喜温硫杆菌蛋白质组学研究技术建立及抗砷机制初步探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喜温硫杆菌(Acidthiobacillus caldus)是一类专性自养极端嗜酸性硫杆菌,分布于硫化矿床、酸性矿水及土壤中。喜温硫杆菌在生物浸矿、煤的脱硫、含硫废水的处理等方面及在自然界的硫循环中都占有重要地位,尤其在生物冶金中有广泛应用,是浸矿复合菌系中的主要组分之一。它可以利用附着在矿物表面的固体硫,暴露出矿物表面,从而使浸矿细菌充分接触到矿物并起作用;其代谢产物还可被其它浸矿细菌所利用,并有助于硫的溶解。通过这些机理,喜温硫杆菌大大提高了浸矿效率,在生物冶金中发挥着重要的作用。
     在生物冶金的应用过程中,喜温硫杆菌对存在于矿石中的重金属如砷、汞、银等缺乏抗性或抗性不强,使得菌体活性降低,浸矿效率下降。已有研究证明,喜温硫杆菌通过系列驯化可以提高对重金属(如砷)的抗性,但是这种抗性随着砷胁迫压力的消失会很快丧失。这表明喜温硫杆菌胞内存在着对重金属胁迫的适应机制。利用蛋白质组学技术对其进行研究,对阐明该菌耐重金属机制以及构建高效抗重金属工程菌并用于生产应用具有重要意义。
     目前蛋白质组学研究主要有组成性蛋白质组学研究和差异比较蛋白质组学研究两种策略。本研究采用差异比较蛋白质组学研究策略,以喜温硫杆菌的砷抗性为研究突破口,比较了喜温硫杆菌野生株(耐受10mM亚砷酸钠)和驯化株(耐受30mM亚砷酸钠)的蛋白表达差异,对差异蛋白进行质谱鉴定,试图揭示喜温硫杆菌的耐砷机制。
     喜温硫杆菌蛋白质组学研究方面,国内外还未见报道。蛋白质二维电泳技术结合质谱鉴定是进行蛋白质组学研究的主要手段。其中二维电泳技术又因材料的不同而使技术流程和分离效果呈现较大的差别,因此建立喜温硫杆菌蛋白质二维电泳技术方法是进行该菌蛋白质组学研究的基础。本实验建立了喜温硫杆菌胞内全蛋白二维电泳技术,并获得了高重现性的喜温硫杆菌蛋白图谱。在pH4-7的驯化菌株蛋白电泳图谱中解析出了1188个蛋白点,共有335个蛋白的表达发生了差异。与野生株相比,驯化菌株中,新产生60个蛋白点,49个蛋白点消失。
     利用基质辅助激光解吸离子化-飞行时间质谱及其串联质谱分析,有6个点得到了鉴定,包括D11、D14,D9、D13、D18、D19。根据数据库比对及聚类分析,我们推测该几类蛋白分别属于蛋白合成因子、尿嘧啶DNA糖基酶、鞭毛收缩ATP酶Pi1T、氨基转移酶,并可能在喜温硫杆菌抗砷过程中发挥着重要作用。
     除了这6个蛋白外,我们还对另外14个蛋白点进行了鉴定,由于这些蛋白点可能是新蛋白或者与现有数据库中的已知蛋白的序列相似性太低,这些蛋白的性质以及它们在耐砷过程中所起的作用有待于进一步的研究。
     综上所述,本研究首先建立了喜温硫杆菌蛋白质组的研究技术方法,研究了野生型菌株与抗砷菌株的蛋白质表达差异,并对差异蛋白进行了质谱鉴定和数据库检索分析。通过分析,我们推测了喜温硫杆菌中参与抗砷的功能蛋白和可能的调控机制,为进一步研究喜温硫杆菌的抗砷性能奠定了基础。
Acidithiobacillus caldus,a new strain isolated in 1994,is a gram-negative, extremely acidophilic obligately autotrophic bacterium,which has been used industrially in metal leaching of mineral ores and in the microbial desulfurization of coal in combination with Acidithiooxidans ferrooxidans.Acidithiobacillus caldus can utilize the sulfur compounds covering on the surface of the ores as energy source,and expose the inner part of ores.The metabolites of A.caldus can be the nutritions of other leaching bacteria and even can solubilize the solid sulfur.With the above unique characters,A.caldus is worth to be investigated on its important functional genes and proteins.Proteomics has been put forward for many years,and has been shown to be a good way to isolate and identify the functional proteins.However,the methods to study Acidithiobacillus caldus` proteomics have not been established,which needs to be investigated.
