10000m~3大型天然气球罐设计及制造关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
球形压力容器(以下简称球罐)具有占地少、受力情况好、承压能力高,可分片运到现场安装成形、容积的大小基本不受运输限制等其它压力容器无可比拟的优点,在石油、化工、城市燃气、冶金等领域广泛用于存储气体和液化气体。
     近年来我国球罐的大型化和高参数化工程技术水平有了长足的进步,通过对引进球罐的消化、吸收和创新,很多高参数球罐已经实现了国产化,为我国的经济发展做出了积极的贡献。但总体上,我们和国际先进技术水平还有较大差距,如在低温大型乙烯球罐方面,虽基本摆脱了整台进口的局面,但主体材料(包括焊接材料)还主要依赖进口;在特大型天然气球罐方面,国外先进工业国家建造10000-20000m~3天然气球罐已相当普遍,而我国由于关键设计、制造技术还没有完全解决,国产化最大的天然气球罐只有5000m~3,对于10000m~3天然气球罐还全部依赖进口,不但建造成本高、周期长,还受制于人。为满足我国天然气存储需求,同时也满足石油、化工、轻纺、冶金等行业对球罐大型化的需要,迫切需要发展有自主知识产权的特大型球罐核心技术。
     球罐的大型化是一个复杂的系统工程,它涉及到多个学科和技术领域。本文在国家重大技术装备国产化创新研制项目《西气东输10000m~3大型天然气球罐的研制》(项目编号:国经贸技术[2001]519号)课题资助下,针对10000m~3大型天然气球罐国产化研制设计、制造中的几个关键技术:球罐选材评价及焊接、热处理技术;结构设计理论和应力分析技术;球壳塑性成型和坡口加工技术等方面进行了研究,完成了如下工作:
     (1)通过对国内外高参数球罐用材料技术分析,结合10000m~3大型天然气球罐运行参数要求,制订选材原则;重点对WEL-TEN610CF进行系统的材料性能、焊接性能、热处理性能试验研究,解决了特大型天然气球罐材料评价和焊接、热处理工艺问题;最终确定选用WEL-TEN610CF作为首次研制的10000m~3大型天然气球罐球壳用钢。
     (2)依托重庆燃气集团建设的2台10000m~3天然气球罐,在设计标准选用、压力试验方法、球罐强度计算、球壳分带结构确定、开孔补强方法、支柱结构形式等关键设计技术开展系统研究,完成了首次国产化2台10000m~3天然气球罐的结构设计。
     (3)对10000m~3大型天然气球罐重点受力部位:人孔、接管,上支柱和球壳连接等部位,结合不同的工况条件:运行工况、水压或气压试验工况、风载、地震载荷工况等进行系统的有限元应力分析研究。将分析研究的结果作为理论基础和基本原则,进而对这些高应力部位的结构进行优化。
     (4)按理想弹塑性体对球壳板冷压加载过程进行弹塑性分析,通过弯曲变形和膜变形共同作用理论,推导了胎具尺寸对球壳成型效率的影响关系;从弯曲应变回弹计算及膜应变的回弹量计算两方面分析了球壳板卸载时的回弹规律;推导了胎具曲率半径公式,并结合实际回弹率测定,解决了10000m~3大型天然气球罐压型胎曲率问题。通过对球罐瓣片冷冲压过程中主要因素,如压型胎具的因素(直径、胎具曲率的大小)、材料因素(屈服极限、弹性模量、柏松比)、加载因素(载荷大小、加载速率)、冲压部位及冲压次序的研究,掌握了其各因素影响规律,提升了球片冲压技术的科学化。
     (5)按照二次成型原理,通过对立体切割胎具切割原理及计算方法的研究,解决了10000m~3大型天然气用5种类型坡口切割胎的计算方法,以及大长坡口精确加工技术中切割胎的主要技术难题。
     (6)将以上研究成果应用于10000m~3大型天然气球罐实物的研制,首次实现我国10000m~3大型天然气球罐的国产化。实物研制的具体指标和数据,为今后天然气球罐向大型化发展提供了可靠的依据。
Because of its unexampled advantages such as less floor area covering, high-pressure capability and transport facilitates, Spherical pressure vessels (hereinafter referred to as the“storage tank”) used for storage of gas and liquefied gas more widely than other storage tanks in the oil, chemical, city gas, metallurgy and other fields.
