枸杞多糖对2型糖尿病大鼠胰岛素抵抗的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的采用高脂高糖饲料喂养8周加小剂量链脲佐菌素(Streptozocin,STZ)腹腔注射的方法复制2型糖尿病大鼠模型,通过观察中药提取物枸杞多糖(lycium barbarum polysaccharides,LBP)对2型糖尿病大鼠糖、脂代谢紊乱及肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)、骨骼肌组织胰岛素信号分子表达的影响,探讨其改善2型糖尿病大鼠胰岛素抵抗的作用及机制,为枸杞多糖治疗2型糖尿病的临床应用提供实验依据,也为进一步认识、研究、开发利用枸杞多糖提供理论依据。
     方法将100只雄性SD大鼠随机分为正常对照组(20只)和造模组(80只)2组,并分别给予常规饲料和高脂高糖饲料喂养。8周后,造模组的大鼠腹腔注射链脲佐菌素(STZ)30mg/kg以诱导2型糖尿病大鼠模型。糖尿病大鼠成模后再随机分为5组:糖尿病模型组、高剂量LBP干预组、中剂量LBP干预组、低剂量LBP干预组及二甲双胍(Metformin,Met)干预组。高、中、低剂量LBP干预组及二甲双胍干预组的大鼠每只每日分别予以LBP160mg/kg、80mg/kg、40mg/kg及Met 250mg/kg灌胃(Intragastric,ig),正常对照组及糖尿病模型组的大鼠则每只每日予以等量的蒸馏水灌胃。造模成功时处死正常大鼠及糖尿病大鼠各6只,取血清测定空腹血糖、空腹胰岛素、TG及TC水平;计算胰岛素敏感指数(insulin sensitive index,ISI)及胰岛素抵抗指数(insulin resistance index,IRI);取胰腺组织行HE染色光镜观察。药物干预6周后,处死所有的动物,取血清测定空腹血糖、空腹胰岛素、TG、TC、游离脂肪酸(free fatty acid,FFA)及TNF-α水平;取后肢股四头肌组织,免疫组织化学方法检测骨骼肌组织胰岛素受体(Insulin receptor,InsR)和胰岛素受体底物-1(Insulin receptor substrate,IRS-1)的表达;电子显微镜观察骨骼肌组织超微结构的变化;取胰腺组织行HE染色光镜观察;计算ISI及IRI。
     结果本实验采用高脂高糖饮食加小剂量STZ诱导的糖尿病大鼠血糖、血脂、IRI较正常对照组明显升高,ISI显著降低,胰岛β细胞部分损伤,符合2型糖尿病发病特点及生化特征。糖尿病模型组血糖、IRI、TG、TC、血清FFA及TNF-α水平较正常对照组明显升高(P<0.05,P<0.01),ISI及骨骼肌组织InsR、IRS-1表达水平显著降低(P<0.05,P<0.01),空腹胰岛素水平无统计学差异(P>0.05)。低剂量LBP干预组上述各指标与糖尿病模型组相比均无统计学差异(P>0.05)。中剂量LBP干预组血糖、IRI及TC水平较糖尿病模型组明显降低(P<0.05,P<0.01),ISI及骨骼肌组织InsR、IRS-1表达水平显著升高(P<0.05,P<0.01),空腹胰岛素、TG、血清FFA及TNF-α水平无统计学差异(P>0.05)。高剂量LBP干预组血糖、IRI、TC、及血清FFA水平较糖尿病模型组明显降低(P<0.05,P<0.01),ISI及骨骼肌组织InsR、IRS-1表达水平显著升高(P<0.05,P<0.01),空腹胰岛素、TG及血清TNF-α水平无统计学差异(P>0.05)。二甲双胍干预组血糖、IRI、血清FFA及TNF-α水平较糖尿病模型组明显降低(P<0.05,P<0.01),ISI及骨骼肌组织InsR、IRS-1表达水平显著升高(P<0.05,P<0.01),空腹胰岛素、TG及TC水平无统计学差异(P>0.05)。光镜下,糖尿病模型组大鼠胰岛形态欠规则,胰岛数及岛内分泌细胞数减少,胰岛萎缩,部分细胞空泡变性;低剂量LBP干预组大鼠胰腺病理改变程度仍较重,中剂量LBP干预组、高剂量LBP干预组及二甲双胍干预组大鼠胰腺病理改变程度较糖尿病模型组有所减轻。电镜下,糖尿病模型组大鼠骨骼肌细胞的部分肌原纤维排列紊乱,部分线粒体肿胀、空泡变性,可见嵴断裂、溶解,部分毛细血管内皮细胞肿胀伴管腔狭窄;各药物干预组大鼠骨骼肌超微结构改变的程度较糖尿病模型组有所减轻。
     结论1、枸杞多糖能通过提高2型糖尿病大鼠的胰岛素敏感性,实现降低血糖的作用。2、枸杞多糖可能并不通过降低血清TNF-α水平,改善2型糖尿病大鼠的胰岛素抵抗。3、枸杞多糖可能通过纠正2型糖尿病大鼠脂代谢紊乱,减轻胰岛素信号转导障碍,实现改善胰岛素抵抗,降低血糖的作用。4、枸杞多糖对2型糖尿病大鼠的胰腺有一定的保护作用。
