结核分枝杆菌广谱胁迫蛋白Rv2624c的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结核分枝杆菌(Mycobacterium tuberculosis,Mtb)是导致结核病的病原菌。全球约有三分之一的人口感染结核分枝杆菌,每年约有两百万人死于结核病,因此结核病成为严重威胁人类健康的疾病之一。据估计,人类感染结核分枝杆菌后,只有10%的感染能够转化为活动性肺结核;在其余90%的感染中,细菌在宿主肺部存留维持代谢休眠状态而进入潜伏感染期。结核分枝杆菌的潜伏感染在结核病发病机理中起非常重要的作用,但是目前相关的调节机制尚不明确。近年来已有研究证明结核分枝杆菌的广谱胁迫蛋白(Universal Stress Protein,USP)家族与潜伏感染有关,研究这类家族蛋白的功能,以期为结核分枝杆菌的潜伏感染研究提供一些线索。
     广谱胁迫蛋白是一种古老且保守的蛋白家族,当细菌处于环境压力胁迫情况下,比如营养物质缺乏,缺氧,NO胁迫,生长环境中有重金属离子等毒性物质存在,热休克以及DNA损伤等,该家族蛋白参与表达调控,有助于维持细菌在压力下存活。感染宿主的结核分枝杆菌被巨噬细胞吞噬后逐步形成肉芽肿,此时的结核分枝杆菌恰好就处于氧气、营养物质缺乏的压力环境中。结核分枝杆菌包含十个广谱胁迫蛋白,研究表明其中一个广谱胁迫蛋白Rv2623是细菌进入慢性感染期必须的蛋白,该蛋白能够调节结核分枝杆菌在体内和体外的生长,并且这种调节与蛋白结合ATP的功能有关,提示该家族蛋白与结核分枝杆菌的潜伏感染形成具有密切关系。
     本论文主要针对结核分枝杆菌广谱胁迫蛋白Rv2624c进行功能研究。首先构建Rv2624c在大肠杆菌(E.coli中的重组表达质粒,将该蛋白在大肠杆菌中进行表达纯化,并且用纯蛋白免疫新西兰大白兔制作抗Rv2624c的兔多克隆抗体。通过对Rv2624c纯蛋白进行生化活性检测,证实了Rv2624c具有ATP结合能力但体外单独存在时不具有ATP酶活性。对该蛋白ATP结合保守区域的氨基酸进行点突变后,突变体的ATP结合能力下降,证明了突变的氨基酸在蛋白对ATP的结合中起关键性作用。其次对过表达Rv2624c野生型和突变体的耻垢分枝杆菌进行了绘制生长曲线实验和斑点生长实验,结果显示过表达Rv2624c对耻垢分枝杆菌的体外生长没有影响。同时,用过表达Rv2624c野生型和突变体的耻垢分枝杆菌侵染巨噬细胞THP1后比较细菌存活率,我们发现Rv2624c过表达的耻垢分枝杆菌的存活率高于对照菌株,且突变体的存活率趋势与ATP结合能力大小成正比。
     转录组测序分析表明,对差异表达的基因进行KEGG pathway显著性富集分析,我们发现过表达Rv2624c的耻垢分枝杆菌和对照菌株相比差异最大的通路是精氨酸脯氨酸代谢通路以及色氨酸代谢通路。通过荧光实时定量PCR验证Rv2624c过表达的耻垢分枝杆菌中这两条通路的相关基因在转录组水平上与对照菌株相比表达量增高。有报道显示精氨酸是与结核分枝杆菌在压力环境中生长有关的氨基酸,而色氨酸的合成能够抑制CD4T细胞介导的对结核分枝杆菌的杀伤作用。因此,我们推测Rv2624c的功能与精氨酸和色氨酸代谢通路有关。我们通过BlastX比对找出这两条代谢通路的基因在牛分枝杆菌(M.bovis,BCG)中的同功能基因,对过表达Rv2624c的牛分枝杆菌进行荧光定量PCR验证这些同功能基因的表达量也有增高,提示Rv2624c的功能与精氨酸脯氨酸代谢通路和色氨酸代谢通路有关。
     综上所述,本研究证明了Rv2624c具有ATP结合活性,对Rv2624c ATP结合保守区域的氨基酸进行突变后蛋白的ATP结合能力下降。Rv2624c及突变体在耻垢分枝杆菌中的过表达均对耻垢分枝杆菌的体外生长没有影响,而过表达Rv2624c的耻垢分枝杆菌在侵染巨噬细胞THP1后存活率增高。在转录组水平上发现导致这种表型的差异基因富集通路是精氨酸脯氨酸代谢通路和色氨酸代谢通路,并通过荧光实时定量PCR证实了该通路中相关基因表达量增高。在过表达Rv2624c的BCG中找到了这些基因的同功能基因,经验证表达量也增高,提示Rv2624c的功能可能与精氨酸脯氨酸代谢通路和色氨酸代谢通路有关,为结核分枝杆菌USP的研究提供了线索。
Mycobacterium tuberculosis (Mtb) is a pathogenic bacteria species in the genus Mycobacterium and the causative agent of most cases of tuberculosis (TB). TB is the second leading cause of death in the world from a bacterial infectious disease. The World Health Organizaiton (WHO) estimates that approximately one-third of the world's population is infected with Mtb and2million individuals die of TB. Only about10%of tuberculosis infections lead to active pulmonary disease. In the remaining90%of tuberculosis cases, initial infection is contained by the host's immune system and active disease dose not develop. This situation is called Latent TB Infection (LTBI). The stable LTBI state is achieved by the ability of Mtb to attenuate and evade host mycobactericidal responses. Inadequate immunity leads to mycobacterial multiplication and clinical disease. It's dangerous when dormant Mtb turn reactivation. Unfortunately, the mechanisms that regulate these processes remain unclear. Recent researches show that Universal Stress Protein(USP) superfamily is associated with the latency. We study functions of these proteins in order to provide valuable insight into tuberculosis dormancy and uncover new chances for the development of antituberculosis therapies.
     The USP superfamily is an acient and well-conserved protein family represented in diverse organisms from Archae and Eubacteria to yeast, fungi and plants. USP can be reduced in response to a wide variety of growth-arrested conditions, for examples, heat shock, DNA damage, NO, exhaustion of any one of number of nutrients, presence of a variety of toxic agents including heavy metals, hypoxia. Researchs about Rv2623which is one of the Mtb USP, suggest that i) Rv2623regulates growth of Mtb in vivo and vitro, ii)Rv2623is required for the Mtb entry into the chronic phase of infection in the host, iii)Rv2623binds ATP, iv)the growth-regulatory is related to its ATP-binding activity. The results indicate that USP and Mtb dormancy are relevant.