     In recent years, China engineering and technical level of spherical tank has made great progress through the introduction, absorption and innovation of foreign spherical tank technology. As a result, many techniques of spherical tanks with high tank parameters have been nationalized, which makes a positive contribution for China's economic development. But overall, there is still a significant gap between China and other countries with advanced technology and international level, for the large-scale cryogenic ethylene tank, its main materials (including welding material) mainly relies on imports, for the special large natural gas spherical tank, construction of 10000-20000 m~3 natural gas spherical tank has been quite common in the advanced industrial countries. But in China, due to key design, manufacturing technology has not been fully resolved, only 5,000 m~3 spherical tanks were constructed, All of 10000 m~3 gas spherical tank still dependent on import, which may take higher cost and longer period of construction. To meet the demand of our country's natural gas storage, and meet the demand of large-scale tank in the petroleum, chemical, textile, metallurgical and other industries, it is urgent to develop the core technique of large-scale spherical tank with our own intellectual property rights.
     Construction of increasingly larger spherical tank is a complex and systematic project, which involves a number of disciplines and technical fields. In this paper, under the subsidy of the state's major domestic technology and equipment innovation research project -Transport the natural gas from the west to the east "building and development of a large natural gas 10000 m~3 spherical tank" (item code: State Economy Trade Technology [2001] 519), in view of research of key design and manufacture technology of
     10000 m~3 large-scale natural gas tank, from the perspectives such as evaluation and selection of main material, welding and heat treatment technology, structure design theory and stress analysis techniques to shell plastic molding and groove processing technology, we have solved several key technology of spherical tank construction. This article has completed the primary research work coverage, which was shown as follows:
     (1) Through technical analysis of material of the domestic and international spherical tank with high technical parameters, coupled with requirements of operating parameters of 10000 m~3 natural gas spherical tank, we have formulated selection principle of material, focused on WEL-TEN610CF systematic material properties, welding performance, heat treatment on Performance Test and solved the large gas tank materials evaluation, welding and heat treatment process, and finally selected WEL-TEN610CF as the first shell steel of the 10000 m~3 large-scale natural gas spherical tank.
     (2) Based on the construction of Chongqing Gas Group 2 units 10000 m~3 natural gas spherical tank, we have conducted systematic research on the selection of design standards, the pressure test method, spherical tank strength calculation, shell-band structure identification, opening reinforcement methods, the structure style of support column, and completed structural design study on 2units 10000 m~3 natural gas spherical tank in the first time.
     (3) For key stress spots of 10000 m~3 large natural gas spherical tank: manhole, nozzle and parts connected between upper column and shell petal, we have conducted systematic finite element stress analysis and study on these stress spots under different operating conditions: operating condition, hydraulic or pneumatic test conditions and the combination of wind and seismic load. We have taken the analyze results as the theoretical foundation and fundamental principles and conducted structural optimization on these high-stress spots.
     (4) Elastic-plastic analysis was conducted on the loading process of cold-pressing plate as an ideal elastic-plastic material. We have deduce the relations between model size and shell molding deficiency through combined action of bending deformation and membrane deformation, and deduced the formula of model curvature radius by analysis of rebound regularity of shell plate under load-off through the calculation of bending deformation rebound and membrane deformation. Combined with the actual rate of rebound, curvature problem of pressing model of 10000 m~3 large-scale natural gas spherical tank has been solved. Through the research on the main factors under cold-pressing process of shell plate such as a pressing model factors (diameter, curvature value), material factors (yield strength, modulus of elasticity, Poisson’s ratio), load factors (loading value, loading rate), punching parts and order, we have mastered the influence of various factors, made the shell-punching technology to be more scientific.
