after cardiac arrest. Crit Care Med 2006; 34:1865-1873
    [17] Sterz F, Holzer M, et al: Hypothermia after cardiac arrest: a treatment that works. Current Opinion in Critical Care. 2003, 9(3):205-210
    [18]Rajek A, Greif R, Sessler DI, et al.: Core cooling by central venous infusion of ice-cold (4 degrees C and 20 degrees C) fluid: isolation of core and peripheral thermal compartments. Anesthesiology 2000,93:629-637.
    [19]Bernard S, Buist M, Monteiro O, et al.: Induced hypothermia using large volume, ice-cold intravenous fluid in comatose survivors of out-of-hospital cardiac arrest: a preliminary report. Resuscitation 2003, 56:9-13.
    [20] Safar P, Behringer W. Cerebral resuscitation from cardiac arrest. In: A textbook of neurointensive care. Layon AJ, Gabrielli A, Friedman WA, editors. Philadelphia, WB Saunders; in press.
    [21]Battin MR, Penrice J, Gunn TR, Gunn AJ: Treatment of term infants with head cooling and mild systemic hypothermia (35.0[degrees]C and 34.5[degrees]C) after perinatal asphyxia. Pediatrics 2003; 111:244-251.
    [22]Siesjo BK: Pathophysiology and treatment of focal cerebral ischemia, II: mechanisms of damage and treatment. J Neurosurg 1992; 77:337-354.
    [23]Lipton SA, Rosenberg PA: Excitatory amino acids as final common pathway for neurological disorders. N Engl J Med 1994; 330:613-622.
    [24]Negovsky VA: Postresuscitation disease. Crit Care Med 1988; 16:942-946.
    [25]Broccard A: Therapeutic hypothermia for anoxic brain injury following cardiac arrest: A "cool" transition toward cardiopulmonary cerebral resuscitation. Critical Care Medicine. 2006, 34(7): 2008-2009
    [26]Kentner R, Rollwagen FM, Prueckner S, Behringer W, Wu X, Stezoski J, et al.: Effects of mild hypothermia on survival and serum cytokines in uncontrolled hemorrhagic shock in rats. Shock 2002; 17:521-526.
    
    [27] Lin X, Zhi D, Zhang S: Inhibiting effect of moderate hypothermia on cell apoptosis after diffuse brain injury in rats. Chin J Traumatol 2001; 4:14-19.
    
    [28]Nolan JP, Morley PT, Vanden Hoek TL, et al.: Therapeutic hypothermia after cardiac arrest. An advisory statement by the Advanced Life Support Task Force of the International Liaison Committee on Resuscitation. Resuscitation 2003;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700