     Our studies show that Rv2624c which is another USP of Mtb binds ATP while it isn't an ATPase when it is alone in vitro. We engineered mutations within D17E and G109A conserved amio acids to disrupt ATP binding. ATP quantificaition analysis of nucleotides bound from E.coli-purified Rv2624cD17E,Rv2624cG109and Rv2624cD17EG109revealed that the mutant proteins are deficient in ATP-binding. The wild type and D17E, G109A, D17EG109A mutant proteins were overexpressed in M.smegmatis and tested by anti-Rv2624c rabbit polyclonal antibody. The D17E and D17EG109A overexpressed at different levels compared to wile type Rv2624c. We examined the effect of overexpression of Rv2624c and mutants on the rapidly growing M.smegmatis MC2155. The results showed that the growth kinetics of mutants are comparable to that of wildtype. We also determined M.smegmatis which overexpressed Rv2624c exhibited a increase survival in macrophages THP1. We utilized RNA-seq to explore the transcriptome of M.smegmatis which overexpressed Rv2624c in order to explain above phenotype. Two profiles of M.smegmatis which overexpressed Rv2624c and control were generated after a physical ribosome RNA removal step. We systematically described the transcriptome and analyzed the functions for the differentiated expressed genes between the two strains, and finally chose arginine/proline metabolism pathway and tryptophan metabolism pathway which predicted to be related to the survival in macrophages.10upregulated genes selected from two pathways were validated by RT-qPCR.7homologous genes of above10genes can be found in M.bovis and also were validated upregulated by RT-qPCR in M.bovis which overexpressed Rv2624c. So we predicted the fuction of Rv2624c is related to arginine/proline metabolism pathway and tryptophan metabolism pathway. Our studies indicate that Rv2624c is very impotant in survival in macrophage for mycobacterium and provide clues for USP studies.
引文
1. WHO publishes Global tuberculosis report 2013. Euro Surveill 2013,18(43).
    2. Galagan JE:Genomic insights into tuberculosis. Nat Rev Genet 2014.
    3. GERNEZ-RIEUX C, BEERENS H, FOURNIER P, GERVOIS M: [Bacteriological results of the 6 months'continuous treatment of pulmonary tuberculosis with the triple antibacterial combination:streptomycin, isoniazid and para-amino-salicylic acid;comparison with univalent or bivalent antibacterial therapy]. Ann Inst Pasteur Lille 1952,5:98-104.
    4. Raviglione MC, Smith IM:XDR tuberculosis--implications for global public health. N Engl J Med 2007,356(7):656-659.
    5. Gandhi NR, Moll A, Sturm AW, Pawinski R, Govender T, Lalloo U, Zeller K, Andrews J, Friedland G:Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa. Lancet 2006,368(9547):1575-1580.
    6. Trunz BB, Fine P, Dye C:Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide:a meta-analysis and assessment of cost-effectiveness. Lancet 2006,367(9517):1173-1180.
    7. Tameris MD, Hatherill M, Landry BS, Scriba TJ, Snowden MA, Lockhart S, Shea JE, McClain JB, Hussey GD, Hanekom WA et al:Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet 2013,381(9871):1021-1028.
    8. Abubakar I, Zignol M, Falzon D, Raviglione M, Ditiu L, Masham S, Adetifa I, Ford N, Cox H, Lawn SD et al: Drug-resistant tuberculosis:time for visionary political leadership. Lancet Infect Dis 2013,13(6):529-539.
    9. Mcllleron H, Meintjes G, Burman WJ, Maartens G:Complications of antiretroviral therapy in patients with tuberculosis:drug interactions, toxicity, and immune reconstitution inflammatory syndrome. J Infect Dis 2007,196 Suppl 1:S63-S75.
    10. Zumla AI, Gillespie SH, Hoelscher M, Philips PP, Cole ST, Abubakar I, McHugh TD, Schito M, Maeurer M, Nunn AJ:New antituberculosis drugs, regimens, and adjunct therapies:needs, advances, and future prospects. Lancet Infect Dis 2014, 14(4):327-340.
    11. Amaral L, Udwadia Z, Abbate E, van Soolingen D:The added effect of thioridazine in the treatment of drug-resistant tuberculosis. Int J Tuberc Lung Dis 2012,16(12):1706-1708,1708-1709.
    12. Musuka S, Srivastava S, Siyambalapitiyage DC, Meek C, Leff R, Pasipanodya J, Gumbo T:Thioridazine pharmacokinetic-pharmacodynamic parameters "Wobble" during treatment of tuberculosis:a theoretical basis for shorter-duration curative monotherapy with congeners. Antimicrob Agents Chemother 2013,57(12):5870-5877.
    13. Nicas M, Nazaroff WW, Hubbard A:Toward understanding the risk of secondary airborne infection:emission of respirable pathogens. J Occup Environ Hyg 2005,2(3):143-154.
    14. Lindestam AC, Sette A:Definition of CD4 Immunosignatures Associated with MTB. Front Immunol 2014,5:124.
    15. Cliff JM, Lee JS, Constantinou N, Cho JE, Clark TG, Ronacher K, King EC, Lukey PT, Duncan K, Van Helden PD et al:Distinct phases of blood gene expression pattern through tuberculosis treatment reflect modulation of the humoral immune response. J Infect Dis 2013,207(1):18-29.
    16. Valentini D, Gaseitsiwe S, Maeurer M:Humoral 'reactome' profiles using peptide microarray chips. Trends Immunol 2010,31(11):399-400.
    17. Zumla A, Rao M, Parida SK, Keshavjee S, Cassell G, Wallis R, Axelsson-Robertsson R, Doherty M, Andersson J, Maeurer M:Inflammation and tuberculosis:host-directed therapies. J Intern Med 2014.
    18. Hickman SP, Chan J, Salgame P:Mycobacterium tuberculosis induces differential cytokine production from dendritic cells and macrophages with divergent effects on naive T cell polarization. J Immunol 2002,168(9):4636-4642.
    19. Bodnar KA, Serbina NV, Flynn JL:Fate of Mycobacterium tuberculosis within murine dendritic cells. Infect Immun 2001,69(2):800-809.
    20. Del PG, De Carli M, Mastromauro C, Biagiotti R, Macchia D, Falagiani P, Ricci M, Romagnani S:Purified protein derivative of Mycobacterium tuberculosis and excretory-secretory antigen(s) of Toxocara canis expand in vitro human T cells with stable and opposite (type 1 T helper or type 2 T helper) profile of cytokine production. JClin Invest 1991,88(1):346-350.
    21. Newport MJ, Huxley CM, Huston S, Hawrylowicz CM, Oostra BA, Williamson R, Levin M:A mutation in the interferon-gamma-receptor gene and susceptibility to mycobacterial infection. NEngl J Med 1996,335(26):1941-1949.
    22. Flynn JL, Chan J:Immunology of tuberculosis. Annu Rev Immunol 2001, 19:93-129.
    23. Henderson RA, Watkins SC, Flynn JL:Activation of human dendritic cells following infection with Mycobacterium tuberculosis. J Immunol 1997, 159(2):635-643.
    24. Wang Y, Kelly CG, Karttunen JT, Whittall T, Lehner PJ, Duncan L, MacAry P, Younson JS, Singh M, Oehlmann W et al: CD40 is a cellular receptor mediating mycobacterial heat shock protein 70 stimulation of CC-chemokines. Immunity 2001, 15(6):971-983.