Objectives The model of type 2 diabetic rats was established by high-fat and high-sugar diet feeding for 8 weeks combined with the intravenous injection of a small dose of streptozotocin(STZ). The study is to investigate mechanism of lyceum barbarum polysaccharides(LBP)’s effect on improving insulin resistance of type 2 diabetic rats by observing its effects on glucose metabolism disorder, lipid metabolism disorder, tumor necrosis factor-α(TNF-α) and expressions of insulin signal molecules in skeletal muscle tissue of type 2 diabetic rats, which can provide experimental evidence of LBP curing type 2 diabetes mellitus and offer academic foundation to further understand, research, explore and make use of LBP.
     Methods One hundred male SD rats were divided into two groups at random: the normal control group(twenty rats) and the induced model group(eighty rats). They were respectively fed with two sorts of different diets: chow diet and high-fat and high-sugar diet. After 8 weeks, rats in the induced model group were injected with a small dose of STZ (30mg/kg) into abdominal cavity to induce the model of type 2 diabetic rats. Then the diabetic rats were randomly assigned into 5 groups : the diabetic model group, the high dose of LBP group, the middle dose of LBP group, the low dose of LBP group and the metformin group. The high, middle, low dose of LBP group and the metformin group were respectively intragastric with LBP 160, 80, 40mg/kg and Met 250 mg/kg. The normal control group and the diabetic model group were fed with distilled water by oral administration method. When the diabetic rats were established, six rats from the normal control group and six rats from the diabetic model group were killed. Their serum were used to defect fasting blood glucose (FBG), fasting insulin(FINS), total cholesterol (TC) and triglyceride (TG). Insulin sensitive index (ISI) and insulin resistance index(IRI) were calculated. Their pancreas were treated by conventional dyeing with HE and observed with optical microscope. The course of treatment lasted for 6 weeks. When the treatment course was finished, all rats were sacrificed. Their serum were extracted for measuring FBG, FINS, TC, TG, free fatty acid(FFA) and TNF-α. The quadriceps femoris samples were collected. The espressions of insulin receptor (InsR) and insulin receptor substrate-1 (IRS-1) in the sketeal muscule tissue were examined by immunohistochemisty. The skelet muscule ultramicrostructure was observed by electron microscope. The pancreas were treated by conventional dyeing with HE and observed with optical microscope. We could calculate ISI and IRI.
