模拟微重力对斑马鱼胚胎发育及microRNA表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太空环境是一个复杂、多变而极端的环境,具有多种辐射、微重力、弱磁场等特点,其中微重力是宇航员在太空环境中所面对的最大障碍之一,因此微重力的生物学效应的研究成为科学家们所关注的最重要的太空问题之一。
     本论文以斑马鱼(Danio rerio)胚胎作为地面模拟微重力效应的研究模型,采用美国航天航空局(NASA)研制的微重力模拟系统(Rotary Cell Culture System, RCCS),对不同发育时期的斑马鱼胚胎进行模拟微重力处理,从表型和基因表达两个层面上探讨模拟微重力对斑马鱼产生的生物学效应。结果表明,在表型水平上,模拟微重力可以导致斑马鱼胚胎发育的畸形和死亡比率增加;体长在重力恢复的短期内变长,10天后恢复到正常水平;心率在微重力处理过程中及重力恢复的短期内有所加快,但7天后恢复到正常水平。在基因表达水平上,应用Inicroarray对斑马鱼胚胎在模拟微重力条件下的1nicroRNA表达谱进行分析。结果表明,在不同发育时期对斑马鱼胚胎进行模拟微重力处理,以及对发育时期相同的斑马鱼胚胎进行不同时长的模拟微重力处理,均可导致microRNA表达谱的改变;在三组不同的微重力处理实验中(8-72hpf,24-72hpf和24-48hpf),共发现9个microRNA的表达出现显著变化,用于后续1nicroRNA巴基因的预测和通路分析。靶预测结果表明,microRNA-204,-429和-22a表达上调,microRNA-16a表达下调,由于其靶基因sgcg与心肌细胞缺陷,肌肉萎缩,导致心律不齐,心脏功能下降有关,因此本研究发现的微重力引起的其对应的斑马鱼心率的增加,可能和这些microRNA上调有关。研究发现的microRNA-738,-133b,-9*和-133a表达上调,它们对应的靶基因Nrarpa,能间接影响notch通路和Wnt通路,而这两个通路都是机体形态发生和发育的重要机制,因此是否与模拟微重力产生的胚胎畸形率和死亡率增加有关联,是非常有必要进一步分析的问题。
     另外,本论文还应用real-timePCR的技术,对前期模拟微重力蛋白表达谱研究中获得的差异表达蛋白质对应基因的表达水平进行了定量分析。被检测的基因包括肌肉型的肌酸激酶a (ckma),蛋白酶26s-非ATP酶8(psmd8),肌动蛋白2 (acta2),β2微管蛋白(tubb2c)以及抗增殖蛋白(prohibitin)。结果表明,上述基因在不同的模拟微重力处理后,肌动蛋白2 (acta2),β2微管蛋白(tubb2c)以及抗增殖蛋白(prohibitin)的1mRNA水平表达下调,与蛋白质表达趋势相同,肌肉型的肌酸激酶a (ckma),蛋白酶26s-非ATP酶8 (psmd8)的mRNA水平表达下调,与蛋白质表达趋势相反。推测在基因转录水平、转录后翻译水平上存在其它分子参与的调控机制,然而这种调控机制是否与microRNA调控相关尚有待于进一步研究。
Space conditions are a complex set of phenomena involving multi-radiation, microgravity and weak magnetic field etc. Amongst all these phenomena, microgravity is a constant physical factor astronauts must meet during space flight. Therefore, the mechanism of microgravity-induced biological effects is one of the most important issues in space biological studies.
     In this paper, zebrafish (Danio rerio) embryos at different development stages were exposed to simulated microgravity, respectively, using a rotary cell culture system (RCCS) designed by National Aeronautics and Space Administration (NASA) of America. Biological effects of simulated microgravity on zebrafish embryos were investigated at the phenotypic and gene expression levels. Malformation rate and mortality rate were found increased after simulated microgravity exposure. Body length and heart rate were also increased during microgravity exposure and after a shot period of gravity recovery, but both returned to normal level after 10 days and 7 days of gravity recovery, respectively. At gene expression level, microRNA expression profiles of zebrafish embryos exposed to simulated-microgravity were analyzed using microarrays. Results demonstrated the microRNA expression profiles of zebrafish embryos varied, depending on the development stages of embyos exposed to simulated microgravity and the exposure time. All together, nine miRNAs showed significant changes after three different microgravity exposure (8-72hpf,24-72hpf and 24-48hpf), and were subsequently used in analysis of microRNA target and pathway prediction.