     Even if with its wide applications in bioleaching,the sensitivity to heavy matals, such as mercury,chromium and arsenic,has limited its further applications.Arsenic, one of the heavy metals,has been known as a virulent element for a long time. Enviromental arsenic species can enter into cells by different ways and kill the organisms by interrupting the synthesis of ATP or binding to sulphydryl groups of some proteins and enzymes.Under the arsenical lethiferous stress,many microorganisms including prokaryotes and eukaryotes have evolved to acquire certain types of arsenic resistance mechanism and survive in the arsenical containing niche. Previous researches have demonstrated that Acidithiobacillus caldus can be induced to resistant to arsenic.But the induction character tends to degenerate and disappear, when the arsenic pressure is withdrawn.Therefore,it is necessary to investigate the arsenic resistance mechanism of A.caldus.
     In this research,we established a A.caldus proteomic research technique at first, and then studied the arsenic resistant mechanism.We compared the response of A. caldus to the absence and presence of arsenic in medium at the proteome level. Two-demensional polyacrylamide gel electrophoresi,(2D-PAGE)was used to quantify the protein expression levels after the tota intercellular proteins were acquired.Upregulated proteins and downregulated proteins were identified using statistical analysis with PDQuest.About 1188 proteirs were displayed on pH4-7 electrophoresis maps of the arsenic resistant strains.Compared with the sensitive strains,60 proteins appeared and 49 proteins disappeared.
     Then Mass Spectrometry(MS)was utilized to evaluate the mass of peptides derived from trypsin digested discrepant proteins.Peptide mass fingerprinting(PMF) and MS/MS data obtained were used to search in the SWISS-PROT and NCBInr database using the Mascot search engine.Finally,we identified 6 proteins,which included D9,D11,D13,D14,D18,D19,and predicted their potential roles in arsenic resistant process.According to our research,D11 could be a ribosomal protein,S4 and D14 could be the translation elongation factor Tu.D11 and D14 both exist in the arsenic resistant bacterium and are responsible for prote(?)n synthesis.D9,a conserved hypothetical protein,also exists in arsenic resistant bacterium,which shows that the hypothetical protein plays a role in arsenic resistantance.D13 is a Uracil DNA glycosylase and reponsible for DNA repair.It exists in the arsenic resistant strains, and its real role in arsenic resistantance is still unknown.D18 is a Tfp pilus assembly protein,also called pilus retraction ATPase(PilT).D19 is Aspartate/tyrosine/aromatic aminotransferase.They both exist in the arsenic resistant organism.Besides,we also indentified other 14 proteins.For the inadequacy of the database,their roles of them were not yet elucidated.Anyway,the basic protei(?)mics methods and arsenic resistance related peoteins of A.caldus were studied in this thesis.
引文
[1]WASINGER V C.Progress with gene - product of the Mollicutes:Mvcoplasma genitalium[J].Electrophoresis,1995(16):1090-1094.
    [2]WILKINS M R.From proteins to Proteomics:Large scale protein identification by two- dimensional electrophoresis and amide acid analysis[J].Bio Thchnology,1996(14):61-65.
    [3]KLOSE J,KOBALZ U.Two- dimensional electrophoresis of proteins:An updated protocol and implications for a functional analysis of the genome[J].Electrophoresis,1995(16):1034-1059.
    [4]PandeyA.An evaluation of the use of two-dimensional gel electrophoresis in proteomics[J].BiomolEng,2001,18(5):195-205.
    [5]Houry W A,Frishman D,Eckerskom C,et al.Identification of in vivo substrates of the chaperonin GroEL[J].1999,Nature,402(6758):147-154.