     Results The levels of blood glucose, blood lipid and IRI of the diabetic rats fed with high-fat-high-sugar and injected with a small dose STZ were markely increased as compared with those of the normal control group. ISI of the diabetic rats was reduced as compared with that of the normal control group. Their pancreasβcells were partly injured. Those accorded with the feature of type 2 diabetic pathogenesis and biochemistry. The levels of blood glucose, TG, TC, serum FFA, TNF-αand IRI in the diabetic model group were significantly higher than those in the normal control group (P<0.05, P<0.01). ISI and the expression levels of InsR and IRS-1 in the sketeal muscule tissue in the diabetic model group were markely lower than those in the normal control group (P<0.05, P<0.01). The level of fasting insulin was no significant difference between the diabetic model group and the normal control group (P>0.05). The aforementioned indexs were no significant difference between the diabetic model group and the low dose of LBP group (P>0.05). IRI, the levels of blood glucose and TC in the middle dose of LBP group were significantly lower than those in the diabetic model group(P<0.05, P<0.01). ISI, the expression levels of InsR and IRS-1 in the sketeal muscule tissue in the middle dose of LBP group were significantly higher than those in the diabetic model group (P<0.05, P<0.01). The levels of fasting insulin, TG, serum FFA and TNF-α were no significant difference between the diabetic model group and the middle dose of LBP group(P>0.05). IRI, the levels of blood glucose, TC and serum FFA in the high dose of LBP group were significantly lower than those in the diabetic model group (P<0.05, P<0.01). ISI and the expression levels of InsR and IRS-1 in the sketeal muscule tissue in the high dose of LBP group were significantly higher than those in the diabetic model group (P<0.05, P<0.01). The levels of fasting insulin, TG and serum TNF-αwere no significant difference between the diabetic model group and the high dose of LBP group (P>0.05). IRI and the levels of blood glucose, serum FFA and TNF-αin the metformin group were significantly lower than those in the diabetic model group (P<0.05, P<0.01). ISI and the expression levels of InsR and IRS-1 in the sketeal muscule tissue in the metformin group were significantly higher than those in the diabetic model group (P<0.05, P<0.01). The levels of fasting insulin, TG and TC were no significant difference between the diabetic model group and the metformin group(P>0.05). Under the optical microscopy, the islets’shape of rats in the diabetic model group was abnormity. The size and secretion cell number of rats’islets were reduced. The islets were atrophy. Some islets cells appeared vacuolation degeneration. Pathologic changes of rats’pancreas in the low dose of LBP group were still serious. Pathologic changes of rats’pancreas in the middle, high dose of LBP group and the metformin group were obviously alleviated. Under the electron microscopy, some of the muscle fibers of skeletal muscle cells ranked out of order in the diabetic model group. Some of mitochondrials were tumefaction, vacuolation degeneration and ridge structure presented as breakage and unclear. Some of capillary endothelial cells were tumefaction and lead to narrow of the lumen. The ultrastructural alterations of skeletal muscle in the medication group were lightened
     Conclusions (1) LBP could decrease the level of blood glucose by increasing insulin sensitivity of type 2 diabetic rats. (2) LBP could improve insulin resistance of type 2 diabetic rats not by reducing the level of serum TNF-α. (3) LBP could ameliorate insulin resistande and decrease blood glucose by rectifing lipid metabolism disorder and lightening drawback of insulin signal transduction. (4) LBP has some effects of pancreas-protection of type 2 diabetic rats.
引文
[1] Chiasson JL, Rabasa-Lhoret R. Prevention of type 2 diabetes: insulin resistance and beta-cell fuction[J]. Diabetes, 2004, 53: S34-S38.
    [2] Savage DB, Petersen KF, et al. Disordered Lipid Metabolism and the Pathogenesis of Insulin Resistance[J]. Physiol Rev., 2007, 87:507-520.
    [3] Dey D, Basu D, et al. Involvement of novel PKC isoforms in FFA induced defects in insulin signaling[J]. Mol Cell Endocrinol., 2006, 246(1-2): 60-64.
    [4] Dandona P, Aljada A, et al. Metabolic Syndrome: A comprehensive perspective based on interactions between obesity, diabetes and inflammation[J]. Circulation, 2005, 111: 1448 -1454.
    [5]刘萍,何兰杰.枸杞多糖对糖尿病大鼠糖脂代谢的影响[J].宁夏医学院学报,2008,30(4):427-428.
    [6]李光伟,潘孝仁,Lilliojas等.检测人群胰岛素敏感性一项新指标[J].中华内科杂志,1993,32:656-660.
    [7] Mcnaughton SA, Gita D, et al. Dietary patterns, insulin resistance, and incidence of type 2 diabetes in the WhitehallⅡstudy[J]. Diabetes Care, 2008, 31:1343-1348.
    [8] Rabass-Lhoret R, Bastard JP, et al. Modified quantitative insulin sensitivity check index is better correlated to hyperinsulinemic glucose clamp than other fasting-based index of insulin sensitivity in different insulin-resistant states[J]. J.Clin. Endocrinol. Metab., 2003, 88:4917-4923.
    [9] Magni P, Sparacino G, et al. Reduced sampling schedul for the glucose minimal model: importance of Bayesian estimation[J].Am J Physiol Endocrinol Metab., 2006, 290: E177-E184.
    [10] Keskin G, Kurtoglu S, et al. The Homeostasis model assessment is more reliable than the fasting glucose/insulin ratio and quantitative insulin sensitivity check index for assessinginsulin resistance among obese children and adolescents[J]. Pediatrics, 2005, 115: e500-e503
    [11]刘萍,何兰杰,等.实验用2型糖尿病大鼠模型及其肾病观察[J].宁夏医学杂志,2006,28(12):892-895.