     (5) In accordance with the principle of the second forming, by study on three-dimensional cutting model principle and calculation method, we have acquired 5 kinds calculation of 10000 m~3 natural gas shell plate, solved the main technical problem of precision cutting technology of long groove of shell plate.
     (6) The research results will be applied to development of 10000 m~3 large-scale natural gas spherical tank, the first realization of construction of 10000 m~3 large-scale natural gas spherical tank in China. Specific indicators and data of 10000 m~3 large-scale natural gas spherical tank can be provided a reliable basis for the large-scale development of natural gas spherical tank in future.
引文
1王嘉麟,侯贤忠.球形储罐焊接工程技术.机械工业出版社, 1999:3
    2张康达,洪起超.压力容器手册.中国劳动社会保障出版社, 2002:440~480
    3秦晓钟.国外压力容器用低合金高强度钢概况.化工与通用机械, 1979,(1):18-28
    4矢野和彦.低裂缝敏感性60kg/mm2级钢板K-TEN62CF.化工与通用机械, 1980,(3):49-50
    5 JIS G3115-2005. Steel Plates for Pressure Vessels for Intermediate Temperature Service. 2005:1-9
    6石冈千里. ?低裂缝敏感性60kg/mm2级钢板K-TEN62CF.神戶製鋼技報,1979,29(4):25-27
    7 Chen Xiao. Properties and Application of HSLA Steel(WDL-60) with low Susceptibility to weld Cracks. In: Microalloyed HSLA Steel. World Materials Conference Proceedings. 1998:249-258
    8 Deshimaru Shinichi, Takahashi Kazuhide, Endo Shigeru, et al. Steels for Production, Transportation, and Storage of Energy. JFE Technical Report, 2004,(2):55-67
    9 Noritsugu Itakura, Shin-ichi Deshimaru, Ichiro Nakagawa.Ultra Heavy Gauge SPV490 Steel Plate with Tensile Strength over 610MPa at Intermediate and Moderate Temperatures for Boiler Pressure Vessels,川崎製鉄技報,1998, 30(3):162-166
    10 Tanigawa, O., Ishii, H., Itakura, N., et al. The 420 MPa and 500 MPa yield strength grade steel plates with excellent HA2 toughness produced by TMCP for offshore structure. Kawasaki Steel Giho. 1993,25(1):13-19
    11 Miyata, Y. , Kimura, M. , Murase, F. Development of Martensitic stainless steel seamless pipe for linepipe application. Kawasaki Steel Giho. 1997,29(2):90-96.
    12 Hisata, M., Miyake, T., Kawabata, F. 420 MPa yeild strength steel plate with superior fracture toughness for arctic offshore structures. Kawasaki Steel Giho. 1998,30(3):142-147