    25. Wang Y, Kelly CG, Singh M, McGowan EG, Carrara AS, Bergmeier LA, Lehner T:Stimulation of Thl-polarizing cytokines, C-C chemokines, maturation of dendritic cells, and adjuvant function by the peptide binding fragment of heat shock protein 70. J Immunol 2002,169(5):2422-2429.
    26. Lazarevic V, Myers AJ, Scanga CA, Flynn JL:CD40, but not CD40L, is required for the optimal priming of T cells and control of aerosol M. tuberculosis infection. Immunity 2003,19(6):823-835.
    27. Hertz CJ, Kiertscher SM, Godowski PJ, Bouis DA, Norgard MV, Roth MD, Modlin RL:Microbial lipopeptides stimulate dendritic cell maturation via Toll-like receptor 2. J Immunol 2001,166(4):2444-2450.
    28. Brightbill HD, Libraty DH, Krutzik SR, Yang RB, Belisle JT, Bleharski JR, Maitland M, Norgard MV, Plevy SE, Smale ST et al: Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 1999, 285(5428):732-736.
    29. Mohan VP, Scanga CA, Yu K, Scott HM, Tanaka KE, Tsang E, Tsai MM, Flynn JL, Chan J:Effects of tumor necrosis factor alpha on host immune response in chronic persistent tuberculosis:possible role for limiting pathology. Infect Immun 2001,69(3):1847-1855.
    30. Chakravarty SD, Zhu G, Tsai MC, Mohan VP, Marino S, Kirschner DE, Huang L, Flynn J, Chan J:Tumor necrosis factor blockade in chronic murine tuberculosis enhances granulomatous inflammation and disorganizes granulomas in the lungs. Infect Immun 2008,76(3):916-926.
    31. Tsai MC, Chakravarty S, Zhu G, Xu J, Tanaka K, Koch C, Tufariello J, Flynn J, Chan J:Characterization of the tuberculous granuloma in murine and human lungs: cellular composition and relative tissue oxygen tension. Cell Microbiol 2006, 8(2):218-232.
    32. Morosini M, Meloni F, Marone BA, Paschetto E, Uccelli M, Pozzi E, Fietta A: The assessment of IFN-gamma and its regulatory cytokines in the plasma and bronchoalveolar lavage fluid of patients with active pulmonary tuberculosis. Int J Tuberc Lung Dis 2003,7(10):994-1000.
    33. Redford PS, Murray PJ, O'Garra A:The role of IL-10 in immune regulation during M. tuberculosis infection. Mucosal Immunol 2011,4(3):261-270.
    34. Verbon A, Juffermans N, Van Deventer SJ, Speelman P, Van Deutekom H, Van Der Poll T:Serum concentrations of cytokines in patients with active tuberculosis (TB) and after treatment. Clin Exp Immunol 1999,115(1):110-113.
    35. Steimle V, Siegrist CA, Mottet A, Lisowska-Grospierre B, Mach B:Regulation of MHC class Ⅱ expression by interferon-gamma mediated by the transactivator gene CIITA. Science 1994,265(5168):106-109.
    36. Russell DG:Fhagosomes, fatty acids and tuberculosis. Nat Cell Biol 2003, 5(9):776-778.
    37. Schaible UE, Sturgill-Koszycki S, Schlesinger PH, Russell DG:Cytokine activation leads to acidification and increases maturation of Mycobacterium avium-containing phagosomes in murine macrophages. J Immunol 1998, 160(3):1290-1296.
    38. Via LE, Fratti RA, McFalone M, Pagan-Ramos E, Deretic D, Deretic V:Effects of cytokines on mycobacterial phagosome maturation. J Cell Sci 1998,111(Pt 7):897-905.
    39. MacMicking JD, Taylor GA, McKinney JD:Immune control of tuberculosis by IFN-gamma-inducible LRG-47. Science 2003,302(5645):654-659.
    40. Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V: Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 2004,119(6):753-766.
    41. Deretic V, Singh S, Master S, Harris J, Roberts E, Kyei G, Davis A, de Haro S, Naylor J, Lee HH et al: Mycobacterium tuberculosis inhibition of phagolysosome biogenesis and autophagy as a host defence mechanism. Cell Microbiol 2006, 8(5):719-727.
    42. Chan J, Flynn J:The immunological aspects of latency in tuberculosis. Clin Immunol 2004,110(1):2-12.
    43. Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG, Orme IM: Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med 1993,178(6):2243-2247.
    44. Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR:An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med 1993,178(6):2249-2254.
    45. Dalton DK, Pitts-Meek S, Keshav S, Figari IS, Bradley A, Stewart TA: Multiple defects of immune cell function in mice with disrupted interferon-gamma genes. Science 1993,259(5102):1739-1742.
    46. Kamijo R, Le J, Shapiro D, Havell EA, Huang S, Aguet M, Bosland M, Vilcek J: Mice that lack the interferon-gamma receptor have profoundly altered responses to infection with Bacillus Calmette-Guerin and subsequent challenge with lipopolysaccharide. J Exp Med 1993,178(4):1435-1440.
    47. Kamijo R, Shapiro D, Gerecitano J, Le J, Bosland M, Vilcek J:Mycobacterium bovis infection of mice lacking receptors for interferon-gamma or for transcription factor IRF-1. J Interferon Res 1994,14(5):281-282.
    48. Scanga CA, Mohan VP, Tanaka K, Alland D, Flynn JL, Chan J:The inducible nitric oxide synthase locus confers protection against aerogenic challenge of both clinical and laboratory strains of Mycobacterium tuberculosis in mice. Infect Immun 2001,69(12):7711-7717.
    49. Nathan C:Inducible nitric oxide synthase in the tuberculous human lung. Am JRespir Crit Care Med 2002,166(2):130-131.
    50. Wang CH, Liu CY, Lin HC, Yu CT, Chung KF, Kuo HP:Increased exhaled nitric oxide in active pulmonary tuberculosis due to inducible NO synthase upregulation in alveolar macrophages. Eur Respir J 1998,11(4):809-815.
    51. Nicholson S, Bonecini-Almeida MG, Lapa ESJ, Nathan C, Xie QW, Mumford R, Weidner JR, Calaycay J, Geng J, Boechat N et al: Inducible nitric oxide synthase in pulmonary alveolar macrophages from patients with tuberculosis. J Exp Med 1996, 183(5):2293-2302.
    52. Nozaki Y, Hasegawa Y, Ichiyama S, Nakashima I, Shimokata K:Mechanism of nitric oxide-dependent killing of Mycobacterium bovis BCG in human alveolar macrophages. Infect Immun 1997,65(9):3644-3647.
    53. Choi HS, Rai PR, Chu HW, Cool C, Chan ED:Analysis of nitric oxide synthase and nitrotyrosine expression in human pulmonary tuberculosis. Am J Respir Crit Care Med 2002,166(2):178-186.
    54. Flynn JL, Chan J:Immune evasion by Mycobacterium tuberculosis:living with the enemy. Curr Opin Immunol 2003,15(4):450-455.
    55. Styblo K:Recent advances in epidemiological research in tuberculosis. Adv Tuberc Res 1980,20:1-63.
    56. GRZYBOWSKI S, ALLEN EA:THE CHALLENGE OF TUBERCULOSIS IN DECLINE. A STUDY BASED ON THE EPIDEMIOLOGY OF TUBERCULOSIS IN ONTARIO, CANADA. Am Rev Respir Dis 1964,90:707-720.