    [12]段军,仝小林,等.开郁清胃方对2型糖尿病模型大鼠胰岛细胞胰岛素受体及胰岛素受体底物-1表达的影响[J].中国中医药信息杂志,2006,13(11):45-47.
    [13]曲红,王德山.枸杞多糖的药理及临床研究概况[J].山东医药工业,2002,21(4):36-37.
    [14]董进文,胡庆和,高天顺.枸杞多糖的药理学研究进展[J].中国中医基础医学杂志,1998,5(4):54-56.
    [15]方建国,丁水平,田庚元.枸杞多糖药理作用与临床应用[J].药学新进展,2004,23(7):484-485.
    [16]王玲,张才军等.枸杞多糖-D对四氧嘧啶糖尿病小鼠高血糖的预防作用[J].中国糖尿病杂志,2000,8(1):55-57.
    [17]黄诚,陈群力等.枸杞多糖及其复方对链脲佐菌素所致糖尿病大鼠胰岛功能的保护效应[J].中国临床康复,2006,10(23):173-175
    [18]孙桂菊,王少康等.枸杞多糖、茶叶多糖混合物对2型糖尿病大鼠降血糖作用及对糖尿病并发症相关指标的影响[J].食品研究与开发,2003,24(2):75-78.
    [19]孙桂菊,张勇等.枸杞多糖对2型糖尿病大鼠肾脏保护作用及其机制研究[J].营养学报,2006,28(1):47-50
    [20]宗灿华,田丽梅.枸杞多糖对2型糖尿病大鼠胰岛素抵抗及脂联素基因表达的影响[J].中国康复理论与实践,2008,14(6):531-532.
    [21] McGarry JD. Dysregulation of fatty acid metabolism in the etiology of type 2 diabetes[J]. Diabetes, 2002, 51 (1): 7-18.
    [22]马博清,魏立明,等. 2型糖尿病的血脂代谢异常[J].中华临床医药,2002,3(13):36-39.
    [23]王战建,苏杰英.2型糖尿病血脂异常与干预措施[J].中国全科医学,2006,9(4):269-271.
    [24] Savage DB, Kitt Falk Petersen, et al. Disordered lipid metabolism and the pathogenesis of insulin resistance[J]. Physiol. Rev., 2007, 87:507-520
    [25] Ram Weiss. Fat distribution and storage: how much, where, and how[J]. Eur. J. Endocrinol., 2007, 157:S39-S45.
    [26]苏丽,王中心.血脂异常、2型糖尿病与代谢综合征[J].医学综述,2005,11(12):1102-1104.
    [27] Wang B, Li HL, et al. Effect of lipid infusion on the function of islet beta cells and gene expression of insulin signal transduction system[J]. Beijing Da Xue Xue Bao, 2007; 39(5): 462-426.
    [28] Leung N, Sakaue T, et al. Prolonged increase of plasma non-esterified fatty acids fully abolishes the stimulatory effect of 24 hours of moderate hyperglycaemia on insulin sensitivity and pancreatic beta-cell function in obese men[J]. Diabetologia, 2004, 47: 204–213.
    [29] Boden G, She P, et al. Free Fatty Acids Produce Insulin Resistance and Activate the Proinflammatory Nuclear Factor- B Pathway in Rat Liver[J]. Diabetes, 2005, 54: 3458 - 3465
    [30] Audrey Nguyen MT, Satoh H, et al. JNK and Tumor Necrosis Factor-αmediate free fatty acid-induced insulin resistance in 3T3-L1 adipocytes[J]. J. Biol. Chem., 2005, 280: 35361-35371.
    [31]牛艳芬,李玲.游离脂肪酸与2型糖尿病[J].昆明医学院学报,2007,(3):102-105.
    [32] Borst SE. The role of TNF-alpha in insulin in resistance[J]. Endocrine, 2004, 23(2):177-182.
    [33] Winkler G, Salamon F, et al. Elevated serum tumor necrosis factor-alpha concentrations and bioactivity in type 2 diabetics and patients with android type obesity[J]. DiabetesRes Clin Pract., 1998, 42(3):169-174.
    [34] Takada Y, Aggarwal BB. TNF activates syk protein tyrosine kinase leading to TNF-Induced mAPK activation, NF- B activation, and apoptosis[J]. J. Immunol., 2004; 173: 1066– 1077.
    [35] Jin Z, Zhanguo G, et al. S6K directly phosphorylates IRS-1 on Ser270 to promote insulin resistance in response to TNF-αsignaling through IKK2[J]. J. Biol.Chem., 2008, 10:1074.