     The results of target prediction shows that, microRNA-204,-429 and-22a expression up-regulated, microRNA-16a expression down-regulated, as to their target gene sgcg was related to cardiomyocyte defects, muscular atrophy, and leading to arrhythmia, decline in cardiac function, increasing of heart rate of zebrafish under microgravity in this paper might be related to these microRNAs up-regulated. microRNA-738,-133b,-9* and-133a expression up-regulated, their target gene Nrarpa indirectly effects notch pathway and Wnt pathway. These two pathways are the significant mechanism about morphogenesis and development, therefore, whether incr- easing of malformation rate and mortality rate was related to this significant mechanism needs further studies.
     In addition, the mRNA expression levels of five differentially expressed proteins, obtained from our previous simulated-microgravity research, were analyzed using quantitative PCR (RT-qRCR). The five genes, inculding creatine kinase muscle a (ckmα), proteasome 26S subunit non-ATPase 8 (psmd8), actin alpha2 (αctα2), tubulin beta 2c(tubb2c) and prohibitin (prohibitin), displayed during different simulated-microgravity exposures, the mRNA expression levels of actin alpha2 (αctα2), tubulin beta 2c (tubb2c) and prohibitin (prohibitin) down-regulated, had the same trends to the proteins; the mRNA expression levels of creatine kinase muscle a (ckmα), proteasome 26S subunit non-ATPase 8 (psmd8) down-regulated, had different trends to the proteins. We supposed in the level of gene transcription and post-transcription translation existed regulated mechanism other molecular involved. However, whether this regulated mechanism was related to microRNA needs further studies.
引文
[1]宋淑军.模拟微重力环境对骨代谢的影响.中国骨质疏松杂志.2009,15(6),463-469.
    [2]余志斌.失重对航天员的影响及其对抗措施.中华航空航天医学杂志,2007,18(1),72-77.
    [3]孙联文.微重力导致航天员骨质疏松的研究进展.中华航空航天医学杂志.2004,5(1),54-62.
    [4]孙怡宁.微重力引起骨丢失的细胞机制.国际骨科学杂志.2006,27(2),126-128.
    [5]Pardo SJ, Patel MJ, Sykes MC.Simulated microgravity using the Random Positioning Machine inhibits differentiation and alters gene expression profiles of 2T3 preosteoblasts. Am J Physiol Cell Physiol 2005; 288:C1211-1221.
    [6]Mamta J. Patel. Low Magnitude and High Frequency Mechanical Loading Prevents Decreased Bone Formation Responses of 2T3 Preosteoblasts.J Cell Biochem.2009,106 (2):306-316.
    [7]张晓铀,汪恭质.模拟失重对成骨样细胞细胞周期变化的影响.中华航空航天医学杂志,2003,11(1),43-45.
    [8]王冰,张舒,吴兴裕.模拟失重对大鼠骨肉瘤细胞内Ⅰ型胶原表达的影响.中华航空航天医学杂志,2003,14(1),5-7.
    [9]Clement G. Musculo-skeletal system in space.Fundamentals of space medicine,2003,173-204.
    [10]David Williams. Acclimation during space flight:effects on human physiology.CMAJ,2009, 180(13).
    [11]Robert H. Fitts.Microgravity and skeletal muscle. J Appl Physiol,2000,89:823-839.
    [12]Caiozzo V. J, Haddad F, Baker M J. Microgravity induced transformations of myosin isoforms and contractile properties of skeletal muscle. J Appl Physiol,1996,81:123-132.
    [13]Robert H. Fitts.Functional and structural adaptations of skeletal muscle to microgravity.The Journal of Experimental Biology 204,3201-3208 (2001).
    [14]DANNY A.RILEY.Decreased thin filament density and length in human atrophic soleus muscle fibers after spaceflight.J.Appl.Physiol.88:567-572,2000.