    57. Stead WW, Lofgren JP:Does the risk of tuberculosis increase in old age? J Infect Dis 1983,147(5):951-955.
    58. Stead WW:Pathogenesis of the sporadic case of tuberculosis. N Engl J Med 1967,277(19):1008-1012.
    59. Galloway JB, Hyrich KL, Mercer LK, Dixon WG, Fu B, Ustianowski AP, Watson KD, Lunt M, Symmons DP:Anti-TNF therapy is associated with an increased risk of serious infections in patients with rheumatoid arthritis especially in the first 6 months of treatment:updated results from the British Society for Rheumatology Biologics Register with special emphasis on risks in the elderly. Rheumatology (Oxford) 2011,50(1):124-131.
    60. Wayne LG, Sohaskey CD:Nonreplicating persistence of mycobacterium tuberculosis. Annu Rev Microbiol 2001,55:139-163.
    61. Brown GC:Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Biochim Biophys Acta 2001,1504(1):46-57.
    62. Martin E, Davis K, Bian K, Lee YC, Murad F:Cellular signaling with nitric oxide and cyclic guanosine monophosphate. Semin Perinatol 2000,24(1):2-6.
    63. Voskuil MI, Schnappinger D, Visconti KC, Harrell MI, Dolganov GM, Sherman DR, Schoolnik GK:Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J Exp Med 2003,198(5):705-713.
    64. Ohno H, Zhu G, Mohan VP, Chu D, Kohno S, Jacobs WJ, Chan J:The effects of reactive nitrogen intermediates on gene expression in Mycobacterium tuberculosis. Cell Microbiol 2003,5(9):637-648.
    65. Bohne W, Heesemann J, Gross U:Reduced replication of Toxoplasma gondii is necessary for induction of bradyzoite-specific antigens:a possible role for nitric oxide in triggering stage conversion. Infect Immun 1994,62(5):1761-1767.
    66. Vonlaufen N, Muller N, Keller N, Naguleswaran A, Bohne W, McAllister MM, Bjorkman C, Muller E, Caldelari R, Hemphill A:Exogenous nitric oxide triggers Neospora caninum tachyzoite-to-bradyzoite stage conversion in murine epidermal keratinocyte cell cultures. Int J Parasitol 2002,32(10):1253-1265.
    67. Hayashi S, Chan CC, Gazzinelli R, Roberge FG:Contribution of nitric oxide to the host parasite equilibrium in toxoplasmosis. J Immunol 1996,156(4):1476-1481.
    68. Talaue MT, Venketaraman V, Hazbon MH, Peteroy-Kelly M, Seth A, Colangeli R, Alland D, Connell ND:Arginine homeostasis in J774.1 macrophages in the context of Mycobacterium bovis BCG infection. J Bacteriol 2006, 188(13):4830-4840.
    69. Muttucumaru DG, Roberts G, Hinds J, Stabler RA, Parish T:Gene expression profile of Mycobacterium tuberculosis in a non-replicating state. Tuberculosis (Edinb) 2004,84(3-4):239-246.
    70. Starck J, Kallenius G, Marklund BI, Andersson DI, Akerlund T:Comparative proteome analysis of Mycobacterium tuberculosis grown under aerobic and anaerobic conditions. Microbiology+ 2004,150(Pt 11):3821-3829.
    71. Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan JA, Monahan IM, Dolganov G, Efron B, Butcher PD, Nathan C et al: Transcriptional Adaptation of Mycobacterium tuberculosis within Macrophages:Insights into the Phagosomal Environment. JExp Med 2003,198(5):693-704.
    72. Volpe E, Cappelli G, Grassi M, Martino A, Serafino A, Colizzi V, Sanarico N, Mariani F:Gene expression profiling of human macrophages at late time of infection with Mycobacterium tuberculosis. Immunology 2006,118(4):449-460.
    73. Cappelli G, Volpe E, Grassi M, Liseo B, Colizzi V, Mariani F:Profiling of Mycobacterium tuberculosis gene expression during human macrophage infection: upregulation of the alternative sigma factor G, a group of transcriptional regulators, and proteins with unknown function. Res Microbiol 2006,157(5):445-455.
    74. Monahan IM, Belts J, Banerjee DK, Butcher PD:Differential expression of mycobacterial proteins following phagocytosis by macrophages. Microbiology+ 2001, 147(Pt2):459-471.
    75. Shi L, Jung YJ, Tyagi S, Gennaro ML, North RJ:Expression of Thl-mediated immunity in mouse lungs induces a Mycobacterium tuberculosis transcription pattern characteristic of nonreplicating persistence. Proc Natl Acad Sci U S A 2003, 100(1):241-246.
    76. Sharma D, Bose A, Shakila H, Das TK, Tyagi JS, Ramanathan VD:Expression of mycobacterial cell division protein, FtsZ, and dormancy proteins, DevR and Acr, within lung granulomas throughout guinea pig infection. FEMS Immunol Med Microbiol 2006,48(3):329-336.
    77. Park HD, Guinn KM, Harrell MI, Liao R, Voskuil MI, Tompa M, Schoolnik GK, Sherman DR:Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis. Mol Microbiol 2003,48(3):833-843.
    78. Kendall SL, Movahedzadeh F, Rison SC, Wernisch L, Parish T, Duncan K, Betts JC, Stoker NG:The Mycobacterium tuberculosis dosRS two-component system is induced by multiple stresses. Tuberculosis (Edinb) 2004,84(3-4):247-255.
    79. Boon C, Dick T:Mycobacterium bovis BCG response regulator essential for hypoxic dormancy. JBacteriol 2002,184(24):6760-6767.
    80. Saini DK, Malhotra V, Tyagi JS:Cross talk between DevS sensor kinase homologue, Rv2027c, and DevR response regulator of Mycobacterium tuberculosis. Febs Lett 2004,565(1-3):75-80.
    81. Sousa EH, Tuckerman JR, Gonzalez G, Gilles-Gonzalez MA:DosT and DevS are oxygen-switched kinases in Mycobacterium tuberculosis. Protein Sci 2007, 16(8):1708-1719.
    82. Sardiwal S, Kendall SL, Movahedzadeh F, Rison SC, Stoker NG, Djordjevic S: A GAF domain in the hypoxia/NO-inducible Mycobacterium tuberculosis DosS protein binds haem. J Mol Biol 2005,353(5):929-936.
    83. Kumar A, Toledo JC, Patel RP, Lancaster JJ, Steyn AJ:Mycobacterium tuberculosis DosS is a redox sensor and DosT is a hypoxia sensor. Proc Natl Acad Sci USA 2007,104(28):11568-11573.
    84. Ioanoviciu A, Yukl ET, Moenne-Loccoz P, de Montellano PR:DevS, a heme-containing two-component oxygen sensor of Mycobacterium tuberculosis. Biochemistry-Us 2007,46(14):4250-4260.