    [36] Rotter V, Nagaev I, et al. Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and Tumor Necrosis Factor-α, overexpressed in human fat cells from insulin-resistant subjects[J]. J. Biol. Chem., 2003, 278(46):45777-45784.
    [37] Cawthorn WP, Sethi JK. TNF-alpha and adipocyte biology[J]. FEBS Lett, 2008, 582(1): 117-131.
    [38] Kim JY, Tillison K, et al. The adipose tissue triglyceride lipase ATGL/PNPLA2 is downregulated by insulin and TNF-αin 3T3-L1 adipocytes and is a target for transactivation by PPARγ[J]. Am J Physiol Endocrinol Metab., 2006, 291:E115-E127.
    [39] Laurencikiene J, Harmelen VV, et al. NF-κB is important for TNF-α-induced lipolysis in human adipocytes [J]. J. Lipid Res., 2007, 48:1069-1077.
    [40] Grigsby RJ, Dobrowsky RT. Inhibition of ceramide production reverses TNF-induced insulin resistance[J]. Biochem Biophys Res Commun, 2001, 287:1121-1124.
    [41] Rotter V, Nagaev I, Smith U. Interleukin-6 induces insulin resistance in 3T3-L1 adipocytea and is, 1ike IL-8 and TNF-alpha overexpressed in human fat cells from insulin-resistant subjects[J]. J Biol Chem., 2003, 278(46): 45777-45784.
    [42] Barbuio R, Milanski M, et al. Infliximab reverses steatosis and improves insulin signal transduction in liver of rats fed a high-fat diet[J]. J. Endovrinol., 2007, 194:539-550.
    [43]杨立勇,吴佩文.细胞因子介导的2型糖尿病β细胞损伤机制[J].国外医学内分泌分册,2005,25(1):13-15.
    [44] Shao J, Yamashita H, Qiao L, et al. Phosphatidylinositol 3-kinase redistribution is associated with skeletal muscle insulin resistance in gestational diabetes mellitus[J]. Diabetes, 2002, 51:19-29.
    [45] Chen L, Yao XH, et al. In vivo insulin signaling through PI3-kinase is impaired in skeletal muscle of adult rat offspring exposed to ethanol in utero[J]. J Appl Physiol., 2005; 99(2): 528 - 534.
    [46] Anderson MS, Thamotharan M, et al. Effects of acute hyperinsulinemia on insulin signal transduction and glucose transporters in ovine fetal skeletal muscle[J]. Am J Physiol Regulatory Integrative Comp Physiol., 2005, 288:R473-R481.
    [47] Atsumi T,You-Ree C, et al. The proinflammatory cytokine macrophage migration inhibitory factor regulates glucose metabolism during systemic inflammation[J]. J. Immunol., 2007, 179:5399-5406.
    [48] Beith JL, Alejandro EU, et al. Insulin stimulates primaryβ-Cell proliferation via Raf-1 kinase[J]. Endocrinology, 2008, 149(5):2251-2260.
    [49] Zhang F, Dey D, et al. BLX-1002, a novel thiazolidinedione with no PPAR affinity, activates AMPK, raises cytosolic Ca2+, and enhances glucose- and PI3K-sensitive insulin release.AJP-Cell Physiology [J]. Am J Physiol Cell Physiol., 2008, 10.1152/ ajpcell.00444.
    [50] Zierath J R, Krook A, Wallberg-henriksson H. Insulin action and insulin resistance in human skeletal muscle[J]. Diabetologia, 2000, 43:821-835.
    [51] Fletcher B, Gulanick M, Lamendola C. Risk factors for type 2 diabetes mellitus[J]. J Cardiovasc Nurs., 2002, 16:17-23.
    [52] Jin L, Xiao-Ming Z, et al. A novel SNP at exon 17 of INSR is associated with decreased insulin sensitivity in Chinese women with PCOS[J]. Mol. Hum. Reprod., 2006, 12: 151– 155.
    [53] Nevado C, Valverde AM, et al. Role of insulin receptor in the regulation of glucoseuptake in neonatal hepatocytes[J]. Endocrinology, 2006, 147: 3709 - 3718.
    [54] Otani K, Kulkarni RN, Baldwin AC, et al. Reduced beta cell mass and altered glucose sensing impair insulin secretory function in beta IR KO mice[J]. Am J Physiol Endocrinol Metab., 2004, 286:E41-E49.