    [6]Blobel G,Wozniak R W.Proteomics for the pore[J].Nature,2000,403(6772):835-836.
    [7]FIELDS S,SONG O K.A novel genetic system to detect protein-protein interactions[J].Nature,1989(840):245-246.
    [8]Wilkins M R et al.P roteom e R esearch:New Frontiers in Functional Genom ics.New York:Springer-Vedag Berlin Heidelburg,1997.
    [9]Humphery-Smith I et al.Proteome research:Comp lementarity and limitations with respect to the RNA and DNA worlds.E lectrophoresis,1997,18:1217-1242
    [10]James P.Breakthoughs and views of genomes and proteomes.Biochem Biophys Res Comm,1997,231:1-6.
    [11]Wilkins M R et al.Protein identification with N and C-terminal sequence tags in proteome projects.J M ol B iol,1998,278:599-608
    [12]J Opiteek G J et al.Comp rehensive two-dimensional HPLC for the isolation of over expressed proteins and proteome mapping.Anal Biochem,1998,258:349-361
    [13]Roep Storff P.Mass spectrometry in protein studies from genome to function.Curren Opinion in Biotechnology,1997,8:6-13.
    [14]Pennington S R et al.Proteome analysis:from protein characterization to biological function.Trends in Cell B iology,1997,7:168-173.
    [15]Doolittle R F.Microbial genomes opened up.Nature,1998,392:339
    [16]王志珍,邹承鲁.后基因组-蛋白质组研究[J].生物化学与生物物理学报,1998,30(6):533-699.
    [17]李伯良,李林,吴家睿.功能蛋白质组学[J].生物工程学报,2000,27(3):227-231.
    [18]陈姗.蛋白质组学研究方法[J].基础医学,2005,14(1):52-58.
    [19]袁雪宇.差异蛋白质组学技术和应用前景[J].同济大学学报(医学版)2004,25(4):349-351.
    [20]李林,吴家睿,李伯良.蛋白质组学的产生及其重要意义[J].生命科学,1999,11(2):49-50.
    [21]刘缨,齐放军,林建群,田克立,颜望明.一株中度嗜热嗜酸硫氧化杆菌的分离和系统发育分析[J].微生物学报,2004,44(3):382-385
    [22]硫杆菌的分子遗传学研究,林建群,颜望明,林建强,刘缨:微生物学杂志 2000,3(1)
    [23]杨显万,邱定蕃编著,湿法冶金,北京:冶金工业出版社,1998,282-341.
    [23]Hallberg KB,Dopson M,Lindstrom EB.Reduced sulfur compound oxidation by Thiobacillus caldus.J Bacteriol,1996,178:6-11
    [24]Goebel BM,Stackebrandt E.Cultural and phylogenetical analysis of mixed microbial populations found in natural and commercial bioleaching environments.Appl Environ Microbiol,1994,60:1614-1621
    [25]Tuovinen OH,Bhatti TM,Bigham JM,et al.Oxidative dissolution of arsenopyrite by mesophilie and moderately thermophilic acidophiles.Appl Environ Microbiol,1994,60:3268-3274
    [26]Hallberg KB,Lindstorm EB.Characterization of Thiobacillus caldus sp.nov.,a moderately thermophilic acidophile.Microbiology,1994,140:3451-3456
    [27]Bacterial leaching and biomining:A Revolution in Biotechnology Woods,Cambridge University Press 1989,89-92
    [28]Rawlings D E.Heavy metal mining using microbes.Annu Rev Microbiol,2002,56:65-91.
    [29]Rawlings D E,Tributsch H,Hansford GS.Reasons why 'Leptospirillu'-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores.Microbiology,1999,145:5-13.
    [30]Mincer TJ,Jensen P R,Kauffman C A,et al.Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments.Appl Environ Microbiol,2002,68:5005-5011.