    13 L.Meyer H.de Boer. Welding of HSLA Structural Steel. Metals Park, Ohio, ASM, 1978:42-62
    14 A. Brown, C. L. Jones.Hydrogen-Induced Cracking in Pipeline Steels.Corrosion. 1984,(40):330-336.
    15 S. Deshimaru, O. Tanigawa, Y. Mishiro. Ultra-low Sulfur and Calcium- Treated A516 Grade 70 Steel Plate for Sour Service in Serviceability of Petroleum, Process, and Power Equipment .New York, NY: ASME, 1992:155-162
    16 Masao Yuga ,et al. High Performance 610N/mm2 Class High Tensile Strength Steel Plates for Pressure Vessel Use, In: Collected Papers of the Welded Structure Symposium 2002:121
    17 Koshiro Tsukada, et al. Application of OLAC (On-Line Accelerated Cooling) to Steel Plates. NKK Technical Reports. 1981,(89):121-132
    18 Dolby R E. Advances in Welding Metallurgy of Steel.Metal Technology, 1983, (9):349-362
    19 Olson D L. Prediction of Austenitic Weld Metal Microstructure and Properties.Welding Journal, 1985,(10):281-295
    20 Ohshita Setal. Prevention of Solidification Cracking in very Low Carbon Steel Welds. Welding Journal, 1983,(5):129
    21 Abson D.J. Factors Influencing As-deposited Strength, Microstructure and Toughness of Manual Metal Arc Welds Suitable for C-Mn Steel Fabrications. International Metal Reviews, 1986,(4):141-194
    22 Metallurgical Investigation on the Scatter of Toughness in the Weldment of Pressure Vessel Steels. J. PVRC Retort. WRC Bulletin. 1988,(331)
    23 Watanabe I. New Steel for High heat Input Welding.Metal Construction.1984,(5)
    24 Qian B Netal. New Advances in Welding and Allied Processes. International Academic. Publishers. 1991
    25秦晓钟.国外压力容器用低合金高强度钢近况.化工与通用机械, 1981,(6): 43-53
    26陈晓.球形容器用CF-62钢的开发及应用.见:第三届全国压力容器学术会议专题报告论文集.合肥:《压力容器》增刊,1992:142-148,
    27陈晓. CF-62钢制1500m3大型低温球罐用44mm厚钢板力学性能及应力腐蚀性能及应用.钢铁, 1997,32(增刊):108-111
    28宿德民. CF-62钢制1500m3乙烯球罐设计.压力容器, 1994,11(4):36-39
    29陈晓.高韧性压力容器用钢510、530的研制开发应用.压力容器, 1994,11(1):16-18
    30李书瑞,陈晓.高性能WH530钢板力学性能及焊接性能研究.压力容器, 1998,15(1):12-20
    31 JB4732-95钢制压力容器分析设计标准标准释义.北京:中国标准出版社,1995:1-34
    32贺匡国.压力容器分析设计基础.北京:机械工业出版社, 1995:3-8.
    33 ASMEⅧDiv1-2004. Boiler and Pressure Vessel Code Section. American Society of Mechanical Engineers, 2004
    34 ASMEⅧDiv2-2004. Boiler and Pressure Vessel Code Section. American Society of Mechanical Engineers, 2004
    35 GB150-1998.钢制压力容器.北京:中国标准出版社,1998
    36 CODAP-2000.非直接火受压容器建造规范.法国标准, 2000
    37 Ruicheng, Tong, Xucheng Wang . Simplified Method Based on the Deformation Theory for Structural Limit Analysis-II. Numerical Application and Investigation on Mesh Density. The International Journal of Pressure Vessels and Piping, 1997,70(1):51-58