    85. Yukl ET, Ioanoviciu A, de Montellano PR, Moenne-Loccoz P:Interdomain interactions within the two-component heme-based sensor DevS from Mycobacterium tuberculosis. Biochemistry-Us 2007,46(34):9728-9736.
    86. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN et al: The COG database:an updated version includes eukaryotes. BMC Bioinformatics 2003,4:41.
    87. Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer EL et al: The Pfam protein families database. Nucleic Acids Res 2004,32(Database issue):D138-D141.
    88. Hingley-Wilson SM, Lougheed KE, Ferguson K, Leiva S, Williams HD: Individual Mycobacterium tuberculosis universal stress protein homologues are dispensable in vitro. Tuberculosis (Edinb) 2010,90(4):236-244.
    89. Liu WT, Karavolos MH, Bulmer DM, Allaoui A, Hormaeche RD, Lee JJ, Khan CM:Role of the universal stress protein UspA of Salmonella in growth arrest, stress and virulence. Microb Pathog 2007,42(1):2-10.
    90. Tkaczuk KL, A SI, Chruszcz M, Evdokimova E, Savchenko A, Minor W: Structural and functional insight into the universal stress protein family. Evol Appl 2013,6(3):434-449.
    91. Mushegian AR, Koonin EV:Sequence analysis of eukaryotic developmental proteins:ancient and novel domains. Genetics 1996,144(2):817-828.
    92. Gustavsson N, Diez A, Nystrom T:The universal stress protein paralogues of Escherichia coli are co-ordinately regulated and co-operate in the defence against DNA damage. Mol Microbiol 2002,43(1):107-117.
    93. Diez A, Gustavsson N, Nystrom T:The universal stress protein A of Escherichia coli is required for resistance to DNA damaging agents and is regulated by a RecA/FtsK-dependent regulatory pathway. Mol Microbiol 2000, 36(6):1494-1503.
    94. Sousa MC, McKay DB:Structure of the universal stress protein of Haemophilus influenzae. Structure 2001,9(12):1135-1141.
    95. Zarembinski TI, Hung LW, Mueller-Dieckmann HJ, Kim KK, Yokota H, Kim R, Kim SH:Structure-based assignment of the biochemical function of a hypothetical protein:a test case of structural genomics. Proc Natl Acad Sci U S A 1998, 95(26):15189-15193.
    96. Weber A, Jung K:Biochemical properties of UspG, a universal stress protein of Escherichia coli. Biochemistry-Us 2006,45(6):1620-1628.
    97. Nachin L, Nannmark U, Nystrom T:Differential roles of the universal stress proteins of Escherichia coli in oxidative stress resistance, adhesion, and motility. J Bacteriol 2005,187(18):6265-6272.
    98. Saveanu C, Miron S, Borza T, Craescu CT, Labesse G, Gagyi C, Popescu A, Schaeffer F, Namane A, Laurent-Winter C et al:Structural and nucleotide-binding properties of YajQ and YnaF, two Escherichia coli proteins of unknown function. Protein Sci 2002,11(11):2551-2560.
    99. Siderovski DP, Willard FS:The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits. Int J Biol Sci 2005, 1(2):51-66.
    100. Tyagi JS, Sharma D:Mycobacterium smegmatis and tuberculosis. Trends Microbiol 2002,10(2):68-69.
    101. Nystrom T, Neidhardt FC:Expression and role of the universal stress protein, UspA, of Escherichia coli during growth arrest. Mol Microbiol 1994,11(3):537-544.
    102. O'Toole R, Smeulders MJ, Blokpoel MC, Kay EJ, Lougheed K, Williams HD:A two-component regulator of universal stress protein expression and adaptation to oxygen starvation in Mycobacterium smegmatis. JBacteriol 2003,185(5):1543-1554.
    103. Rosenkrands I, Slayden RA, Crawford J, Aagaard C, Barry CR, Andersen P: Hypoxic response of Mycobacterium tuberculosis studied by metabolic labeling and proteome analysis of cellular and extracellular proteins. J Bacteriol 2002, 184(13):3485-3491.
    104. Ntolosi BA, Betts J, Zappe H, Powles R, Steyn LM:Growth phase-associated changes in protein expression in Mycobacterium smegmatis identify a new low molecular weight heat shock protein. Tuberculosis (Edinb) 2001,81(4):279-289.
    105. Boon C, Li R, Qi R, Dick T:Proteins of Mycobacterium bovis BCG induced in the Wayne dormancy model. J Bacteriol 2001,183(8):2672-2676.
    106. Florczyk MA, McCue LA, Purkayastha A, Currenti E, Wolin MJ, McDonough KA:A family of acr-coregulated Mycobacterium tuberculosis genes shares a common DNA motif and requires Rv3133c (dosR or devR) for expression. Infect Immun 2003,71(9):5332-5343.
    107. Drumm JE, Mi K, Bilder P, Sun M, Lim J, Bielefeldt-Ohmann H, Basaraba R, So M, Zhu G, Tufariello JM et al: Mycobacterium tuberculosis universal stress protein Rv2623 regulates bacillary growth by ATP-Binding:requirement for establishing chronic persistent infection. PLoS Pathog 2009,5(5):e 1000460.
    108. Sherman DR, Voskuil M, Schnappinger D, Liao R, Harrell MI, Schoolnik GK: Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding alpha-crystallin. Proc Natl Acad Sci U S A 2001,98(13):7534-7539.
    109. Guerrero E, Jaspe R, Salazar L:Partial Characterization of Mycobacterium tuberculosis DosR regulated genes:Rv2626c,Rv2625 and Rv2624c. In., vol.37; 2012: 602-607.
    110. Shen H, Yang E, Wang F, Jin R, Xu S, Huang Q, Wang H:Altered protein expression patterns of Mycobacterium tuberculosis induced by ATB107.J Microbiol 2010,48(3):337-346.
    111. Zhang YJ, Reddy MC, Ioerger TR, Rothchild AC, Dartois V, Schuster BM, Trauner A, Wallis D, Galaviz S, Huttenhower C et al:Tryptophan biosynthesis protects mycobacteria from CD4 T-cell-mediated killing. Cell 2013, 155(6):1296-1308.
    112. Singh S, Saraav I, Sharma S:Immunogenic potential of latency associated antigens against Mycobacterium tuberculosis. Vaccine 2014,32(6):712-716.
    113. Rifat D, Karakousis PC:Differential regulation of the two-component regulatory system senX3-regX3 in Mycobacterium tuberculosis. Microbiology+ 2014.
    114. Parish T, Smith DA, Roberts G, Betts J, Stoker NG:The senX3-regX3 two-component regulatory system of Mycobacterium tuberculosis is required for virulence. Microbiology-2003,149(Pt 6):1423-1435.
    115. Tufariello JM, Jacobs WJ, Chan J:Individual Mycobacterium tuberculosis resuscitation-promoting factor homologues are dispensable for growth in vitro and in vivo. Infect Immun 2004,72(1):515-526.
    116. Kana BD, Gordhan BG, Downing KJ, Sung N, Vostroktunova G, Machowski EE, Tsenova L, Young M, Kaprelyants A, Kaplan G et al:The resuscitation-promoting factors of Mycobacterium tuberculosis are required for virulence and resuscitation from dormancy but are collectively dispensable for growth in vitro. Mol Microbiol 2008,67(3):672-684.
