生物功能化粒子/核酸探针技术快速检测病原菌及ATP的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
病原菌引起的感染性疾病是近年威胁人类健康和造成社会恐慌的主要因素,同时也是造成人类死亡的重要原因。检测任务的紧迫性与检测样品的复杂性给传统病原菌检测方法提出了严峻的挑战,而传统的检测方法由于在特异性、灵敏度、操作简便性、快捷性等方面存在缺陷,难以满足日益发展的病原菌快速检测的需要。因此发展病原菌的快速、灵敏和准确的检测方法具有十分重要的意义。纳米材料有着独特的表面效应、小尺寸效应、量子尺寸效应和宏观隧道效应,在其表面进行各种修饰获得的各种功能化纳米材料与传统检测方法相结合,衍生出具有高通量、高灵敏、快速检测的方法;核酸探针技术是目前分子生物学中应用最广泛的技术之一,是定性或定量检测特异RNA或DNA序列的有力工具。本论文以三种纳米粒子和核酸探针技术为基础,结合新型的检测工具,发展了新的灵敏度高、特异性好的病原菌及ATP分子检测技术。本论文主要包括以下几个研究内容:
     (1)构建了基于免疫磁珠(Immunomolecular magnetic beads, IMBs)/表面等离子共振技术(surface plasmon resonance, SPR)的G群链球菌(Group G Streptococcus, GGS)快速分离检测体系。首先通过磁珠(magnetic beads, MBs)表面的不同功能基团与抗体分子共价结合得到三种功能化IMBs.实验考察了三种MBs与抗体的结合能力,结果表明三种磁珠均能很好地结合抗体分子,醛基化的磁珠结合能力最佳;实验还针对免疫磁珠分离链球菌的效果进行了考察,结果也表明三种免疫磁珠都能特异地分离样品中GGS,分离效果亦以醛基化的免疫磁珠效果最好。为了对IMBs分离的GGS进行定量分析,本研究联合了SPR技术。基于抗体分子与GGS的相互作用,在数十分钟内可以对菌浓度处于1.0×10'CFU/ml-1.0×108 CFU/ml范围内的GGS进行实时快速检测。与其它传统分离方法相比,本研究所采取的分离方法要简便和快速得多,能在一小时之内快速地分离得到目标菌。
     (2)基于核酸适配体-ATP复合物与绿色荧光染料Eva GreenTM作用,建立了荧光信号检测腺嘌呤核苷三磷酸(adenosine-triphosphate, ATP)新方法。体系优化了核酸适配体与ATP结合反应的实验条件。实验结果表明,核酸适配体与ATP反应的最适温度为12℃;pH值为7.5时,荧光检测结果最灵敏;在最优化的实验条件下,随着ATP浓度的减小,所测得的荧光信号与空白对照的变化值变小。由检测结果可知,当ATP浓度从10-6mol/L到10_2mol/L变化,对应的荧光强度随着浓度的减小而增大,呈现一定的线性关系。因此可作为该范围浓度的ATP定量检测的依据。体系还对该方法的特异性作出了探讨,将ATP同类型分子CTP、GTP、UTP作为对照,根据检测出的结果可知该核酸适配体对与ATP分子的检测具有较强的特异性。相较于其他的检测方法,本研究所建立的基于核酸适配体-ATP特异识别的荧光检测技术,对于ATP分子的检测,不仅反应体系特异性高,并且实验操作简单,耗时少,成本低。可见,一本研究为之后的分子识别和检测提供了更为坚实的基础。
     (3)利用量子点(QD)与金黄色葡萄球菌特异性序列制备了一种功能化QD-DNA探针,基于此探针荧光能量共振转移,建立了一种用于高效检测金黄色葡萄球菌16s rDNA的方法。本研究详细研究了氨基修饰的DNA与羧基修饰的QD不同比值、不同靶序列浓度等条件对荧光强度与荧光能量共振转移效率的影响,实验结果表明,荧光强度在羧基修饰的QD与氨基修饰的DNA比值为1:80时达到最大值,荧光能量共振转移效率在靶序列为60nM时趋向于稳定并在80nM时效率最高。在最佳实验条件下,检测系统最低可检测至20nM的金黄色葡萄球菌16s rDNA序列,其灵敏度已达到荧光标记的分子信标、DNA传感器、电化学线性探针等方法检测下限。实验结果亦证实该方法具有较强特异性。总之,此方法具有操作简单、耗时较短、灵敏度及特异性较强等特点,为金黄色葡萄球菌的检测开辟了一条新的道路。
     (4)以核酸适配子与配体的特异性识别为基础,以金纳米粒子溶液在不同状态下颜色的变化为表现方式,建立了一种金黄色葡萄球菌快速简捷的、肉眼可见的检测方法。采用氯金酸柠檬酸三钠水相还原法,制备出粒径均一,分散性较好的GNPs。将金黄色葡萄球菌的ssDNA适配子经巯基修饰后与GNPs孵育可得其检测探针并成功地用此探针进行了快速检测。
Diseases caused by pathogen infection are the major problems that threaten human health and lead to the recent social panic and the major cause of human death. The complexity of sample and the urgency of pathogenic bacteria posed a severe challenge for the traditional detection methods. But the traditional analytical tools and methods are difficult to meet the growing demands of rapid detection in the deficiencies of the sensitivity, specificity, simple operation, and rapidity. Therefore, it is very significant to develop a rapid, sensitive and accurate detection method towards pathogenic bacteria. Functional nanomaterials are well-suited for a wide range of biological applications because of their unique physical and chemical properties. As one of the most widely used molecular biology technologies, gene probe technology is a powerful tool for the qualitative or quantitative detection of specific RNA or DNA sequences. A new high sensitive and specifical detection method for pathogenic bacteria and their biomolecules was well constructed based on the nano-materials and gene probe technology in this study.