    38 Zingoni, Alphose. Stress Analysis of a Storage Vessel in the Form of a Complete Triaxial Ellipsoid: Hydrostatic Effects. The International Journal of Pressure Vessels and Piping, 1995, 62(3):269-279
    39 N. El-Abbasi, S.A. Meguid, A. Czekanski. Three-dimensional Finite Element Analysis of Saddle Supported Pressure Vessels. International Journal of Mechanical Sciences. 2001,43(5):1229-1242
    40 Mackerle Jaroslav. Finite Elements in the Analysis of Pressure Vessels and Piping, an Addendum: a Bibliography (2001–2004) . International Journal of Pressure Vessels and Piping, 2005,8(7):571-592
    41 A.Th. Diamantoudis, Th. Kermanidis. Design by Analysis Versus Design by Formula of High Strength Steel Pressure Vessels: a Comparative Study. The International Journal of Pressure Vessels and Piping, 2005,82(1):43-50
    42 Z. Sanal. Nonlinear Analysis of Pressure Vessels: Some Examples. The International Journal of Pressure Vessels and Piping, 2000,77(12):705-709
    43 You L.H., Zhang, J.J. You, X.Y. Elastic Analysis of Internally Pressurized Thick-walled Spherical Pressure Vessels of Functionally Graded Materials. International Journal of Pressure Vessels and Piping. 2005, 82(5): 347-354
    44 J. Mackerle. Finite Elements in the Analysis of Pressure Vessels and Piping. an Addendum (1996–1998). The International Journal of Pressure Vessels and Piping,1999,76(7):461-485
    45 Mackerle Jaroslav. Finite Elements in the Analysis of Pressure Vessels and Piping--a Bibliography (1976-1996).The International Journal of PressureVessels and Piping, 1996,69(3):279-339
    46 T.X. Yu and W. Johnson. Influence of axial force on the elastic-plastic bending and spring back of a beam. Mechanical Working Technology, 1982,6:5-21
    47梅林涛,杨国义.球形储罐应力分析及评定.压力容器, 2002,19(7):15-17
    48李永泰,黄金国.球形储罐分析设计.压力容器, 2003,20(5):34-36
    49李永泰,顾永干. 1000m3氧气球罐应力分析设计.压力容器, 2004,(3):19-22
    50李群.球形储罐球壳板尺寸、面积的计算.石油化工设备技术, 2004,25(1): 11-16
    51孙玉辉.混合式球罐几何尺寸的立体解法.化工设计, 1996,(3):41-44
    52姜放.球面三角学在球罐设计中的应用.石油化工设备, 1997,26(1):26-29
    53危小庆.大型混合式球形容器球壳板设计.江西化工, 2004,(2):133-136
    54罗张东.混合式球壳瓣片尺寸的一种求法.天然气与石油, 2003,21(1):56-57
    55胡志方,周焱.混合式球壳与桔瓣式球壳的设计对比.石油化工设备,2003, 23(1):25-26
    56刘光复.球形储罐足球形瓣片几何尺寸计算的实用新型公式.吉化科技,1994, (2): 50-53
    57鹏晓顾.球形存储罐板壳的计算及分瓣方法的比较.压力容器,1997
    58 S. Jelemensky, J. Hari?ová, A. Molnár, et al. Reliable Risk Estimation in the Risk Analysis of Chemical Industry Case Study: Ammonia Storage Pressurized Spherical Tank, the 30th International Conference of the Slovak Society of Chemical Engineering, Tatranské, Matliare, May 2003: 26-30