    [31]Amaro A M,Hallberg KB,Lindstrom E B,et al.An immunological assay for detection and enumeration of thermophilic biomining microorganism.Appl Environ Microbiol,1994,60:3470-3473
    [32]Dopson M,LindstrEm E B.Potential role of Thiobacillus caldus in arsenopyrite bioleaching.Appl Environ Microbiol,1999,65:36-40.
    [33]Okibe N,Gericke M,Kevin B,et al.Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred-tank bioleaching operation.Appl Environ Microbiol,2003,69:1936-1943.
    [34]Jianhua Wu and Barry P.Rose,Metalloregulated Expression of the ars Operon.THE JOURNAL OF BIOLOGICALC HEMISTRY,1993,Vol.268,No.1,Issue of January 5,pp.52-58.
    [35]Yanxiang Chen and Barry P.Rosen,Metalloregulatory Properties of the ArsD Repressor.THE JOURNAL OF BIOLOGICAL CHEMISTRY,1997,Vol.272,No.22,Issue of May 30,pp.14257-14262.
    [36]SIMON SILVER AND MARK WALDERHAUG,Gene Regulation of Plasmid and Chromosome-Determined Inorganic Ion Transport in Bacterial.MICROBIOLOGICAL REVIEWS Mar.1992,Vol.56,No.1,p:195-228
    [37]Kann S,Huang MY,Estes C,et al.Arsenite - induced aryl hydrocarbon receptor nuclear translocation results in additive induction of phase Ⅰ genes and synergistic induction of phase Ⅱ genes [J].Mol Pharmacol,2005,68(2):336-346.
    [38]Tseng CH,Tai TY,Chong CK,et al.Long - term arsenic exposure and incidence of non - insulin - dependent diabetes mellitus:aeohort study in arseniasis-hyperendemie villages in Taiwan[J]Environ Health Perspect,2000,108(9):847-851.
    [39]Wang CH,Jeng J S,Yip PK,et al.Biological gradient between long term arsenic exposure and carotid atherosclerosis[J].Circulation,2002,105(15):1804-1809.
    [40]Gebel TW.Unanswered questions in arsenic toxicology[J].Environ Pathol Toxicol Oncol,2001,20(4):299-309.
    [41]Mobley H L,Chen C M,Silver S,et al.Cloning and expression of R - factor mediated arsenate resistance in Escherichiacoli[J].Mol Gen Genet,1983,191(3):421-426.
    [42]Prithivirajsingh S,Mishra SK,Mahadevan A.Functional analysis of a chromosomal arsenic resistance operon in pseudomonas fluoreseens strain MSP3[J].Mol Biol Rep,2001,28(2):63-72.
    [43]Ordonez E,Letek M,Valbuena N,et al.Analysis of genes involved in arsenic resistance in corynebacterium glutamieum ATCC 13032[J].Appl Environ Mierobiol,2005,71(10):6206-6215.
    [44]Tuffin IM,de Groot P,Deane SM,et al.An unusual Tn21 - like transposon containing an ars operon is present in highly arsenic-resistant strains of the biomining bacterium acidithiobacillus ealdus[J].Microbiology,2005,151(9):3027-3039.
    [45]Lopez - Maury L,Florencio FJ,Reyes JC.Arsenic sensing and resistance system in the cyanobacterium synechocystis sp strain PCC6803[J].Bacteriol,2003,185(18):5363-5371.
    [46]Sato T,Kobayashi Y.The ars operon in the skin element of bacillus subtilis confers resistance to arsenate and arsenite[J].Bacteriol,1998,180(7):1655-1661.
    [47]Wang G,Kennedy SP,Fasi ludeen S.Arsenic resistance in halobactedum sp.strain NR C-1examined by using an improved gene knockout system[J].Acteriol,2004,186(10):3187-3194.
    [48]Broer,S Ji,G Silver.Arsenic efflux governed by the arsenic resistance determinant of Staphylococcus aureus plasmid pI258.J Bacteriol,1993,175,480-3485.
    [49]Bruhn,D.F,Li,J.,Silver,S.,Roverto,F.& Rosen,B.P.The arsenical resistance operon of IncN plasmid R46.FEMS Microbiol Lett(1996).139,149-153.