     This paper includes the following four reseaches:
     (1) Three functional immunomagnetic beads (IMBs) were constructed through the different functional groups on the surfaces of magnetic beads (MBs) covalently binding to antibodies, respectively. Their binding properties to antibody were also analysed. The results showed that all of the beads have high affinity, and ones with aldehyde groups are best among them. The effect of Group G Streptococcus (GGS) seperated by IMB was discussed. It was demonstrated that the three kinds of IMBs could separate GGS from samples, and the separation effects of IMBs with aldehydes are actually best. Continually, SPR technology based on the interaction of antibody and streptococci was used in order to quantitatively analyze GGS. It can successfully detect Strep, rapidly and its detected limit is 1.0x107CFU/ml. This method is more simple and rapid compared with traditional means.
     (2) A simple, efficient fluorescence detection technology for ATP was developed. Using DNA-intercalating dye Eva GreenTM to react with aptamer-ATP complex, the method can be quickly used to detect ATP based on its significant fluorescence signal changes. Some affection on the detection has been discussed, such as temperature, concentration and reaction time. It was shown that the best temperature and pH were 12℃and pH7.5, respectivily. The detection limitation of ATP could be 10-6 M under the optimized conditions.
     (3) Fluorescence resonance energy transfer (FRET) system has been utilized in order to find a fast and brief detection method for Staphyloccocus aureus, in which quantum dot was used as donors and organic fluorophore dyes as acceptors to inspect S. aureus specific 16s RNA. The result showed that the best fluorescent effect can been achieved when the ratio of carboxyl-modif ied QD to the amino-modified DNA is 1:80. The FRET efficiency would be steady when target DNA is 60nm and reach to its peak when target DNA is 80nm. Furthermore, this developed system is so sensitive that it can detect 20nm 16s rDNA. This work clearly indicated that FRET system is more sensitive and specific than other detect methods for S. aureus, in which quantum dot as.donors and organic fluorophore dyes as acceptors. Of course, it is possible to detect other bio-macromolecules with low density such as RNA and proteins in future.
     (4) A rapid, visible detection method for S. aureus was established based on the specific identification between aptamer and ligand. The results were displayed through the color changes of gold nanoparticles (GNPs) in different conditions. GNPs with uniform size and good dispersion were synthesized with chemical reduction method. The probe for S. aureus detection has been constructed based on the combination of sulphur-modified aptamer and GNPs and the batctera has been successfully detected.
引文
1.吕瑞芳,病原生物与免疫学基础[M].第1版,北京:高等教育出版社,2004,27
    2.吴仲鑫,周勇,贡树基等,肠出血性大肠杆菌0157:H7的紧密黏附素基因eae的测序及生物信息学分析[J].热带医学杂志,2008,8(2):93-96
    3.孙洋,冯书章,郭学军等,肠出血性大肠杆菌0157胶体金免疫层析试纸条的研制[J].中国人兽共患病学报,2008,24(4):356-359
    4.何欣荣,食品安全与食源性疾病控制研究进展[J].安徽预防医学杂志,2002,8(6):384-387.
    5.刘秀梅,陈艳,王晓英等,1992—2001年食源性疾病暴发资料分析--国家食源性疾病监测网[J].卫生研究,2004,33(6):725-27
    6.李业鹏,美国食品安全系统,中国食品卫生杂志,2001,13(4):44-49.
    7. Olivier L F. Javier D C, F Xavier Mu~noza, et al. Pathogen detection: A perspective of traditional methods and biosensors[J]. Biosensors and Bioelectronics,2007,22,1205-1217
    8. Leonard P, Hearty S, Brennan J, et al. Advances in biosensors for detection of pathogens in food and water[J]. Enz Microb Technol.2003, 32,3-13..
    9. Patel P D, Biosensors for measurement of analytes implicated in food safety:a review[J]. Trends Anal. Chem.2002,2196-115
    10. Emde K M E, Mao H Z., Finch G R., Detection and occurrence of waterborne bacterial and viral pathogens,1992[J]. Water Environ. Res. 64 (4),641-647.
    11. Theron J, Cilliers J, Du Preez, et al. Detection of toxigenic Vibrio cholerae from environmental water samples by an enrichment broth cultivation-pit-stop semi-nested PCR procedure[J]. J. Appl. Microbiol. 2000,89 (3):539-546.
    12. Atlas R M, Legionella:from environmental habitats to disease pathology, detection and control[J]. Environ Microbiol.1999,1 (4), 283-293
    13. Lim D V, Simpson J M, Kearns E A, et al. Current and developing technologies for monitoring agents of bioterrorism and biowarfare[J]. Clin Microbiol Rev,2005,18:583-607
    14. Hindson B J, Makarewicz A J, Setlur U S, et al. APDS:the autonomous pathogen detection system[J]. Biosensors and Bioelectronics,2005,20 (10):1925-1931.