    59张鹏(译).风险技术在压力容器和管道上的应用.油气储运, 1996,15(5):54-59
    60 Miller G. K. Stresses in a Spherical Pressure Vessel Undergoing Creep and Dimensional Changes. International Journal of Solids and Structures. 1995, 32(14):2077-2093
    61 Lee Song-In, Koh Seung-Kee. Residual Stress Effects on the Fatigue Life of an Externally Grooved Thick-walled Pressure Vessel. The International Journal of Pressure Vessels and Piping. 2002, 79(2):119-126
    62 Rudolph Jürgen, Schmitt Carsten, Wei? Eckart. Fatigue Lifetime Assessment Procedures for Welded Pressure Vessel Components. The International Journal of Pressure Vessels and Piping. 2002, 7(2):103-112
    63 Willschütz, H.-G. Simulation of Scaled Vessel Failure Experiments and Investigation of a Possible Vessel Support Against Failure. Nuclear Engineering and Design. 2004, 228(1-3):401-414
    64 F A LECKIE, D J PAINE, R K PENNY Elliptical discontinuities in sphericalshells.J. Strain Anal,1967,(2):34-39
    65 W. F. Chen, D. J. Han, Plasticity for structural engineering, Springer-Verlag, 1988: 67-79
    66 Lee Ho-Sung, Yoon Jong-Hoon, Park Jae-Sung, Yi Yeong-Moo. A Study on Failure Characteristic of Spherical Pressure Vessel. Journal of Materials Processing Tech. 2005,164-165:882-888
    67沈浩.压力容器的可靠性设计.天津轻工业学院学报, 1994(1):25-29
    68许琦.可靠性方法在压力容容器设计中的应用.机械设计与制造, 1999,(1):6-7
    69陈学东.以风险与寿命为基准的承压设备设计与制造.压力容器, 2007,24(10):1-5
    70亦凌.基于ANSYS的球形压力容器的结构强度可靠性分析.化工装备技术, 200728(4):34-36
    71陈学东.压力容器风险评估技术在国家安全技术规范中的采用.压力容器, 2008, 25(12):1-4
    72王凤志,苑世剑.不等厚度球罐整体无模成形工艺的实验研究与有限元分析.塑性工程学报, 1997, 4(4):24-29
    73 Wang Feng Zhi, Yuan Shi Jian, Zeng Yuan Song, Wang Z. R. Research into the Dieless Hydro-Forming of Non-uniform Thickness Spherical Vessels. International Journal of Machine Tools and Manufacture. 1997, 37(8):1123-1130
    74贺元成,王晓明.混合式球罐二次下料样板计算及加工方法.石油化工设备. 2001, (5):57-59
    75强月光,戈兆文.混合式球罐极带边板长纬向边的净料切割.石油化工设备技术. 1998, (3):10-11
    76强月光,才立勇.混合式球罐极带边板长纬向边的净料切割方法.石化技术,1999, 6(1):21-23
    77官云胜.混合式球罐球壳板幅计算及成型加工.石油化工设备, 2000,(5):38-41
    78李敬东.球罐瓣片的冷压成型及其质量控制.现代制造工程, 2003,(1):43-44
    79吴成,杨景.大瓣片高强钢球罐国产化制造技术.压力容器, 2000,(4): 41-43
    80康鸿燕.钢制球罐的球壳板制造工艺.化工施工技术, 1999, 21(2):21-23
    81陈定岳,刘平. 4000m3薄壁球罐制造中几个问题的探讨.石油工程建设, 1999,(1):21-23
    82刘建生,陈慧琴.大型封头成形工艺的模拟研究.太原重型机械学院学报, 1997,4:302-306
    83杨占波,郝春雷.采用CAD对球壳自动排料.石油化工设备,2002,32(2): 44-46
    84窦万波.球罐瓣片放样尺寸计算.压力容器, 1995, 12(6):532-535
    85朱军,吴国源.球壳的自动排料.计算机辅助设计与制造, 2001, (2):37-38
    86武小忙.球瓣下料新工艺.石油化工设备. 23(6):37-39
    87顾春兰,贺鹏. AutoCAD制图法求解混装式球壳极板几何尺寸.石油工程建设. 2003,29(2):53-55
    88孙玉辉.混合球罐极板尺寸及排版方案比较计算用表.化工设备设计,1997, 34(1):53-57
    89康鸿雁,张福延.球罐球壳板的划线与切割.压力容器,2005, 22(4):42-47