    [55] Schreyer S, Ledwig D, et al. Insulin receptor substrate-4 is expressed in muscle tissue without acting as a substrate for the insulin receptor[J]. Endocrinology, 2003, 144: 1211.
    [56]舒适,宋菊敏.胰岛素受体底物-1/-2与胰岛素信号转导[J].医学综述,2008,14(5):723-725.
    [57] Kido Y, Burks DJ,Withers D, et al. Tissue-specific insulin resistance in mice with mutation in the insulin receptor IRS-1 and IRS-2[J]. J Clin Invest., 2000, 105:199-205.
    [58]李松林,彭定琼,等.胰岛素受体底物和酪氨酸磷酸酶在2型糖尿病大鼠肌肉组织中的蛋白表达及其意义[J].中国预防医学杂志,2007,8(5):599-601.
    [59]李春蕊,张晶,等.罗格列酮对实验性2型糖尿病合并高脂血症大鼠骨骼肌组织IRS-1及GLUT4表达的调节[J].中国病理生理杂志,2007,23(5):900-903.
    [60] Aileen J. McGettrick, Feener EP, et al. Human insulin receptor substrate-1 (IRS-1) polymorphism G972R causes IRS-1 to associate with the insulin receptor and inhibit receptor autophosphorylation[J]. J. Biol. Chem., 2005; 280: 6441 - 6446.
    [61] Rui L, Fisher TL, Thhomas J, et al. Regulation of insulin/insulin-like growth factor-1 signaling typroteasome-mediated degradation of insulin receptor substrate-2[J]. J Biol Chem., 2001, 276:40362-40367.
    [62] Mark K. odd, et al. Thiazolidinediones enhance skeletal muscle triacylglycerol synthesis while protecting against fatty acid-induced inflammation and insulin resistance[J]. Am J Physiol Endocrinol Metab., 2007; 292: E485 - E493.
    [63]蒙碧辉,舒昌达.糖尿病骨骼肌病变[J].国外内分泌学分册,2002,22(5):336-338.
    [64] Takeshita M, Ina K, et al. Ultrastructural study of capillary and myocytic changes in the masseter and heart of KK-Ay mice[J]. J. Electron Microsc., 1997, 46:413-423.
    [65]张宏,白景文,等.糖尿病性肌病的超微病理结构及可能机理[J].中国糖尿病杂志,10(6):326-329.
    [66]徐勇,郑富蓉,等.糖尿病大鼠骨骼肌的早期超微结构改变[J].中华糖尿病杂志,2005,13(1):65-66.
    [67] Bjormholm M, Zierath GR. Insulin signal transduction in human skeletal muscleL: identifying the defects in type 2 diabetes[J]. Biochem Soc Trans., 2005, 33:354-357.
    [1] Saltiel AR, Pessin JE, Signaling pathways in insulin action:molecular targets of insulin resistance[J]. J Clin Invest., 2000, 2(106):165-169.
    [2] Cusi K, MaezonoK,Oaman A, et al. Insulin resistance differentially affects the PI3-kinase and MAP kinase-mediated signaling in human muscle[J]. J Clin Invest., 2000, 3(105): 311-320.
    [3] David B. Savage, Kitt Falk Petersen, et al. Disordered Lipid Metabolism and the Pathogenes is of Insulin Resistance[J]. Physiol Rev., 2007, 87:507-520.
    [4] Khalili LA, Kramer D, et al. Human skeletal muscle cell differentiation is associated with changes in myogenic markers and enhanced insulin-mediated MAPK and PKB phosphorylation[J]. Acta Physiol Scand., 2004, 180(4): 395-403.
    [5] Anderson MS, Thamotharan M, et al. Effects of acute hyperinsulinemia on insulin signal transduction and glucose transporters in ovine fetal skeletal muscle[J]. Am J Physiol Regulatory Integrative Comp Physiol., 2005, 288:R473-R481.
    [6] Toshiya Atsumi, You-Ree Cho, et al. The proinflammatory cytokine macrophage migration inhibitory factor regulates glucose metabolism during systemic inflammation [J]. J. Immunol., 2007, 179:5399-5406.
    [7] Beith JL, Alejandro EU, et al. Insulin stimulates primaryβ-Cell proliferation via Raf-1 kinase[J]. Endocrinology, 2008, 149(5): 2251-2260.
    [8]王冰,李宏亮,杨文英.胰岛素信号转导通路与β细胞分泌功能的关系及机制[J].中日友好医院学报,2008, 22(1):54-56 .