    15. Abubakar I, Irvine L, Aldus C M, et al. A systematic review of the clinical, public health and cost-effectiveness of rapid diagnostic tests for the detection and identification of bacterial intestinal pathogens in faeces and food[J]. Health Technology Assessment,2007,11(36): 1-216
    16. Leonard P, Hearty S, Brennan J, et al. Advances in biosensors for detection of pathogens in food and water[J]. Enzyme and Microbial Technology,2003,32(1):3-13
    17. Alvarez-Barrientos A, Arroyo J, Canton R, et al. Applications of flow cytometry to clinical microbiology [J]. Clinical Microbiology Reviews, 2000,13(2):167-195
    18. Barken K B, Haagensen J A J, Tolker-Nielsen T. Advances in nucleic acid-based diagnostics of bacterial infections [J]. Clinics Chimica Acta, 2007,384(1-2):1-11
    19. Luo P G, Stutzenberger F J. Nanotechnology in the detection and control of microorganisms [J]. Advances in Applied Microbiology, 2008,63(63):145-181
    20. Deisingh A K, Thompson M. Detection of infectious and toxigenic bacteria[J]. Analyst,2002,127(5):567-581
    21. Ivnitski D, Abdel Hamid I, Atanasov P, et al. Biosensors for detection of pathogenic bacteria[J]. Biosensors and Bioelectronics, 1999,14(7):599-624
    22.王福厚,霍贵成,王德国等,食品中沙门氏菌检测方法的研究进展[J].中国乳品工业,2009,37(10)38-41.
    23. Agarwal R, Shukla S K, Dharmani S, et al. Biological warfare-an emerging threat[J]. The Journal of the Association of Physicians of India,2004,52:733-738.
    24.易松林,谭云洪,欧阳辉,利用BACTEC 960分枝杆菌分析系统对分枝杆菌进行快速菌型鉴定方法的研究[J].湖南师范大学学报(医学版),2008,5(1):
    25. Fleisher J M. Conducting recreational water quality surveys:some problemsand suggested remedies[J]. Marine Pollution Bulletin,1990, 21(12):562-567
    26. Rahman I, Shahamat M, Chowdhury M A, et al. Potential virulence of viable but nonculturable Shigella dysenteriae type[J]. Applied and Environmental Microbiology,1996,62(1):115-120
    27. Bej AK, Mahbubani MH, Dicesare JL, et al, Detection of viable Legionella pneumophila in water by polymerase chain reaction and gene probe methods[J]. Appl Environ Microbiol,1991,57:597-600
    28. Leoni E, Legnani PP, Comparison of selective procedures for isolation and enumeration of Legionella species from hot water systems[J]. Journal of Applied microbiology,2001,90(1):27-33.
    29. Levi K, Smedley J, Towner KJ. Evaluation of real-time PCR hybridization assay for rapid detection of Legionella pneumophila in hospital and environmental water samples [J]. Clin. Microbiol. Infect, 2003,9(7):754-758.
    30. Alocilja EC, Radke SM, Market analysis of biosensors for food safety[J]. Biosensors and Bioelectrons,2003,18 (5-6):841-846
    31. Perez FG, Mascini M, Tothill IE, et al, Immunomagnetic separation with mediated flow injection analysis amperometric detection of viable Escherichia coli O157 [J]. Anal. Chem.1998,70:2380-2386.
    32. Gu HW, Xu KM, Xu CJ, et al, Biofunctional Magnetic Nanoparticles for Protein Separation and Pathogen Detection[J]. Chem Commun, 2006,9,941-949.
    33. Crowther J R. ELISA Theory and Practice[M]. Humana Press Inc, USA, ISBN 0-89603-279-5.
    34. Chamberlain J, Gibbs RA, Deletion screening of the duchenne inuseu —lar dystrophy locus via multiplex DNA amplification[J]. Nucleid Acids Research,1988,16:11141-11156.
    35. Soumet C, Ennel G, Rose V, et al. Identification by a multiplex PCR-based assay of Salmonella Typhlmurium and Salmonella Enteritidisstrains from environmental swabs of poultry houses[J]. Letters ApplMicmbiol,1999,29:1-6.
    36.杨小娟,吴清平,动物性食品中大肠杆菌015:H7多重PCR检测方法的建立[J].中国卫生检验杂志,2007,17(11):1591-1592.
    37.李晓虹,闫东丽.利用多重PCR检测食品中副溶血性弧菌的方法研究[J].中国卫生检验杂志,2007,17(11):1975-1976.
    38.焦豫良,张兴群,李振勇,等.6种食品致病菌的多种PCR检测[J].临床检验杂志.’2005,23(4):256-257.
    39.陈文炳,李寿崧,邵碧英,等.应用多重PCR检测食品中SARS靶基因的初步研究[J].中国食品学报.2005,5(3):73-74.
    40.陈伟,杨迎伍,邓伟,等.3种致病菌PCR检测体系的建立及应用[J].食品与发酵工业,2008,34(9):131-133.
    41.王艳,实时PCR在大肠杆菌0157:H7检测中的应用[J].中国卫生检验杂志,2006,16(4):510-512.
    42. Deisingh AK, Thompson M, Strategies for the detection of Escherichia coli O157:H7 in foods[J]. J Appl Microbiol.2004,96, 419-429.
    43. Guan J G, Miao Y Q, Zhang Q J, Impedimetric biosensors[J]. J Biosci Bioeng.2004,97(4):219-226.
    44. Wang J, Cai X, Rivas G, et al. DNA electrochemical biosensor for the detection of short DNA sequences related to the human immun0de6cien y virus[J]. Anal them,1996,68:2629-2634.
    45. Brett A M 0, Serrano S H P, Macedo T A. el al. Electrochemical determination of carboplatin in serum using a DNA modified glassy carbon electrode [J]. Electroanalysis,1996,8:992.
    46. Wang J, Nielsen P E, Jiang M。et al. Mismatch-sensitive hybridization detection by peptide nucleic acids immobilized on a quartz crystal microbalance[J]. Anal Chem,1997,69:5200-5202.