    [15]G. R. Adams.Effects of spaceflight and thyroid deficiency on hindlimb development. I. Muscle mass and IGF-I expression. J. Appl. Physiol,88:894-903,2000.
    [16]G. R. Adams.Effects of spaceflight and thyroid deficiency on rat hindlimb development. II. Expression of MHC isoforms. J. Appl. Physiol,88:904-916,2000.
    [17]Taylor W E, Bhasin S, Lalani R. Alteration of gene expression profiles in skeletal muscle of rats exposed to microgravity during a spaceflight. J Gravit Physiol,2002,9:61-70.
    [18]Cogoli A, Bechler B, Cogoli-Greuter M, et al. Mitogenic signal transduction in T lymphocytes in microgravity. J Leukoc Bio,1993,53:569-575.
    [19]Cogoli A,Bechler B,Cogoli-Greuter M.Mitogenic signal transduction in T lymphocytes in microgravity. J Leukoc Bio,1993,53:569-575.
    [20]Buravkova LB, Rykova MP, Grigorieva V. Cell interactions in microgravity:cytotoxic effects of natural killer cells in vitro, J Gravit Physiol,2004,11 (2):177-180.
    [21]Cogoli A, Li CF, Schopper T, Pippia P, Galler G, Meloni MA, Hughes-Fulford M. Key gravity-ensitive signalin pathways drive T cell activation. Faseb J 2005,19:2020-2022.
    [22]张华,贾秀志.太空及微重力环境对免疫系统影响的研究进展.国际免疫学杂志,2008,31(1),77-79.
    [23]冯岱雅.失重对人体心血管系统的影响及仿真.2005,03-253-05.
    [24]刘明.模拟微重力对血管内皮细胞的生物学效应.中国空间科学学会第七次学术年会.2009.
    [25]杨静,安宜.模拟微重力环境对大鼠神经干细胞粘附能力及Ca2+-ATPase活性的影响.
    [26]肇海,杨唐斌.模拟微重力对大鼠皮层神经元蛋白羰基化的影响.航天医学与医学工程.2004,17(6).
    [27]金珊珊.斑马鱼,人类疾病研究的理想模式动物.生命的化学.2008,28(3):260-263.
    [28]董武,斑马鱼及相关实验技术,中国海洋大学出版社,2006年3月.
    [29]Moorman SJ, Cordova R, Davies SA.A critical period for functional vestibular development in zebrafish.Dev Dyn 2002; 223:285-91.
    [30]Shimada N, Sokunbi G, Moorman S J. Changes in gravitational force affect gene expression in developing organ systems at different developmental times.BMC Dev. Biol,2005; 5:10.
    [31]Naoko Shimada and Stephen J. Moorman.Changes in Gravitational Force Cause Changes in Gene Expression in the Lens of Developing Zebrafish.Developmental dynamics 235:2686-2694, 2006.
    [32]Xiaoyan Li. Effects of Wall Vessel Rotation on the Growth of Larval Zebrafish Inner Ear Otoliths.Microgravity Sci. Technol.2010.
    [33]Moorman S, Burress C, Cordova R, Slater J. Stimulus dependence of the development of the zebrafish (Danio rerio) vestibular system.J. Neurobiol.38,247-258 (1999).
    [34]李海明.microRNA,一种新的调控基因表达的小分子RNA.中国癌症杂志.2006,16(8):675-678.
    [35]Taganov KD. Boldin MP. Chang KJ NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses 2006 (33).
    [36]O'Connell RM. Taganov KD. Boldin MP MicroRNA-155 is induced during the macrophage inflammatory response 2007 (5).
    [37]Esau C, Kang X, Peralta E, et al. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem,2004,279 (50):52361-5.
    [38]Poy MN.Eliasson L. Krutzfeldt J A pancreatic isletspecific microRNA regulates insulin secretion.2004.
    [39]Hipfner DR. Weigmann K. Cohen SM The bantam gene regulates Drosophila growth 2002.
    [40]David L. Allen Eric R. Effects of spaceflight on murine skeletal muscle gene expression.2009 (106):582-589.