    117. Amir A, Rana K, Arya A, Kapoor N, Kumar H, Siddiqui MA:Mycobacterium tuberculosis H37Rv:In Silico Drug Targets Identification by Metabolic Pathways Analysis. Int JEvol Biol 2014,2014:284170.
    118. Schon T, Elias D, Moges F, Melese E, Tessema T, Stendahl O, Britton S, Sundqvist T:Arginine as an adjuvant to chemotherapy improves clinical outcome in active tuberculosis. Eur Respir J 2003,21(3):483-488.
    119. Schon T, Idh J, Westman A, Elias D, Abate E, Diro E, Moges F, Kassu A, Ayele B, Forslund T et al:Effects of a food supplement rich in arginine in patients with smear positive pulmonary tuberculosis--a randomised trial. Tuberculosis (Edinb) 2011,91(5):370-377.
    120. Surken M, Keller C, Rohker C, Ehlers S, Bange FC:Anaerobic arginine metabolism of Mycobacterium tuberculosis is mediated by arginine deiminase (arcA), but is not essential for chronic persistence in an aerogenic mouse model of infection. Int J Med Microbiol 2008,298(7-8):657-661.
    121. Berney M, Cook GM:Unique flexibility in energy metabolism allows mycobacteria to combat starvation and hypoxia. PLoS One 2010,5(1):e8614.
    122. Berney M, Weimar MR, Heikal A, Cook GM:Regulation of proline metabolism in mycobacteria and its role in carbon metabolism under hypoxia. Mol Microbiol 2012,84(4):664-681.
    123. Lagautriere T, Bashiri G, Paterson NG, Berney M, Cook GM, Baker EN: Characterization of the proline-utilization pathway in Mycobacterium tuberculosis through structural and functional studies. Acta Crystallogr D Biol Crystallogr 2014, 70(Pt 4):968-980.
    124. Gordhan BG, Smith DA, Alderton H, McAdam RA, Bancroft GJ, Mizrahi V: Construction and phenotypic characterization of an auxotrophic mutant of Mycobacterium tuberculosis defective in L-arginine biosynthesis. Infect Immun 2002, 70(6):3080-3084.
    1. Finlay BB, Falkow S:Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev 1997,61(2):136-169.
    2. van Wely KH, Swaving J, Freudl R, Driessen AJ:Translocation of proteins across the cell envelope of Gram-positive bacteria. Fems Microbiol Rev 2001,25(4):437-454.
    3. Pym AS, Brodin P, Majlessi L, Brosch R, Demangel C, Williams A, Griffiths KE, Marchal G, Leclerc C, Cole ST:Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat Med 2003,9(5):533-539.
    4. Stanley SA, Raghavan S, Hwang WW, Cox JS:Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc Natl Acad Sci USA 2003,100(22):13001-13006.
    5. Hsu T, Hingley-Wilson SM, Chen B, Chen M, Dai AZ, Morin PM, Marks CB, Padiyar J, Goulding C, Gingery M et al:The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted Iytic function required for invasion of lung interstitial tissue. Proc Natl Acad Sci U S A 2003,100(21):12420-12425.
    6. WHO publishes Global tuberculosis report 2013. Euro Surveill 2013,18(43).
    7. Zumla AI, Schito M, Maeurer M:Advancing the portfolio of tuberculosis diagnostics, drugs, biomarkers, and vaccines. Lancet Infect Dis 2014,14(4):267-269.
    8. Brennan PJ:Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2003,83(1-3):91-97.
    9. Sutcliffe IC:Cell envelope composition and organisation in the genus Rhodococcus. Antonie Van Leeuwenhoek 1998,74(1-3):49-58.
    10. Bayan N, Houssin C, Chami M, Leblon G:Mycomembrane and S-layer:two important structures of Corynebacterium glutamicum cell envelope with promising biotechnology applications. JBiotechnol 2003,104(1-3):55-67.
    11. Tekaia F, Gordon SV, Gamier T, Brosch R, Barrell BG, Cole ST:Analysis of the proteome of Mycobacterium tuberculosis in silico. Tuber Lung Dis 1999, 79(6):329-342.
    12. Gey VPN, Gamieldien J, Hide W, Brown GD, Siezen RJ, Beyers AD:The ESAT-6 gene cluster of Mycobacterium tuberculosis and other high G+C Gram-positive bacteria. Genome Biol 2001,2(10):H44.
    13. Renshaw PS, Panagiotidou P, Whelan A, Gordon SV, Hewinson RG, Williamson RA, Carr MD:Conclusive evidence that the major T-cell antigens of the Mycobacterium tuberculosis complex ESAT-6 and CFP-10 form a tight,1:1 complex and characterization of the structural properties of ESAT-6, CFP-10, and the ESAT-6*CFP-10 complex. Implications for pathogenesis and virulence. J Biol Chem 2002,277(24):21598-21603.
    14. Lightbody KL, Ilghari D, Waters LC, Carey G, Bailey MA, Williamson RA, Renshaw PS, Carr MD:Molecular features governing the stability and specificity of functional complex formation by Mycobacterium tuberculosis CFP-10/ESAT-6 family proteins. JBiol Chem 2008,283(25):17681-17690.
    15. Bitter W, Houben EN, Bottai D, Brodin P, Brown EJ, Cox JS, Derbyshire K, Fortune SM, Gao LY, Liu J et al:Systematic genetic nomenclature for type VII secretion systems. PLoS Pathog 2009,5(10):e1000507.
    16. Champion PA, Champion MM, Manzanillo P, Cox JS:ESX-1 secreted virulence factors are recognized by multiple cytosolic AAA ATPases in pathogenic mycobacteria. Mol Microbiol 2009,73(5):950-962.
    17. Das C, Ghosh TS, Mande SS:Computational analysis of the ESX-1 region of Mycobacterium tuberculosis:insights into the mechanism of type VII secretion system. PLoS One 2011,6(11):e27980.
    18. Rosenberger T, Brulle JK, Sander P:A beta-Lactamase based reporter system for ESX dependent protein translocation in mycobacteria. PLoS One 2012,7(4):e35453.
    19. Gey VPN, Sampson SL, Lee H, Kim Y, van Helden PD, Warren RM:Evolution and expansion of the Mycobacterium tuberculosis PE and PPE multigene families and their association with the duplication of the ESAT-6 (esx) gene cluster regions. BMC Evol Biol 2006,6:95.
    20. McLaughlin B, Chon JS, MacGurn JA, Carlsson F, Cheng TL, Cox JS, Brown EJ:A mycobacterium ESX-1-secreted virulence factor with unique requirements for export. PLoS Pathog 2007,3(8):e105.
    21. Carlsson F, Joshi SA, Rangell L, Brown EJ:Polar localization of virulence-related Esx-1 secretion in mycobacteria. PLoS Pathog 2009,5(1):e1000285.
    22. Gao LY, Guo S, McLaughlin B, Morisaki H, Engel JN, Brown EJ:A mycobacterial virulence gene cluster extending RD1 is required for cytolysis, bacterial spreading and ESAT-6 secretion. Mol Microbiol 2004,53(6):1677-1693.