    47. OhBK, Kim Y K, Lee W, et al. Immunosensor for detection of Legionella pneumophila using surface Plasmon resonance[J]. Biosensors and Bioelectronics,2003, 18:605-611
    48. Taylor, A.D., Yu, Q., Chen, S, et al, Comparison of E. coli O157:H7 preparation methods used for detection with surface plasmon resonance sensor [J]. Sens. Actuators B,2005,107,202-208.
    49. Leonard P, Hearty S, Quinn J, et al. A generic approach for the detection of whole Listeria monocytogenes cells in contaminated sam ples using surface plasmon resonance[J]. Biosensors and Bioelectronics,2004. 19:1331-1335.
    50. Bokken G C, CoSec R J, Van Knapen F, et al. Immuno—chemical detection of Salmonella group B, D an d E using an optical surface plasmon resonance biosensor[J]. FEMS Microbiology Lett,2003, 222:75-82.
    51. Plomer M, Guilbault G G, Hock B. Development of a piezoelectric imn'lunosensor fort he detection of enterobacteria[J]. Enzym Microb Techn,1992,14:230-235.
    52. Calter R M, Mekalanos J J, Jacobs M. B, et al. Quartz crystal microbalance detection of Vibrio cholerae 0139 serotype[J]. J Immunol Meth.1995.187:121-125.
    53.陈庆海,府伟灵,边志衡等,压电基因传感器d检-测巨细胞病毒PcR产物的实验研究[J].第三军医大学学报,2003,25(24):2202-2204.
    54. Gaiendragad M R, Kamath P Y, Anil P Y, et al. Development and standarization of a piezoelectric immunobiosensor for foot and mouth difieafie virus typing[J]. Veterinary Microbiology,2001,78:319-330.
    55. KonigB, GratzelM. Apiezoelectricimmunosensorforhepatitis viruses[J]. AnalChimActa,1995,309:19-25.
    56. Bernd K, Michael G A novel immunosensor for herpes viruses [J]. Anal chem,1994,66:341-344.
    57. Kosstinger C, Drost S. A quartz crystal biosensor for measurement in tiquids[J]. Biosens and Bioelectron,1992,7(6):397-404.
    58. Jayasena S D, Aptamers:an emerging class of molecules that rival antibodies as diagnostics [J]. Clin. Chem,1999,45(9):1628-1650.
    59. Edith T C, Evangelyn C A, Aptasensors for detection of microbial and viral pathogens [J]. Biosensors and Bioelectronics,2009, 24:3175-3182
    60. Stratis-Cullum, D N, Wade K L, Pellegrino, P.M., The International Society for Optical Engineering [J]. Proc. SPIE Conf.2005,5994, 59940D1-59940D9.
    61. Ye R, Wang T, Bedzyk L, et al, Applications of DNA microarrays in microbial systems[J]. J Microbiol Methods,2001,47:257-272.
    62. Call D R. Detecting and genotyping Escherichia coli O157:H7 using multiplexed PCR and nucleic acid microarray[J]. Int J Food Microbol, 2001,67:71-78.
    63. Borucki M K, Discrimination among Listeria monocy togenes isolates using a mixed genome DNA microarray[J]. Vet Microbiol,2003, (92):351-342.
    64. Bang X H, Li FJ, Yu SH, et al. Application of oligonucleotide array technology for the rapid detection of pathogenic bacteria of foodborne infections[J]. Journal of Microbiological Methods,2004,58:403-411.
    65. Wang RF, Beggs ML, Robertson LH, et al. Design and evaluation of oligonucleotide-microarray method for the detection of human intentinal bacteria in fecal samples[J].FEMS Microbiology Letters. 2002,213(2):175-182.
    66. Warsen AE, Krug MJ, LaFrentz S, et al. Simultaneous discrimination between 15 fish pathogens by using 16S ribosomal DNA PCR and DNA microarrays[J]. Applied and Environmental Microbiology.2004, 7:4216-4221.
    67. Anthony RM, Brown TJ, French GL, Rapid diagnosis of bacteremia by universal amplification of 23S ribosomal DNA followed by hybridization to an oligonucleotide array[J]. Journal of clinical microbiology.2000,38(2):781-788
    68. Georgios K, Dang DB, Marianne L, et al, Development of a sensitive DNA microarray suitable for rapid detection of Campylobacter spp [J]. Molecular and Cellular Probes,2003,17:187-196.
    69. C van Ijperen, P Kuhnert, J Frey et al, Virulence typing of E.crherichia coli using microarrays[J]. Molecular and Cellular Probes, 2002,16:371-378
    70. Call DR, Brockman FJ, Chandler DP, Detecting and genotyping E.scherichia coli 0157:H7using multiplexed PCR and nucleic acid microarrays[J]. Int J Food Microbiol.2001,67:71-80
    71. Call DR, Chandler D, Brockman F, Fabrication of DNA microarrays using unmodified oligonucleotide probes[J]. BioTechniques.2001,30: 368-379.
    72. Chizhikov V, Rasooly A, Chumakov K, et al. Microarray analysis of microbial virulence factors[J]. Appl. Environ. Microbiol,2001,67: 3258-3263.
    73. Amann R, Ludwig W, Ribosomal RNA—targeted nucleic acid probes for studies in microbial ecology[J]. FEMS Microbiol Rev,2000, 24(5):555-565.
    74. De Vos W M. Advances in genomies for microbial food fermentations and safety[J]. Curr Opin Biotechnol,2001, 12(5):493-498.
    75.陈倩,程伯琨,基因探针检测食品中具有HPI毒力岛的ESIEC大肠杆菌[J].食品科学,2000,21(7):35
    76.张阳德,纳米生物技术学[M].北京:科学出版社,2005:6-65.