    [50]Cai,J.& DuBow,M.S.Expression of the Escherichia coli chromosomal ars operon.Can J Microbiol(1996).42,662-671.
    [51]Cai,J.& DuBow,M.S.Use of a luminescent bacterial biosensor for biomonitoring and characterization of arsenic toxicity in chromated copper arsenate.Biodegradation(1997).8,97-103.
    [52]Carlin,A.,Shi,W.,Dey,S.& Rosen,B.P.The ars operon of Escherichia coli confers arsenical and antimonial resistance.J Bacteriol(1995).177,9814-986.
    [53]Cervante,C.& Cha! vez,J.Plasmid-determined resistance to arsenic and antimony in Pseudomonas aeruginosa.Antonie Leeuwenhoek(1992).61,333-337.
    [54]Chen,Y.& Rosen,B.P.Metalloregulatory properties of the ArsD repressor.J Biol Chem(1997).272,14257-14262.
    [55]Chen,C.M.,Misra,T.K.,Silver,S.& Rosen,B.P.Nucleotide sequence of the structural genes for an anion pump:the plasmid-encoded arsenical resistance operon.J Biol Chem(1986).261,15030-15038.
    [56]Danielle R.Ellis,Luke Gumaelius,Emily Indriolo,Ingrid J.Picketing,Jo Ann Banks and David E.Salt,A Novel Arsenate Reductase from the Arsenic Hyperaccumulating Fern Pteris vittata1.Plant Physiology,August2006,Vol.141,pp.1544-1554.
    [57]Barry P.Rosen,Biochemistry of arsenic detoxification.FEBS Letters,2002,529,86-92.
    [58]T.R.Kulp,S.E.Hoeft,L.G.Miller,C.Saltikov,J.N.Murphy,S.Han,B.Lanoil,and R.S.Oremland,Dissimilatory Arsenate and Sulfate Reduction in Sediments of Two Hypersaline,Arsenic-Rich Soda Lakes:Mono and Searles Lakes,California.APPLIED AND ENVIRONMENTAL MICROBIOLOGY,Oct.2006,Vol.72,No.10,p.6514-6526.
    [59]Chad W.Saltikov,Richard A.Wildman,Jr.,and Dianne K,Newman,Expression Dynamics of Arsenic Respiration and Detoxification in Shewanella sp.Strain ANA-3.JOURNAL OF BACTERIOLOGY,Nov.2005,p.7390-7396 Vol.187,No.21
    [60]Bobrowiez P,Wysocki R,Owsianik G,et al.Isolation of three contiguous genes,ACR1,ACR2 and ACR3,involved in resistance to arsenic compounds in the yeast S accharomyces cerevisiae [J].Yeast,1997,13(9):819-828
    [61]Wysocki R,Bobrowicz P,Ulas Zewski S.The aromyces cerevisiae ACR3 gene encodes a putative membrane protein involved in arsenite transport[J].Biol Chem,1997,272(48):30061-30066.
    [62]Maciaszxzyk E,Wysocki R,Golik P,et al.Arsenical resistance genes in Saccharomyces douglasii and other yeast species undergo rapid evolution involving genomic rearrangements and duplications[J].FEMS Yeast Res,2004,4(8):821-832.
    [63]G.Lear,B.Song,A.G.Gault,D.A.Polya,and J.R.Loyd,Molecular Analysis of Arsenate-Reducing Bacteria within Cambodian Sediments following Amendment with Acetate.APPLIED AND ENVIRONMENTAL MICROBIOLOGY,Feb.2007,Vol.73,No.4,p.1041-1048.
    [64]MALLIKA GHOSH,JIAN SHEN,AND BARRY P.ROSEN,Pathways of As(Ⅲ)detoxification in Saccharomyces cerevisiae.Proc.Natl.Acad.Sci.USA,April 1999,Vol.96,pp.5001-5006.
    [65]Dean E.Cartera,H.Vasken Aposhianb,and A.Jay Gandolfia,The metabolism of inorganic arsenic oxides,gallium arsenide,and arsine:a toxicochemical review.D.E.Carter et al./ Toxicology and Applied Pharmacology,2003,193,309-334.