    23. Converse SE, Cox JS:A protein secretion pathway critical for Mycobacterium tuberculosis virulence is conserved and functional in Mycobacterium smegmatis. J Bacteriol 2005,187(4):1238-1245.
    24. Brodin P, Majlessi L, Marsollier L, de Jonge MI, Bottai D, Demangel C, Hinds J, Neyrolles O, Butcher PD, Leclerc C et al: Dissection of ESAT-6 system 1 of Mycobacterium tuberculosis and impact on immunogenicity and virulence. Infect Immun 2006,74(1):88-98.
    25. MacGurn JA, Raghavan S, Stanley SA, Cox JS:A non-RD1 gene cluster is required for Snm secretion in Mycobacterium tuberculosis. Mol Microbiol 2005, 57(6):1653-1663.
    26. Guinn KM, Hickey MJ, Mathur SK, Zakel KL, Grotzke JE, Lewinsohn DM, Smith S, Sherman DR:Individual RDl-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis. Mol Microbiol 2004,51(2):359-370.
    27. Abdallah AM, Verboom T, Hannes F, Safi M, Strong M, Eisenberg D, Musters RJ, Vandenbroucke-Grauls CM, Appelmelk BJ, Luirink J et al: A specific secretion system mediates PPE41 transport in pathogenic mycobacteria. Mol Microbiol 2006, 62(3):667-679.
    28. Renshaw PS, Lightbody KL, Veverka V, Muskett FW, Kelly G, Frenkiel TA, Gordon SV, Hewinson RG, Burke B, Norman J et al: Structure and function of the complex formed by the tuberculosis virulence factors CFP-10 and ESAT-6. Embo J 2005,24(14):2491-2498.
    29. Brodin P, de Jonge MI, Majlessi L, Leclerc C, Nilges M, Cole ST, Brosch R: Functional analysis of early secreted antigenic target-6, the dominant T-cell antigen of Mycobacterium tuberculosis, reveals key residues involved in secretion, complex formation, virulence, and immunogenicity. JBiol Chem 2005,280(40):33953-33959.
    30. Champion PA, Stanley SA, Champion MM, Brown EJ, Cox JS:C-terminal signal sequence promotes virulence factor secretion in Mycobacterium tuberculosis. Science 2006,313(5793):1632-1636.
    31. Fortune SM, Jaeger A, Sarracino DA, Chase MR, Sassetti CM, Sherman DR, Bloom BR, Rubin EJ:Mutually dependent secretion of proteins required for mycobacterial virulence. Proc Natl Acad Sci USA 2005,102(30):10676-10681.
    32. Nagai H, Cambronne ED, Kagan JC, Amor JC, Kahn RA, Roy CR:A C-terminal translocation signal required for Dot/Icm-dependent delivery of the Legionella RalF protein to host cells. Proc Natl Acad Sci USA 2005,102(3):826-831.
    33. Vergunst AC, van Lier MC, den Dulk-Ras A, Stuve TA, Ouwehand A, Hooykaas PJ: Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-transIocated proteins of Agrobacterium. Proc Natl Acad Sci U S A 2005, 102(3):832-837.
    34. Christie PJ, Atmakuri K, Krishnamoorthy V, Jakubowski S, Cascales E:Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 2005,59:451-485.
    35. Singh A, Mai D, Kumar A, Steyn AJ:Dissecting virulence pathways of Mycobacterium tuberculosis through protein-protein association. Proc Natl Acad Sci USA 2006,103(30):11346-11351.
    36. Niederweis M:Mycobacterial porins--new channel proteins in unique outer membranes. Mol Microbiol 2003,49(5):1167-1177.
    37. Faller M, Niederweis M, Schulz GE:The structure of a mycobacterial outer-membrane channel. Science 2004,303(5661):1189-1192.
    38. Frigui W, Bottai D, Majlessi L, Monot M, Josselin E, Brodin P, Gamier T, Gicquel B, Martin C, Leclerc C et al: Control of M. tuberculosis ESAT-6 secretion and specific T cell recognition by PhoP. PLoS Pathog 2008,4(2):e33.
    39. Blasco B, Chen JM, Hartkoorn R, Sala C, Uplekar S, Rougemont J, Pojer F, Cole ST: Virulence regulator EspR of Mycobacterium tuberculosis is a nucleoid-associated protein. PLoS Pathog 2012,8(3):e1002621.
    40. Stoop EJ, Schipper T, Huber SK, Nezhinsky AE, Verbeek FJ, Gurcha SS, Besra GS, Vandenbroucke-Grauls CM, Bitter W, van der Sar AM:Zebrafish embryo screen for mycobacterial genes involved in the initiation of granuloma formation reveals a newly identified ESX-1 component. Dis Model Mech 2011,4(4):526-536.
    41. Ohol YM, Goetz DH, Chan K, Shiloh MU, Craik CS, Cox JS:Mycobacterium tuberculosis MycPl protease plays a dual role in regulation of ESX-1 secretion and virulence. Cell Host Microbe 2010,7(3):210-220.
    42. Xu J, Laine O, Masciocchi M, Manoranjan J, Smith J, Du SJ, Edwards N, Zhu X, Fenselau C, Gao LY:A unique Mycobacterium ESX-1 protein co-secretes with CFP-10/ESAT-6 and is necessary for inhibiting phagosome maturation. Mol Microbiol 2007,66(3):787-800.
    43. Lewis KN, Liao R, Guinn KM, Hickey MJ, Smith S, Behr MA, Sherman DR: Deletion of RD1 from Mycobacterium tuberculosis mimics bacille Calmette-Guerin attenuation. J Infect Dis 2003,187(1):117-123.
    44. Bottai D, Majlessi L, Simeone R, Frigui W, Laurent C, Lenormand P, Chen J, Rosenkrands I, Huerre M, Leclerc C et al: ESAT-6 secretion-independent impact of ESX-1 genes espF and espGl on virulence of Mycobacterium tuberculosis. J Infect Dis 2011,203(8):1155-1164.
    45. Tan T, Lee WL, Alexander DC, Grinstein S, Liu J:The ESAT-6/CFP-10 secretion system of Mycobacterium marinum modulates phagosome maturation. Cell Microbiol 2006,8(9):1417-1429.
    46. Brodin P, Poquet Y, Levillain F, Peguillet I, Larrouy-Maumus G, Gilleron M, Ewann F, Christophe T, Fenistein D, Jang J et al:High content phenotypic cell-based visual screen identifies Mycobacterium tuberculosis acyltrehalose-containing glycolipids involved in phagosome remodeling. PLoS Pathog 2010,6(9):e 1001100.
    47. MacGurn JA, Cox JS:A genetic screen for Mycobacterium tuberculosis mutants defective for phagosome maturation arrest identifies components of the ESX-1 secretion system. Infect Immun 2007,75(6):2668-2678.