    77.柯诗剑,计剑,万古霉素修饰磁性纳米粒子的制备及其细菌分离功能[J].高等学校化学学报,2007,28(1):26-28
    78. A. C. Vinayaka & M. S. Thakur, Focus on quantum dots as potential fluorescent probes for monitoring food toxicants and foodborne pathogens[J]. Anal Bioanal Chem,2010,397:1445-1455.
    79. Mukhopadhyay B, Martins MB, Karamanska R, et al, Bacterial detection using carbohydrate-functionalised CdS quantum dots:a model study exploiting E. coli recognition of mannosides[J]. Tetrahedron Letters,2009,50:886-889
    80. Elghanian R, et al. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. [J]. Science,1997,277:1078-1081
    81. Storhoff JJ, et al. Gold nanoparticle-based detection of genomic DNA targets on microarrays using a novel optical detection system[J]. Biosensors and Bioelectrons.2004,19:875-883
    82. Baptista PV. et al, Gold-nanoparticle-probe-based assay for rapid and direct detection of Mycobacterium tuberculosis DNA in clinical samples[J]. Clin. Chem.2006,52,1433-1434
    83. Huang SH. Gold nanoparticle-based immunochromatographic assay for the detection of Staphylococcus aureus[J]. Sens. Actuators B Chem.2007,127,335-340
    84. Cao X, et al, Visual DNAmicroarrays for simultaneous detection of Ureaplasma urealyticum and Chlamydia trachomatis coupled with multiplex asymmetrical PCR[J]. Biosensors and Bioelectrons.2006, 22,393-398
    85. Zharov VP. et al, Photothermal flow cytometry in vitro for detection and imaging of individual moving cells[J]. Cytometry A.2007, 71(4):191-206
    86. Wang L, et al. The Escherichia coli O157:H7 DNA detection on a gold nanoparticle-enhanced piezoelectric biosensor[J]. Chin. Sci. Bull. 2008,53,1175-1184
    87. Phillips RL, et al, Rapid and efficient identification of bacteria using gold-nanoparticle-poly(para-phenyleneethynylene) constructs [J]. Angew. Chem. Int. Ed. Engl.2008,47,2590-2594
    88. He W, et al. Two-photon luminescence imaging of Bacillus spores using peptide-functionalized gold nanorods[J]. Nano Res.2008, 1,450-456
    1. Facklam R, What happened to the Streptococci:overview of taxonomic and nomenclature changes[J]. Clinical Microbiology,2002,15(4): 613-630.
    2.管大伟,邓小玲,柯碧霞等,溶血性G群链球菌致病性探讨[J].疾病控制杂志,2007,11(6):590-594.
    3.邓小玲,柯碧霞,柯昌文等,16S rDNA测序鉴定p溶血性G群链球菌[J].四川大学学报(医学版),2007,38(6):999-1001
    4. Picard FJ, Bergeron MG, Laboratory detection of group B Streptococcus for prevention of perinatal disease[J]. Eur J Clin Microbiol Infect Dis.2004,23(9):665-71.
    5. El Helali N, Nguyen JC, Ly A, et al. Diagnostic accuracy of a rapid real-time polymerase chain reaction assay for universal intrapartum group B streptococcus screening[J]. Clin Infect Dis.2009,1,49(3): 417-23
    6. Wernecke M, Mullen C, Sharma V, et al. Evaluation of a novel real-time PCR test based on the ssrA gene for the identification of group B streptococci in vaginal swabs[J]. BMC Infect Dis.2009, 4(9):148.
    7. Gregory D, Sturbaum, Patricia T, et al. Immunomagnetic separation (IMS)-fluorescent antibody detection and IMS-PCR detection of seeded Cryptosporidium parvum Oocysts in natural waters and theirlimitations[J]. Applied and Enviromental Microbiogy,2002, 68(6):2991-2996
    8. Mansfield LP, Forsythe SJ, The detection of Samonella using a combined immunomagnetic separation and ELISA end-detection procedure[J]. Lettters in Applied Microbiology,2000,31,279-283
    9. Larsen JW, Sever JL, Group B Streptococcus and pregnancy:a review[J]. Am J Obstet Gynecol.2008,198(4):440-8
    10. Johri AK, Paoletti LC, Glaser P, et al. Group B Streptococcus:global incidence and vaccine development[J]. Nat Rev Microbiol.,2006, 4(12):932-42.
    11.Verstraete K, De ZL, Messens W, et al, Effect of the enrichment time and immunomagnetic separation on the detection of Shiga toxin-producing Escherichia coli 026,0103,0111,0145 and sorbitol positive 0157 from artificially inoculated cattle faeces[J]. Vet Microbiol.2010,145(1-2):106-12
    12. Vila AM, de Arrilucea PR, Pelaez EC, et al, A Development of a new magnetic beads-based immunoprecipitation strategy for proteomics analysis[J]. J Proteomics.2010,73(8):1491-501
    13. Fang J, Dong F, Wang N, et al, Rapid detection of conotoxin SO(3) in serum using Cu-chelated magnetic beads coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry[J], J Anal Toxicol,2009,33(5):272-7
    14.Dudak FC, Boyaci IH, Jurkevica A, et al, Determination of viable Escherichia coli using antibody-coated paramagnetic beads with fluorescence detection[J]. Anal Bioanal Chem.2009,393(3):949-56.
    15.Conlan JV, Khounsy S, Blacksell SD, et al, Gleeson LJ. Development and evaluation of a rapid immunomagnetic bead assay for the detection of classical swine fever virus antigen[J]. Trop Anim Health Prod,2009,41(6):913-20.