    [66]Robert Wysocki,Piotr Bobrowicz,and Stanislyaw Ulyaszewski,The Saccharomyces cerevisiae ACR3 Gene Encodes a Putative Membrane Protein Involved in Arsenite Transport.THE JOURNAL OF BIOLOGICAL CHEMISTRY,1997,Vol.272,No.48,pp.30061-30066.
    [67]Gejiao Wang,Scan P.Kennedy,Sabeena Fasiludeen,Christopher Rensing,and Shiladitya DasSarma,Arsenic Resistance in Halobacterium sp.Strain NRC-1 Examined by Using an Improved Gene Knockout System.JOURNAL OF BACTERIOLOGY,May 2004,Vol.186,No.10,p.3187-3194.
    [68]Xing Cui,Yayoi Kobayashi,Toru Hayakawa,and Seishiro Hirano,Arsenic Speeiation in Bile and Urine Following Oral and Intravenous Exposure to Inorganic and Organic Arsenics in Rats.TOXICOLOGICAL SCIENCES,2004,82,478-487.
    [69]Ronald Bentley and Thomas G.Chasteen,Microbial Methylation of Metalloids:Arsenic,Antimony,and Bismuth.MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS,June 2002,Vol.66,No.2,p.250-271.
    [70]Lin,S.,Q.Shi,F.B.Nix,M.Styblo,M.A.Beck,K.M.Herbin-Davis,L.L.Hall,J.B.Simeonsson,and D.J.Thomas.2002.A novel S-adenosyl-Lmethionine:arsenic(Ⅲ)methyltransferase from rat liver cytosol.J.Biol.Chem.277:10795-10803.
    [71]Rosen,B.P,Families of arsenic transporters.Trends Microbiol,1999,7:207-212.
    [72]Borst,P.,Evers,R.,Kool,M.,and Wijnholds,J.A family of drug transporters:The multidrug resistance-associated proteins.J.Natl.Cancer Inst.2000,92,,1295-1302.
    [73]Abernathy,C.O.,Y.-P.Liu,D.Longfellow,H.V.Aposhian,B.Beck,B.Fowler,R.Goyer,R.Menzer,T.Rossman,C.Thompson,and M.Waalkes.Arsenic:health effects,mechanisms of actions,and research issues.Environ.Health Perspect.1999.107:593-597.
    [74]Andreae,M.O.,J.-E Asmodé,P.Foster,and L.Van't dack.Determination of antimony(Ⅲ),antimony(Ⅴ),and methylantimony species in natural waters by atomic absorption spectrometry with hydride generation.Anal.Chem.1981.53:1766-1771.
    [75]Andreae,M.O.,and P.N.Froelich.Arsenic,antimony,and germanium biogeochemistry in the Baltic Sea.Tellus,1984.36:101-117.
    [76]Anonymous.Arsenic in wall papers.Br.Med.J.1871.22 July:101-102.
    [77]Antonio,T.,A.K.Chopoa,W.R.Cullen,and D.Dolphin.A model for the biological methylation of arsenic.J.Inorg.Nuclear Chem.1979.41:1220-1221.
    [78]Aposhian,H.V.Enzymatic methylation of arsenic species and other new approaches to arsenic toxicity.Annu.Rev.Pharmacol.Toxicol.1997.37:397-419.
    [79]Aposhian,H.V.,R.Zakharyan,Y.Wu,S.Healy,and M.M.Aposhian.Enzymatic methylation of arsenic compounds.Ⅱ.An overview,1997.p.297-321.
    [80]Bach,S.J.Biological methylation.Biol.Rev.Camb.Philos.Soc.1945.20:158-176.
    [81]Baehofen,R.,L.Birch,U.Buehs,P.Ferloni,I.Flynn,G Jud,H.Tahedl,and T.G Chasteen.Volatilization of arsenic compounds by microorganisms,Bioremediation of inorganics.Batelle Press,Columbus,Ohio 1995.p.103-108.