    [41]Lee Y, Kim M, Han J, Yeom K. H, Lee S, Baek S. H. and Kim V. N. (2004) MicroRNA genes are transcribed by RNA polymerase Ⅱ.EMBO J.23,4051-4060.
    [42]Cai X, Hagedorn C. H. and Cullen B. R. (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs.RNA 10,1957-1966.
    [43]Lee Y, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S. and Kim V. N. (20 03) The nuclear RNase Ⅲ Drosha initiates microRNA processing.Nature 425,415-419.
    [44]Yi R, Qin Y, Macara I. G. and Cullen B. R. (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs.Genes Dev.17,3011-3016.
    [45]Hutvagner G, McLachlan J, Pasquinelli A. E, Balint E, Tuschl T. and Zamore P. D. (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA.Science 293,834-838.
    [46]Ketting R. F, Fischer S. E, Bernstein E, Sijen T, Hannon G. J. and Plasterk R. H. (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans.Genes Dev.15,2654-2659.
    [47]Khvorova A, Reynolds A. and Jayasena S. D. (2003) Functional siRNAs and microRNAs exhibit strand bias.Cell 115,209-216.
    [48]Schwarz D.S, Hutvagner G, Du T, Xu Z, Aronin N. and Zamore. (2003) Asymmetry in the assembly of the RNAi enzyme complex.Cell 115,199-208.
    [49]Hutvagner G. (2005) Small RNA asymmetry in RNAi:Function in RISC assembly and gene regulation.FEBS Lett.579,5850-5857.
    [50]Mourelatos Z, Paushkin S, Sharma A, Charroux B, Abel L, Rappsilber J, Mann M. and Dreyfuss G. (2002) miRNPs:a novel class of ribonucleoproteins containing numerous microRNAs.Genes Dev.16,720-728.
    [51]Hutvagner G. and Zamore P. D. (2002) A microRNA in a multiple turnover RNAi enzyme complex.Science 297,2056-2060.
    [52]Doench J. G, Petersen C. P. and Sharp P. A. (2003) siRNAs can function as microRNAs.Genes Dev.17,438-442.
    [53]Zeng Y, Yi R. and Cullen B. R. (2003) MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc. Natl. Acad. Sci. USA 100,9779-9784.
    [54]Saxena S, Jonsson Z. O. and Dutta A. (2003) Small RNAs with imperfect match to endogenous mRNA repress translation.Implications for off-target activity of small inhibitory RNA in mammalian cells.J. Biol. Chem.278,44312-44319.
    [55]Erno Wienholds, Ronald H. A. Plasterk. MicroRNA function in animal development. FEBS Letters 579 (2005) 5911-5922.
    [56]Meister G, Dorsett Y. and Tuschl T. (2004) Sequence-specific inhibition of microRNA and siRNA-induced RNA silencing. RNA 10,544-550.
    [57]Hutvagner G, Simard M. J, Mello C. C. and Zamore. (2004) Sequence-Specific Inhibition of Small RNA Function. PLoS Biol.2, E98.
    [58]Lecellier C. H, Dunoyer P, Arar K, Lehmann-Che J, Eyquem S. and Voinnet O. (2005) A cellular microRNA mediates antiviral defense in human cells. Science 308,557-560.
    [59]Lee Y. S, Chung S, Kim K. S. and Dutta A. (2005) Depletion of human microRNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. J. Biol. Chem.280,16635-16641.
    [60]景花,宋沁馨,周国华.MicroRNA定量检测方法的研究进展.Hereditas.2010,32(1):31-40.
    [61]Raymond CK, Roberts BS, Garrett-Engele P, Lim LP, Johnson JM.Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs. RNA,2005, 11 (11):1737-1744.
    [62]Shi R, Chiang VL. Facile means for quantifying microRNA expression by real-time PCR. Biotechniques,2005,39 (4):519-525.
    [63]Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res,2005,33 (20):e179.
    [64]Valoczi A. et al. (2004) Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res.32, e175.
    [65]Kloosterman W. P. et al. (2006) Cloning and expression of new microRNAs from zebrafish. Nucleic Acids Res.34,2558-2569.
    [66]Wienholds E. et al. (2005) MicroRNA expression in zebrafish embryonic development. Sci-ence 309,310-311.