    16.Irene R Grant, Hywel J ball, et al. Isolation of Mycobacterium paratuberculosis from Milk by Immunomagnetic Separation[J]. Applied and Environmental Microbiology,1998,64(9):3153-3158
    17.Fagerstam LG, Frostell-Karlsson A, Karlsson R, et al. Biospecific interaction analysis using surface Plasmon resonance detection applied to kinetic binding site and concentration analysis[J]. J Chmmatogr, 1992,597(1-2):97-410.
    18. Heyse S, Stora T, Schmid E, et al. Emerging techniques for investigating molecular interactions at lipid membranes[J]. Biochim Biophys Acta,1998,1376:319-338.
    19. Lakey JH, Raggett EM, Measuring protein-protein interactions[J]. Curr Opin Struct Biol,1998,8:119-123.
    20. Cho W, Bittova L, Stahelin RV, Membrane binding assays for peripheral proteins[J]. Anal Biochem,2001,296:153-161.
    21. Mojca Besenicar, Peter Macek, Jeremy H. Lakey, et al. Surface plasmon resonance in protein-membrane interactions[J]. Chemistry and Physics of Lipids,2006,141:169-178
    22. Oh BK, YK Kim, KW Park, et al. Surface plasmon resonance immunosensor for the detection of Salmonella typhimuriu[J]. Biosensors and Bioelectronics,2004,19:1497-1504
    23. Han Kyu Oh, Jong Min Lee, Tae Ho Byun, et al. Purification of Recombinant Human B-Domain-Deleted Factor VIII Using Anti-Factor VIII Monoclonal Antibody Selected by the Surface Plasmon Resonance Biosensor[J]. Biotechnol Prog.2001,17, 1119-1127
    24. He XX, Wang KM, Tan WH, et al. A Novel Gene Carrier Based on Amino-modified Silica Nanoparticles[J]. Chinese Science Bulletin, 2003,48(3):1365-1369
    25.董幸生,梁峰,余向阳,常建华,郭立安.磁性琼脂糖亲和吸附剂的合成与应用[J].西北大学学报,2001,31(2):121-123
    26. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J]. Nature 1970 (277):680-685
    27. Amzel LM, Poljak RJ, Three-dimensional structure of immunoglobulins[J]. Annu. Rev. Biochem,1979, (48):961-997.
    28. Amit AG, Mariuzza RA, Phillips S E V, Three-dimensional structure of an antigen-antibody complex at 2.8A resolution[J]. Science,1986, (233):747-753.
    29. Mateo C, Fernandez-Lorente G, et al. Affinity chromatography of poly-His tagged enzymes:a new dextran-coated IMAC matrices for prevention of undesired multipoint adsorptions[J]. J Chromatogr 2001, (915):97-106.
    30. Mateo C, Fernandez-Lorente G, et al. One step purification, covalent immobilization of poly-his-tagged proteins using novel heterofunctional chelate-epoxy-supports[J]. Biotechnol Bioeng 2001,(76):269-277.
    31. Pessela BCC, Mateo C et al. One-step purification, covalent immobilization, and additional stabilization of a thermophilic poly-His-tagged-galactosidase from Thermus sp. Strain T2 by using novel heterofunctional chelate-epoxy sepabeads[J]. Biomacromolecules,2003, (4):107-113.
    32. Bjorck L, Kronvall G, Purification and some properties of streptococcal protein G, a novel IgG-binding reagent, [J]. J. Immunol. 1984 (133):969-974.
    33. J.J. Langone, Protein A of Staphylococcus aureus and related immunoglobulin receptors produced by streptococci and pneumococci[J]. Adv Immunol.1982, (32):157-252.
    34. Bjorck L, Kronvall G, Purification and some properties of streptococcal protein G, a novel IgG-binding reagent[J]. J Immunol. 1984 (133):969-974.
    35. Langone JJ, Protein A of Staphylococcus aureus and related immunoglobulin receptors produced by streptococci and pneumococci[J]. Adv Immunol.1982, (32):157-252.
    1. Schwiebert EM, Zsembery A. Extracellular ATP as a signaling molecule for epithelial cells[J]. Biochim Biophys Acta,2003, 1615(1-2):7-32.
    2.Learish RD, Shultz J, Ho S, Bulleit RF, Small-scale telomere repeat sequence content assay using pyrophosphorolysis coupled with ATP detection[J]. Biotechniques.2002,33(6):1349-53
    3. Minikh 0, Tolba M, Brovko LY, et al. Bacteriophage-based biosorbents coupled with bioluminescent ATP assay for rapid concentration and detection of Escherichia coli[J]. J Microbiol Methods,2010,82(2):177-83
    4. Hunter DM, Lim DV. Rapid detection and identification of bacterial pathogens by using an ATP bioluminescence immunoassay[J]. J Food Prot,2010,73(4):739-46.
    5. Bell PD, Komlosi P, Zhang ZR. ATP as a mediator of macula densa cell signalling[J]. Purinergic Signal,2009,5(4):461-71
    6. Nakamura M, Mie M, Funabashi H,et al. Cell-surface-localized ATP detection with immobilized firefly luciferase[J]. Anal Biochem. 2006,352(1):61-7
    7. Cruz Aguado JA, Chen Y, Zhang Z, et al. Ultrasensitive ATP detection using firefly luciferase entrapped in sugar-modified sol-gel-derived silica[J]. J Am Chem Soc.2004,126(22):6878-9
    8. Nakamura M, Mie M, Funabashi H, et al. Cell-surface-localized ATP detection with immobilized firefly luciferase[J]. Anal Biochem.2006, 352(1):61-7
    9. Wang Y, Liu B, ATP detection using a label-free DNA aptamer and a cationic tetrahedralfluorene[J]. Analyst.2008,33(11):1593-8
    10. Li W, Nie Z, Xu X, Shen Q, et al.A sensitive, label free electrochemical aptasensor for ATP detection[J]. Talanta.2009, 78(3):954-8
    11. Soldatkin OO, Schuvailo OM, Marinesco S, et al. Microbiosensor based on glucose oxidase and hexokinase co-immobilised on platinum microelectrode for selective ATP detection[J].Talanta, 2009,78(3):1023-8.