    [82]Bertolero,F.,G.Pozzi,E.Sabbioni,and U.Saffiotti.Cellular uptake and metabolic reduction of pentavalent to trivalent arsenic as determinants of cytotoxicity and morphological transformation. Carcinogenesis.1987.8:803-808.
    [83]Bird,M.L.,F.Challenger,P.T.Charlton,and J.O.Smith.Studies on biological methylation.11.The action of moulds on inorganic and organic compounds of arsenic.Biochem.J.1948.43:73-83
    [84]Blanche,F.,C.Robin,M.Couder,D.Faucher,L.Cauchois,B.Cameron,and J.Crouzet.Purification,characterization,and molecular cloning of S-adenosyl-L-methionine:uroporphyrinogen Ⅲmethyltransferase from Methanobacterium iranorii.J.Bacteriol.1991.173:4637-4645.
    [85]Bright,D.A.,S.Brock,W.R.Cullen,G.M.Hewitt,J.Jafaar,and K.J.Reimer.Methylation of arsenic by anaerobic microbial consortia isolated from a lake sediment.Appl.Organomet.Chem.1994.8:415-422.
    [86]Byme,A.R.,Z.Slejkovec,T.Stijve,L.Fay,W.Gossler,J.Gailer,and K.J.Irgolic.Arsenobetaine and other arsenic species in mushrooms.Appl.Organomet.Chem.1995.9:305-313.
    [87]Daniel Muller,Didier Lie'vremont,Diliana Dancheva Simeonova,Jean-Claude Hubert,and Marie-Claire Lett,Arsenite Oxidase aox Genes from a Metal-Resistant β -Proteobacterium.JOURNAL OF BACTERIOLOGY,Jan.2003,Vol.185,No.1,p.135-141.
    [88]Diliana D.Simeonova,Kalina Micheva,Daniel A.E.Muller,Florence Lagarde,Marie-Claire Lett,Veneta I.Groudeva,Didier Lie'vremont,Arsenite Oxidation in Batch Reactors With Alginate-Immobilized ULPAsl Strain.BIOTECHNOLOGY AND BIOENGINEERING,AUGUST 20,2005,VOL.91,NO.4.
    [89]Des R.Kashyap,Lina M.Botero,William L.Franck,Daniel J.Hassett,and Timothy R.McDermott,Complex Regulation of Arsenite Oxidafion in Agrobacterium tumefaciens.JOURNAL OF BACTERIOLOGY,Feb.2006,Vol.188,No.3,p.1081-1088.
    [90]Simon Silver and Le T.Phung,Genes and Enzymes Involved in Bacterial Oxidation and Reduction of Inorganic Arsenic.APPLIED AND ENVIRONMENTAL MICROBIOLOGY,Feb.2005,Vol.71,No.2,p.599-608.
    [91]Corinne R.Lehr,Des R.Kashyap,and Timothy R.McDermott,New Insights into Microbial Oxidation of Antimony and Arsenic.APPLIED AND ENVIRONMENTAL MICROBIOLOGY,Apr.2007,Vol.73,No.7,p.2386-2389.
    [92]Des R.Kashyap,Lina M.Botero,Corinne Lehr,Daniel J.Hassett,and Timothy R.McDermott,A Na+:H+ Antiporter and a Molybdate Transporter Are Essential for Arsenite Oxidation in Agrobacterium tumefaciens.JOURNAL OF BACTERIOLOGY,Feb.2006,Vol.188,No.4,p. 1577-1584.
    [93]Gretchen L.Anderson,Jeffrey Williams,and Russ Hille,The Purification and Characterization of Arsenite Oxidase from Alcaligenes faecalis,a Molybdenum-containing Hydroxylas.THE JOURNAOLF BIOLOGICAL CHEMISTRY,1992,Vol.267,No.33,Issue of November 25,pp.23674-23682.
    [94]傅业全,何宝霞,刘晓瑛,徐世文,DNA甲基化与重金属中.J Toxicol April 2007.Vol121,No12.