    [67]Brandon Ason, Diana K. Darnell. Differences in vertebrate microRNA expression. PNAS Sept-ember 26, (2006) vol.103 no.39,14385-14389.
    [68]Marika Kapsimali. MicroRNAs show a wide diversity of expression profiles in the Developing and mature central nervous system.Genome Biology (2007) Volume 8, Issue 8, Article R173.
    [69]王芳,余佳,张俊武.小RNA(MicroRNA)研究方法.中国生物化学与分子生物学报.2006年10月22(10):772-77.
    [70]Anders Fjose, Xiao-Feng Zhao. Exploring microRNA functions in zebrafish.New Biotech-nology.2010.
    [71]茹松伟,申卫红.microRNA靶基因预测算法研究概况及发展趋势.生命科学Chinese Bulletin of Life Sciences.2007,19(5).
    [72]Hyeyoung Min, Sungroh Yoon. Got target? computational methods for microRNA target prediction and their extension. Experimental and molecular medicine, Vol.42 (4),233-244,2010.
    [73]XIA Wei, CAO GuoJun.Progress in microRNA target prediction and identification. Science in china press.52 (12):1123-1130.
    [74]Pierre Mazie re and Anton J. Enright. Prediction of microRNA targets. Drug Discovery Tod-ay.2007,12(11).
    [75]Panagiotis Alexiou. Lost in translation:an assessment and perspective for computational micro-RNA target identification. Gene expression.2009,25 (23):3049-3055.
    [76]Wienholds E, Kloosterman W. P, Miska E, Alvarez-Saave-dra E, Berezikov E, de Bruijn E, Horvitz H. R, Kauppinen S. and Plasterk R. H. (2005) MicroRNA expression in zebrafish embryonic development. Science 309,310-311.
    [77]Wienholds E, Koudijs MJ, van Eeden FJ, Cuppen E, Plasterk RH. The microRNA-producing enzyme Dicerl is essential for zebrafish development. Nat Genet,2003, (3):217-8.
    [78]Chen PY, et al. The developmental microRNA profiles of zebrafish as determined by small RNA cloning. Genes Dev,2005,19(11):1288-93.
    [79]Kloosterman WP, et al. Cloning and expression of new microRNAs from zebrafish. Nucleic Acids Res.2006,34 (9):2558-2569.
    [80]Ana R Soares.Parallel DNA pyrosequencing unveils new zebrafish microRNAs. BMC Genom-ics 2009,10:195.
    [81]Alex S. Flynt, Elizabeth J. Thatcher. miR-8 microRNAs regulate the response to osmotic stress in zebrafsh embryos. Journal of cell biology,2009,185 (1).
    [82]Sarah U. Morton, Paul J. Scherz.microRNA-138 modulates cardiac patterning during embryo-nic development. PNAS. November 18,2008,105 (46),17830-17835.
    [83]Luke Pase. miR-451 regulates zebrafish erythroid maturation in vivo via its target gata2. Blood. DOI 10.1182/blood-2008-05-155812.
    [84]Minh T. N. Le. MicroRNA-125b is a novel negative regulator of p53. GENES and developme-nt,2009,23:862-876.
    [85]Nicholas J. Hand, Zankhana R. Master. The microRNA-30 family is required for vertebrate hepatobiliary Development. Gastroenterology.2009 March,136(3):1081-1090.
    [86]Elizabeth J. Thatcher, Ima Paydar. Regulation of zebrafish fin regeneration by microRNAs. PNAS.2008,105 (47),18384-18389.
    [87]Yuichiro Mishima, Zebrafish miR-1 and miR-133 shape muscle gene expression and regulate sarcomeric actin organization. GENES and DEVELOPMENT,2009,23:619-632.
    [88]Jason E. Fish.miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell,2008, 15 (2):272-284.
    [89]Yingchun Wang, Yufen Xie, Dana Wygle, et al. A Major Effect of Simulated Microgravity on Several Stages of Preimplantation Mouse Development is Lethality Associated With Elevated Phospho-rylated SAPK/JNK. Reproductive Sciences,2009,16 (10):949-950.