    90柳忠彬.球罐一次下料展开分析.石油化工设备, 2007(3):54-56
    91武小忙.球罐组装工艺的选择及施工技术关键.石油工程建设1999(1):20-22
    92闫国山,孟继香.1万m3进口天然气球罐的安装与质量控制.城市燃气, 2002(1):21-28
    93徐航5000 m3球罐安装工法.沈阳建设,2001(2):33-37
    94杨开武,杨森,谢磊.大型天然气球罐现场安装的技术分析.煤气与热力2005(4):29-32
    95施友民,陈帏君.大型球罐组装新技术.压力容器, 2004, 21(5):28-31
    96陈勇尔.大型球罐全位置药芯自动焊.焊接, 1995(6):11-13
    97张运川.大型球罐的现场自动化焊接设备与焊材.石油工程建设, 1995,(1): 16-22
    98张运川.球形贮罐自动化焊接技术的进展.压力容器, 1997(4):49-56,71
    99陆宝麒,陈英.球罐自动焊技术的工程应用.石油工程建设, 1998(4):9-13
    100李福恒.国产自保护药芯焊丝在球罐焊接中的应用.石油工程建设, 1997(5): 20-23
    101袁涛. TOFD超声成像检测技术在压力容器检验中的应用.压力容器, 2008, 25(2):58-60
    102阎长周. TOFD方法在厚壁承压设备焊缝检测中的试验和应用.压力容器. 2008,25(10):8-10
    103伊新. TOFD检测技术基本原理及其应用探讨.石油化工应用, 2008,24(4): 29-31
    104 GB17820-1999.天然气.北京:中国标准出版社,1999:
    105 GB12337-1998.钢制球形储罐.北京:中国标准出版社,1998:
    106李敏.大型天然气球形容器长期运行的安全性分析.见:第四届全国压力容器学术年会论文集.合肥:《压力容器》1997第二期增刊,500-504
    107杨森. 1万m3天然气球罐的首次开罐检验与分析.城市燃气, 2006(4):8-13
    108张易良. 1万m3天然气球罐的应力腐蚀和残余应力试验研究.见:第四届全国压力容器学术年会论文集.合肥:《压力容器》1997第二期增刊,64-68
    109 GB/T 229-1994.金属夏比缺口冲击试验方法.北京:中国标准出版社, 1994
    110 GB/T 12778-1991.金属夏比冲击断口测定方法.北京:中国标准出版社, 1991
    111 Yurioka N. and Suzuki. Hydrogen assisted cracking in C-Mn and low alloy steel weldments.International Material Reviews, 1990,35(4):217
    112 Degenkdbe J et al. Characterization of Weld Thermal Cycles With Regard to Their Effect on The Properties of Welding Joint by The Cooling Time t8/5 and its Determination. IIW Doc IX-1336-84
    113 GB 4675-1984.焊接性试验.北京:中国标准出版社,1984
    114 GB 4340-1999.金属维氏硬度试验方法.北京:中国标准出版社, 1999
    115 GB/T2358-1994.金属材料裂纹尖端张开位移试验方法.北京:中国标准出版社,1994
    116 GB/T 13299-1991.钢的显微组织评定方法.北京:中国标准出版社,1991
    117 GB6394-2002.金属平均晶粒度测定法(A).北京:中国标准出版社,2002
    118 GB/T15970.7-2000.金属和合金的腐蚀应力腐蚀试验第7部分:慢应变速率试验.北京:中国标准出版社,2000
    119顾卫东. WEL-TEN610CF钢应力腐蚀行为及防腐研究.压力容器, 2005,22 (5): 8-11,15
    120 GB6803-1996.铁素体钢无塑性转变温度落锤试验方法.北京:中国标准出版社,1996
    121 GB4157-1984.金属抗硫化氢应力腐蚀开裂恒负荷拉伸试验方法.北京:中国标准出版社,1984
    122 JLPA201-2000.球形储罐标准.日本标准, 2000:
    123贺晓阳,柏琼.球罐支柱上口翻边加工工艺.石油工程建设, 1996,(6):53-55
    124王大勇,谢伟.有关球罐支柱的几个问题.油气田地面工程, 2003(3) :42
    125李永泰.球罐整体结构水平刚度及支柱拉杆应力分析.压力容器, 2006,(3): 19-24
    126王永卫.球罐支柱与球壳连接处强度的有限元分析.石油化工设备, 2007,(6): 69-72
    127于广彦,杨东大.球形储罐上支柱长圆形连接结构.见:第六届全国压力容器学术年会论文集.合肥:《压力容器》
    128李永泰.球罐支柱型式及其与球壳连接的结构.压力容器, 2003(10) :28-33
    129刘明福. a点局部应力分析与球罐优化设计.石油化工设备技术, 2006(1):6-8
    130李永泰,黄金国,潭继锦,等.球罐整体结构水平刚度及支柱拉杆应力分析.压力容器. 2006,26(3):19-24
    131王春玲.塑性力学.北京:中国建材工业出版社.2005:37-38
    132李同林,殷绥域.弹塑性力学.北京:中国地质大学出版社.2006: 68-69
    133冯晓九.大板片高强钢球壳板成形机理及本构关系研究.哈尔滨工程大学博士论文.2004: 27-29
    134重庆燃气集团有限公司. 10000m3天然气球罐研制总结报告.内部资料

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700