    48. Smith J, Manoranjan J, Pan M, Bohsali A, Xu J, Liu J, McDonald KL, Szyk A, LaRonde-LeBlanc N, Gao LY:Evidence for pore formation in host cell membranes by ESX-1-secreted ESAT-6 and its role in Mycobacterium marinum escape from the vacuole. Infect Immun 2008,76(12):5478-5487.
    49. van der Wel N, Hava D, Houben D, Fluitsma D, van Zon M, Pierson J, Brenner M, Peters PJ:M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 2007,129(7):1287-1298.
    50. Simeone R, Bobard A, Lippmann J, Bitter W, Majlessi L, Brosch R, Enninga J: Phagosomal rupture by Mycobacterium tuberculosis results in toxicity and host cell death. PLoS Pathog 2012,8(2):e1002507.
    51. de Jonge MI, Pehau-Arnaudet G, Fretz MM, Romain F, Bottai D, Brodin P, Honore N, Marchal G, Jiskoot W, England P et al:ESAT-6 from Mycobacterium tuberculosis dissociates from its putative chaperone CFP-10 under acidic conditions and exhibits membrane-lysing activity. J Bacteriol 2007,189(16):6028-6034.
    52. Houben D, Demangel C, van Ingen J, Perez J, Baldeon L, Abdallah AM, Caleechurn L, Bottai D, van Zon M, de Punder K et al:ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria. Cell Microbiol 2012,14(8):1287-1298.
    53. Wong KW, Jacobs WJ:Critical role for NLRP3 in necrotic death triggered by Mycobacterium tuberculosis. Cell Microbiol 2011,13(9):1371-1384.
    54. Carlsson F, Kim J, Dumitru C, Barck KH, Carano RA, Sun M, Diehl L, Brown EJ: Host-detrimental role of Esx-1-mediated inflammasome activation in mycobacterial infection. PLoS Pathog 2010,6(5):e1000895.
    55. Koo IC, Wang C, Raghavan S, Morisaki JH, Cox JS, Brown EJ:ESX-1-dependent cytolysis in lysosome secretion and inflammasome activation during mycobacterial infection. Cell Microbiol 2008,10(9):1866-1878.
    56. Hagedorn M, Rohde KH, Russell DG, Soldati T:Infection by tubercular mycobacteria is spread by nonlytic ejection from their amoeba hosts. Science 2009, 323(5922):1729-1733.
    57. Sassetti CM, Rubin EJ:Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci U S A 2003,100(22):12989-12994.
    58. Swaim LE, Connolly LE, Volkman HE, Humbert O, Born DE, Ramakrishnan L: Mycobacterium marinum infection of adult zebrafish causes caseating granulomatous tuberculosis and is moderated by adaptive immunity. Infect Immun 2006,74(11):6108-6117.
    59. Volkman HE, Clay H, Beery D, Chang JC, Sherman DR, Ramakrishnan L: Tuberculous granuloma formation is enhanced by a mycobacterium virulence determinant. PLoSBiol 2004,2(11):e367.
    60. Coros A, Callahan B, Battaglioli E, Derbyshire KM:The specialized secretory apparatus ESX-1 is essential for DNA transfer in Mycobacterium smegmatis. Mol Microbiol 2008,69(4):794-808.
    61. Flint JL, Kowalski JC, Karnati PK, Derbyshire KM:The RD1 virulence locus of Mycobacterium tuberculosis regulates DNA transfer in Mycobacterium smegmatis. Proc Natl Acad Sci U S A 2004,101(34):12598-12603.
    62. Sweeney KA, Dao DN, Goldberg MF, Hsu T, Venkataswamy MM, Henao-Tamayo M, Ordway D, Sellers RS, Jain P, Chen B et al:A recombinant Mycobacterium smegmatis induces potent bactericidal immunity against Mycobacterium tuberculosis. Nat Med 2011,17(10):1261-1268.
    63. Lamichhane G, Zignol M, Blades NJ, Geiman DE, Dougherty A, Grosset J, Broman KW, Bishai WR:A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis:application to Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2003,100(12):7213-7218.
    64. Sassetti CM, Boyd DH, Rubin EJ:Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 2003,48(1):77-84.
    65. Sampson SL:Mycobacterial PE/PPE proteins at the host-pathogen interface. Clin Dev Immunol 2011,2011:497203.
    66. Abdallah AM, Savage ND, van Zon M, Wilson L, Vandenbroucke-Grauls CM, van der Wel NN, Ottenhoff TH, Bitter W:The ESX-5 secretion system of Mycobacterium marinum modulates the macrophage response. J Immunol 2008,181(10):7166-7175.
    67. Abdallah AM, Bestebroer J, Savage ND, de Punder K, van Zon M, Wilson L, Korbee CJ, van der Sar AM, Ottenhoff TH, van der Wel NN et al:Mycobacterial secretion systems ESX-1 and ESX-5 play distinct roles in host cell death and inflammasome activation. J Immunol 2011,187(9):4744-4753.
    68. Bottai D, Di Luca M, Majlessi L, Frigui W, Simeone R, Sayes F, Bitter W, Brennan MJ, Leclerc C, Batoni G et al:Disruption of the ESX-5 system of Mycobacterium tuberculosis causes loss of PPE protein secretion, reduction of cell wall integrity and strong attenuation. Mol Microbiol 2012,83(6):1195-1209.
    69. Weerdenburg EM, Abdallah AM, Mitra S, de Punder K, van der Wel NN, Bird S, Appelmelk BJ, Bitter W, van der Sar AM:ESX-5-deficient Mycobacterium marinum is hypervirulent in adult zebrafish. Cell Microbiol 2012,14(5):728-739.
    70. Daleke MH, Cascioferro A, de Punder K, Ummels R, Abdallah AM, van der Wel N, Peters PJ, Luirink J, Manganelli R, Bitter W:Conserved Pro-Glu (PE) and Pro-Pro-Glu (PPE) protein domains target LipY lipases of pathogenic mycobacteria to the cell surface via the ESX-5 pathway. J Biol Chem 2011, 286(21):19024-19034.
    71. Srivastava V, Rouanet C, Srivastava R, Ramalingam B, Locht C, Srivastava BS: Macrophage-specific Mycobacterium tuberculosis genes:identification by green fluorescent protein and kanamycin resistance selection. Microbiology+ 2007,153(Pt 3):659-666.
    72. Singh VK, Srivastava V, Singh V, Rastogi N, Roy R, Shaw AK, Dwivedi AK, Srivastava R, Srivastava BS:Overexpression of Rv3097c in Mycobacterium bovis BCG abolished the efficacy of BCG vaccine to protect against Mycobacterium tuberculosis infection in mice. Vaccine 2011,29(29-30):4754-4760.
    73. Delogu G, Sanguinetti M, Pusceddu C, Bua A, Brennan MJ, Zanetti S, Fadda G: PE_PGRS proteins are differentially expressed by Mycobacterium tuberculosis in host tissues. Microbes Infect 2006,8(8):2061-2067.
    74. Iantomasi R, Sali M, Cascioferro A, Palucci I, Zumbo A, Soldini S, Rocca S, Greco E, Maulucci G, De Spirito M et al: PE_PGRS30 is required for the full virulence of Mycobacterium tuberculosis. Cell Microbiol 2012,14(3):356-367.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700