    [95]赵清,刘相梅,边疆,詹杨,刘缨,林建群,颜望明,抗砷载体的构建及在喜温硫杆菌中的接合转移,BIOTECHNOLOGY,Jun,2005,Vol.15,No13:19.
    [96]魏大成介评,环境中砷的来源,国外医学医学地理分册,2003年12月第24卷第4期.
    [97]冉玉琴,慕晓玲,生物体抗砷性的研究进展Chin J Public Health May 2007 Vol.23 No.5.
    [98]Pavel Bouchal,Martin Mandl,Proteomic and bioinformatic analysis of iron- and sulfur-oxidizing Acidithiobacillus ferrooxidans using immobilized pH gradients and mass spectrometry.Proteomics 2006,6,4278-4285
    [99]Pablo Ramirez,Nicolas Guiliani,Lissette Valenzuela,Simon Beard,and Carlos A.Jerez,Differential Protein Expression during Growth of Acidithiobacillus ferrooxidans on Ferrous Iron,Sulfur Compounds,or Metal Sulfides.APPLIED AND ENVIRONMENTAL MICROBIOLOGY,Aug.2004,Vol.70,No.8,p.4491-4498.
    [100]Zhiguo He,Hui Zhong,Yuehua Hu,Shengmu Xiao,Jiarshe Liu,Jin Xu and Guiyuen Li,Analysis of Differential-expressed Proteins of Acidithiobacillus ferrooxidans Grown under Phosphate Starvation.Journal of Biochemistry and Molecular Biology,September 2005,Vol.38,No.5,pp.545-549.
    [101]贺治国,胡岳华,胡维新,钟慧,徐兢.T.f菌蛋白质组双向电泳图谱的构建及其分离技术体系的建立.中国科技论文在线.
    [102]Aposhian,H.V.,Gurzau,E.S.,Le,X.C.,Gurzau,A.,Healy,S.M.,Lu,X.,Ma,M.,Yip,L.,Zakharyan,R.A.,Maiorino,R.M.,etal.Oceurrence of monomethylarsonous acid in urine of humans exposed to inorganic arsenic.Chem.Res.Toxicol.2000,13,693-697.
    [103]田海生,朱昌亮,高晓红,昊现陵,淡色库蚊对溴氰菊酯抗药性和敏感性相关基因克隆和序列分析.中国寄生虫学与寄生虫病杂志2C0 1年8月第19卷第4期.
    [104]商璇,何焱,张雷,何春江,夏来新,高尚,郭一清,程汉华,周荣家,黄鳝性腺高表达的核糖体蛋白基因.遗传HEREDITAS(Beijing),2005 27(2):227-230.
    [105]ZHOU Hua,HONG Yuan,YAN Ming and XU Lin,Expression,Purification and Enzymatic Characterization of Thermus thermophilus HB8 Aspartate Aminotransferase In Escherichia coli.Chinese Journal ofBiotechnology,March 2007,V01.23 No.2.
    [106]韦光海,周晓君,急性有机磷农药中毒患者血液白细胞、丙氨酸转氨酶和天冬氨酸转氨酶的联合检测与综合分析.J Med Theor& Prac Vol。20.No.10,Oct 2007 1141-1143.
    [107]彭礼飞,邓莉,吴亚敏,胡晶晶,杨陈,甘伟琼.犬钩虫核糖体蛋白L3 6及S4A全长cDNA 克隆与蛋白特性分析.Journal of Pathogen Biology October 2007,Vol,2,No.5.353-357.
    [108]曾浩,邹全明,郭刚,毛旭虎,童文德.有氧胁迫下幽门螺杆菌球形体形成的比较蛋白质组学研究术.China Journal of Modem Medicine,Jul.2006,Vol,16 No,13.
    [109]宋春花,张梅喜,都园林,段广才,志贺菌敏感株与诱导耐多药株蛋白质组学分析.ChinJPublicHealth,Mar2007,Vol.23No.3.318-321.
    [110]宫长斌,徐娴,李霜,何冰芳,组成型天冬氨酸转氨酶基因工程菌的构建与高效表达.The Chinese Journal of Process Engineering,June 2007,vol.7 No.3.574-579.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700