    [9] Shao J, Yamashita H, et al. Phosphatidylinositol 3-kinase redistribution is associated with skeletal muscle insulin resietance in gestational diabetes mellitus[J]. Diabetes, 2002, 51:19-29
    [10] Chen L, Yao XH, et al. In vivo insulin signaling through PI3-kinase is impaired inskeletal muscle of adult rat offspring exposed to ethanol in utero[J]. J Appl Physiol., 2005, 99(2): 528 - 534.
    [11] Morrione A. Grb10 protein in insulin-like growth factor and insulin receptor signaling[J]. Int J Mol Med ., 2000, 5:151-154.
    [12] Capozza F, Combs TP, et al. Caveolin-3 knockout mice show increased adiposity and whole body insulin resistance, with ligand-induced insulin receptor instability in skeletal muscle[J]. Am J Physiol Cell Physiol., 2005, 288: C1317 - C1331.
    [13] Ogino J, Sakurai K, et al. Insulin resistance and increased pancreatic ?-cell proliferation in mice expressing a mutan insulin receptor (P1195L) [J]. J. Endocrinol., 2006, 190: 739 - 747.
    [14]王洪涛,王韫秀,等.胰岛素信号转导障碍与糖尿病的关系[J].实用糖尿病杂志,2007, 3(1):57-59.
    [15] Kido Y, Burks DJ, et al. Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-1 and IRS-2[J]. J Clin Invest, 2000, 105:199-205
    [16] Nevado C, Valverde AM ,et al. Role of insulin receptor in the regulation of glucose uptake in neonatal hepatocytes[J]. Endocrinology, 2006, 147: 3709 - 3718.
    [17] Muller D, Huang GC, et al. Identification of insulin signaling elements in human ?-cells: autocrine regulation of insulin gene expression[J]. Diabetes, 2006, 55: 2835– 2842.
    [18] Betty A.Maddux, et al. Overexpression of the insulin receptor inhibitor PC-1/ENPP1 induces insulin resistance and hyperglycemia[J]. Am J Physiol Endocrinol Metab., 2006, 290: E746 - E749.
    [19] Kun Shi, Katsuya Egawa, et al. Protein-tyrosine phosphatase 1B associates with insulin receptor and negatively regulates insulin signaling without receptor internalization[J]. J. Biochem., 2004, 136: 89 - 96.
    [20] Schreyer S, Ledwig D, et al, Insulin receptor substrate-4 is expressed in muscle tissue without acting as a substrate for the insulin receptor[J]. Endocrinology, 2003, 144: 1211.
    [21] Kadowaki T. Insights into insulin resistance and type 2 diabetes from knockout mouse models[J]. J Clin Invest., 2000, 106(4):459-465
    [22]张妍,袁莉.β细胞胰岛素受体信号系统与β细胞功能[J].国外医学内分泌学分册,2005, 25(4):259-261.
    [23]叶华. 2型糖尿病患者及其一级亲属和非糖尿病者骨骼肌的胰岛素信号传导[J].中国糖尿病杂志,2003, 11(2):151-152.
    [24]李松林,彭定琼,等.胰岛素受体底物和酪氨酸磷酸酶在2型糖尿病大鼠肌肉组织中的蛋白表达及其意义[J].中国预防医学杂志,2007, 8(5):599-601.
    [25]李春蕊,张晶,等.罗格列酮对实验性2型糖尿病合并高脂血症大鼠骨骼肌组织IRS-1及GLUT4表达的调节[J].中国病理生理杂志,2007, 23(5):900-903.
    [26] Renstrom F, Buren J, et al. Insulin receptor substrates-1 and -2 are both depleted but via different mechanisms after down-regulation of glucose transport in rat adipocytes[J]. Endocrinology, 2005, 146(7): 3044– 3051.
    [27]张旭照,应晨江,等,酒精对大鼠胰岛素敏感性和骨骼肌胰岛素受体底物mRNA表达的影响[J].中华预防医学杂志,2003, 38(5):335-338.
    [28] Kulkarni RN, Roper MG, et al. Islet secretory defect in insulin receptor substrate 1 null mice is linked with reduced calcium signaling and expression of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)-2b and -3[J]. Diabetes, 2004, 53(6): 1517 - 1525.
    [29]陈琰,胡晋红,邹大进.胰岛素受体底物-2和2型糖尿病[J].国外医学内分泌学分册,2001, 21(6):291-293.