    [90]Stephen J. Moorman, Rodolfo Cordova, et al. A critical period for functional vestibular deve-lopment in zebrafish. Developmental Dynamics,2002,223:285-291.
    [91]M. A. Goldstein, J. Cheng and J. P. Schroeter, "The effects of increased gravity and micro-gravity on cardiac morphology," Aviat. Space Environ. Med.,69 (6 Suppl), pp. A12-16,1998.
    [92]G. K. Prisk, J. M. Fine, A. R. Elliott and J. B. West, "Effect of 6 degrees head-down tilt on cardiopulmonary function:comparison with microgravity," Aviat. Space Environ. Med., Vol.73, pp. 8-16,2002.
    [93]C. B. Kimmel, W. W. Ballard, S. R. Kimmel, B. Ullmann and T. F. Schilling, "Stages of embryonic development of the zebrafish," Dev. Dyn., Vol.203, pp.253-310,1995.
    [94]Turner RT. What do we know about the effects of spaceflight on bone. Journal of Applied Physiology.2000; 89:840-847.
    [95]Turner RT. Effects of short-term spaceflight and recombinant human growth hormone (rhGH) on bone growth in young rats. Aviat Space Environ Med.1995; 66:763-769
    [96]Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation:microRNAs can up-regulate translation. Science.2007; 318:1931-4.
    [97]Xiao-Jun Wang, Donna D. Zhang. Ectodermal-Neural Cortex 1 Down-Regulates Nrf2 at the Transla-tional Level. PLoS ONE 4 (5):e5492.
    [98]Sun-Gyun Kim. Expression of Ectodermal Neural Cortex 1 and Its Association with Actin during the Ovulatory Process in the Rat. Endocrinology, August 2009,150 (8):3800-3806.
    [99]Kristjan Valk. Gene Expression Profiles of Non-Small Cell Lung Cancer:Survival Prediction and New Biomarkers. Oncology 2010; 79:283-292.
    [100]Matthew T. Wheeler. Smooth muscle cell-extrinsic vascular spasm arises from cardio-myocyte degeneration in sarcoglycan-deficient cardiomyopathy. J. Clin. Invest.113:668-675 (2004).
    [101]Xiangyun Wei. Molecular cloning of three zebrafish lin7 genes and their expression patterns in the retina. Experimental Eye Research 82 (2006) 122-131.
    [102]Jolanta M. Topczewska. Developmentally regulated expression of two members of the Nrarp family in zebrafish. Gene Expression Patterns 3 (2003) 169-171.
    [103]Simone Lemeer. Comparative Phosphoproteomics of Zebrafish Fyn/Yes Morpholino Knockdown Embryos. Molecular & Cellular Proteomics 7.11.
    [104]Sasha E. Stanton.Yaf2 Inhibits Caspase 8-mediated Apoptosis and Regulates Cell Survival during Zebrafish Embryogenesis. Journal of biological chemistry. (2006),281 (39):28782-28793.
    [105]马雯雯.模拟微重力下脊椎动物胚胎发育研究模型建立:(硕士学位论文).大连海事大学,2010.
    [106]Xiaohua Li. Variably modulated gating of the 26s proteasome by atp and polyubiquitin. Biochem J. (2010),421 (3):397-404.
    [107]王晓.泛素-26s蛋白酶体途径在凋亡中的作用.国外医学分子生物学分册(2002),24(2):97-99.
    [108]周多奇.CKMM基因3'NcoI多态性与有氧运动能力的关联研究(硕士论文).北京体育大学.
    [109]张敏.鳜肌酸激酶M-CK cDNA的克隆与组织表达分析.动物学研究2010,Feb.31(1):77-83.
    [110]Shiva Prasad Potta. Isolation and Functional Characterization of a-Smooth Muscle Actin Expressing Cardiomyocytes from Embryonic Stem Cells. Cell Physiol Biochem 2010; 25:595-604.
    [111]Dong Chuan Guo.Mutations in Smooth Muscle Alpha-Actin (ACTA2) Cause Coronary Artery Disease, Stroke, and Moyamoya Disease, Along with Thoracic Aortic Disease. The American Journal of Human Genetics 84,617-627, May 15,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700