    12. Yao W, Wang L, Wang H, et al. An aptamer-based electrochemiluminescent biosensor for ATP detection[J]. Biosens Bioelectron.2009,24(11):3269-74.
    13. Sykes ML, Avery VM, A luciferase based viability assay for ATP detection in 384-well format for high throughput whole cell screening of Trypanosoma brucei brucei bloodstream form strain 427[J]. Parasit Vectors.2009,2(1):54
    14. Li W, Nie Z, Xu X,et al. A sensitive, label free electrochemical aptasensor for ATP detection[J]. Talanta,2009,78(3):954-8
    15. Huizenga D E, Szostak J W. A DNA aptamer that binds adenosine and ATP[J]. Biochemistry,1995,34:656-665.
    16. Cho EJ, Lee JW, Ellington AD. Applications of aptamers as sensors, Annu Rev Anal Chem (Palo Alto Calif) [J].2009,2:241-64.
    17. Xie S, Walton SP. Development of a dual-aptamer-based multiplex protein biosensor[J], Biosens Bioelectron,2010,25(12):2663-8
    18. Liu G, Mao X, Phillips JA, et al. Aptamer-nanoparticle strip biosensor for sensitive detection of cancer cells[J]. Anal Chem,2009,81 (24): 10013-10018
    19. Huang H, Tan Y, Shi J, et al. DNA aptasensor for the detection of ATP based on quantum dots electrochemiluminescence[J]. Nanoscale, 2010,2(4):606-12.
    20. Chen Z, Li G, Zhang L, et al. A new method for the detection of ATP using a quantum-dot-tagged aptamer[J]. Anal Bioanal Chem.2008, 392(6):1185-8.
    21.孙波,杨娜,杨玉华,高灵敏适配体电化学发光生物传感器检测血样中的ATP[J].分析化学,2009,37:B149
    22. Ihrig J, Lill R, Muhlenhoff U. Application of the DNA-specific dye EvaGreen for the routine quantification of DNA in microplates[J]. Anal Biochem,2006,359(2):265-7.
    23. Qian Z, Lin J, Qian J,et al. Quantification of GRAF gene expression in patients with acute myeloid leukemia using EvaGreen real time quantitative PCR[J]. zhonghua Yi Xue Yi Chuan Xue Za Zhi,2010, 27(3):290-3
    24. Chen Y, Wu Y, Wang J, et al. Identification of cervidae DNA in feedstuff using a real-time polymerase chain reaction method with the new fluorescence intercalating dye EvaGreen[J]. J AOAC Int., 2009,92(1):175-80
    1. Marcel BJ, Mario M, Peter G, et al. Semiconductor nanocrystals as fluorescent biological labels [J]. Science,1998,281:2013-2016.
    2. Chan WC, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J]. Science,1998,281:2016-2018.
    3. Rotem Edgar, Michael McKinstry, Jeeseong Hwang, et al. High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes [J]. PNAS,2006,103:4841-4845
    4. Lei Y, Tang H, Feng M, Zou B. Applications of fluorescent quantum dots to stem cell tracing in vivo [J]. J Nanosci Nanotechnol.2009, 9(10):5726-30.
    5. Hohng S, Ha T. Single-molecule quantum-dot fluorescence resonance energy transfer [J]. Chem Phys Chem,2005,6:956-60
    6. Yu WW. Semiconductor quantum dots:synthesis and water-solubilization for biomedical applications [J]. Expert Opin Biol Ther.2008,8(10):1571-81.
    7. Cady NC, Strickland AD, Batt CA.Optimized linkage and quenching strategies for quantum dot molecular beacons. Molecular and Cellular Probes, [J].2007,21:116-124
    8. Wu P, He Y, Wang HF, et al. Conjugation of glucose oxidase onto Mn-doped ZnS quantum dots for phosphorescent sensing of glucose in biological fluids [J]. Anal Chem.2010,15; 82(4):1427-33
    9. Yun Xingl, Qaiser Chaudry. Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry [J].Nature protocols,2007,2(5):1152-1165
    10. Pathak S, Tolentino R, Nguyen K, et al. Quantum dot labeling and imaging of glial fibrillary acidic protein intermediate filaments and gliosis in the rat neural retina and dissociated astrocytes [J]. J Nanosci Nanotechnol,2009,9(8):5047-54.
    11. Wang Z, Lu M, Wang X, et al. Quantum dots enhanced ultrasensitive detection of DNA adducts [J]. Anal Chem,2009,15, 81(24):10285-9.
    12. Liu YJ, Yao DJ. Magnetic bead-based DNA detection with multi-layers quantum dots labeling for rapid detection of Escherichia coli O157:H7 [J]. Biosens Bioelectron,2008,24(4):558-565
    13. Fu X, Huang K, Liu S. A robust and fast bacteria counting method using CdSe/ZnS core/shell quantum dots as labels [J]. J Microbiol Methods.2009,79(3):367-70.
    14. Zhang Chen, Guang Li. A new method for the detection of ATP using a quantum-dot-tagged aptamer [J]. Anal Bioanal Chem.2008, 392:1185-1188.
    15. Ghasemi Y, Peymani P, Afifi S. Quantum dot:magic nanoparticle for imaging, detection and targeting [J]. Acta Biomed.2009, 80(2):156-65. Review
    16. Qian J, Wang Y, Gao X, et al. Carboxyl-functionalized and bio-conjugated silica-coated quantum dots as targeting probes for cell imaging [J]. J Nanosci Nanotechnol.2010,10(3):1668-75.
    17. Wang RF, Cao WW, Cerniglia CE. PCR detection and quantitation of predominant anaerobic bacteria in human and animal fecal samples [J]. Appl Environ Microbiol.1996,62(4):1242-1247
    18.杨旭,肖潇,陈章,等,用序列比对设计的茎环结构探针检测金黄色葡萄球菌[J]微生物学通报,2007,34(6)1169-1173
    19. Hedi Mattoussi, J. Matthew Mauro,et al. Self-Assembly of CdSe-ZnS Quantum Dot Bioconjugates Usin g an Engineered Recombinant Protein [J]. J. Am. Chem. Soc,2000,122(49): 12142-12150
    20. Clapp A. R, Medintz, I. L,et al. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. [J]. J. Am. Chem. Soc,2004,126(1):301-310.
    21. Algar WR, Ulrich JK. Towards multi-colour strategies for the detection of oligonucleotide hybridization using quantum dots as energy donors in fluorescence resonance energy transfer (FRET) [J]. Analytica Chimica Acta,2007,581(2):193-201
    1. Daniel MC, Astruc D, Gold nanoparticles:assembly, su-pramolecular chemical, quantum-size-related properties, and ap-plications toward biology, catalysis, and nanotechnology[J]. Chem Rev,2004,104(1): 293-346
    2. Glynou K, Ioannou P C, Christopoulos T K, et al. Oligonucleo-tide-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for DNA analysis by hybridization [J]. Anal Chem,2003,75(16):4155-4160
    3. Frens G, controlled nucleation for the regulation of the particle size in monodisperse gole suspensions [J]. Nature Phys Sci,1973,241:20.
    4. Kenneth R Brown, Daniel G Walter, and Michael J Natan, seeding of colloidal Au nanoparticle solutions.2. Improved control of particle size and shape[J]. Chem Mater,2000,12 (2):306-313
    5. Kunio Esumi, Tomoyuki Hosoya, Akihiro Suzuki et al. Preparation of Hydrophobitically Modified Poly(amidoamine) Dendrimer-Encapsulated Gold Nanoparticles in Organic Solvents[J] J Colloid Interface Sci,2000,229(1):303-306.
    6. Chang CL. Controlled growth of gold nanoparticles in Aerosol-OT /sorbitan molooleate/isooctane mixal reverse micelles [J].Colloid Interface Sci,2000,230(1):60-66.
    7. Shi H, Zhang, Cai W. Preparation and optical absorption of gold nanoparticles within pores of mesoporous silica[J]. Mater Res Bull, 2000,35(10):1689-1695.
    8. Mafune F, Kohno J, Takeda Y, et al. Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant [J]. J Phys Chem B, 2001,105(22):5114-5120.
    9. Rao CNR, Kulkarni GU, Thomas PJ, et al. Metal nanoparticle and their assemblies [J]. Chem Soc Rev,2000,29:27-35.
    10. Mirkin CA, Letsinger RL, Mucic RC, et al, A DNA-based method for rationally assembling nanoparticles into macroscopic materials[J]Nature,1996,382(6592):607-609.
    11. Kae Sato, Kazuo Hosokawa, Mizuo Maeda, Rapid Aggregation of Gold Nanoparticles Induced by Non-Cross-Linking DNA Hybridization[J]. J. AM. CHEM. SOC.2003,125,8102-8103
    12. David J. Javier, Nitin Nitin, Matthew Levy, et al. Aptamer-Targeted Gold Nanoparticles As Molecular-Specific Contrast Agents for Reflectance Imaging[J]. Bioconjugate Chem.2008,19,1309-1312
    13. Wang Wenjuan, Chen Chunlai, Qian Minxie, et al. Aptamer biosensor for protein detection using gold nanoparticles [J]. Analytical Biochemistry,2008,373,213-219
    15. Jill E Millstone, Sungho Park, Kevin L, Observation of a Quadrupole Plasmon Mode for a Colloidal Solution of Gold Nanoprisms[J]. JAM CHEM SOC.2005,127,5312-5313
    16. Mucic RC, Storhoff JJ, Mirkin CA, DNA-Directed Synthesis of Binary Nanoparticle Network Materials[J]. J AM CHEM SOC.1998, 120,12674-12675
    17. S. Tombelli, M Minunni, E. Luzi, et al. Aptamer-based biosensors for the detection of HIV-1 Tat protein[J]. Bioelectrochemistry,2005, 67135-141
    18. Milan N Stojanovic, Donald W Landry, Aptamer-Based Colorimetric Probe for Cocaine[J].J AM CHEM SOC,2002,124,9678-9679
    19. Marcela C Rodriguez, Abdel Nasser Kawde, Joseph Wang, Aptamer biosensor for label-free impedance spectroscopy detection of proteins based on recognition-induced switching of the surface charge[J]. Chem Commun,2005,4267-4269
    20. Xiaoxiao Cao, S Liucun Chen, et al. Combining use of a panel of ssDNA aptamers haohua Li, in the detection of Staphylococcus aureus[J]. Nucleic Acids Research,2009,37(14):4621-4628
    21. Kae Sato, Kazuo Hosokawa and Mizuo Maeda, Non-cross-linking gold nanoparticle aggregation as a detection method for single-base substitutions[J]. Nucleic Acids Research,2005,33 (1):2-5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700