    [30]彭定琼,陈宇,高妍,等.胰岛素受体底物在2型糖尿病患者脂肪组织中的表达及意义[J].中华内分泌代谢杂志,2003, 19(5): 392-393
    [31]刘慧霞. 3T3-L1脂肪细胞中高糖诱导胰岛素抵抗的分子机制[J].湖南医科大学学报,2001, 26(4):294-296.
    [32]张晶,张木勋,袁刚,等.罗格列酮对实验性2型糖尿病大鼠肝脏组织IRS-2表达的调节[J].中国现代医学杂志,2004, 14(14): 9-13
    [33] Kubota N,Terauchi Y, et al. Insulin receptor substrate 2 plays a crucial role in beta cells and the hypothalamus[J]. J Clin Invest., 2004, 114(7): 917-927.
    [34] Rhodes CJ. Type 2 diabetes-amatter of beta-cell life and death [J]. Science, 2005, 307(5708):380-384.
    [35] Lingohr MK, Briaud I, et al. Specific regulation of IRS-2 expression by glucose in rat primary pancreatic isletβ-cells[J]. J. Biol. Chem., 2006, 281: 15884– 15892.
    [36] Park S, Hong S, et al. Chlorpromazine attenuates pancreatic beta-cell function and mass through IRS2 degradation, while exercise partially reverses the attenuation[J]. J Psychopharmacol, 2008, 22(5): 522 - 531.
    [37] Bilancio A, Okkenhaug K, et al. Key role of the p110 isoform of PI3K in B-cell antigen and IL-4 receptor signaling: comparative analysis of genetic and pharmacologic interference with p110 function in B cells [J]. Blood, 2006, 107: 642 - 650.
    [38] Farese RV, Sajan MP, et al. Insulin-sensitive protein kinases (atypical protein kinase C and protein kinase B/Akt): actions and defects in obesity and type II diabetes [J]. Experimental Biology and Medicine, 2005, 230(9): 593 - 605.
    [39] Krisan AD,Collins DE, et al. Resistance training enhances components of the insulin signaling cascade in normal and high-fat-fed rodent skeletal muscle[J]. J Appl Physiol., 2004, 96(5): 1691 - 1700.
    [40] Marchand LE, Brustel Y, et al. From insulin receptor signaling to GLUT4 translocation abnormalities in obesity and insulin resistance[J]. J Recept Signal Transduct Res., 1999, 19:217-228.
    [41]周云枫,吴勇,欧阳静萍.黄芪多糖对2型糖尿病大鼠肾组织胰岛素信号转导的影响[J].武汉大学学报,2005, 26(2): 139-143.
    [42] Wu J, Lei MX, et al. Aortic endothelium-dependent vasodilation function and PI3K-, PKB-, eNOS mRNA expressions in insulin-resistant and type 2 diabetic rats[J]. Zhonghua Xin Xue Guan Bing Za Zhi, 2007, 35(3): 265-270.
    [43] Luo J, Sobkiw CL, et al. Loss of class IA PI3K signaling in muscle leads to impaired muscle growth, insulin response, and hyperlipidemia[J]. Cell Metab., 2006, 3(5): 355-66.
    [44] KimYB, Kotani K, et al. Insulin-stimulated PKC- / activity is reduced and PDK-1 activity is normal in muscle of insulin resistant humans[J]. Diabetes, 2003, 52:1935–1942.
    [45] Vollenweider, Franklin DM, et al. Impaired Activation of Protein Kinase C-{zeta} by Insulin and Phosphatidylinositol-3,4,5-(PO4)3 in Cultured Preadipocyte-Derived Adipocytes and Myotubes of Obese Subjects[J]. J.Clin. Endocrinol. Metab., 2004, 89(8): 3994 - 3998.
    [46] Andreeli F, Laville M, Ducluzeau PH, et al. Defective regulation of phosphatidylinostol 3-kinase gene expressin in skeletal muscle and adipose tissue of non-insulin-dependent diabetes mellitus patients[J]. Diabetologia, 1999, 42(3):358-364.
    [47]金丹,陆付耳. PI3-K在2型糖尿病发病机制中的作用[J].医学综述,2007, 13(1):21-23.
    [48] Lee JS, Bruce CR, Tunstall RJ. et al. Interaction of exercise and dier on GLUT4 protein and gene expression in type1 and type 2 rate skeletal muscle[J]. Actaphysial Scand., 2002, 175(1):37-44.
    [49] Li-Na Zhao, Li-Ping Hao, et al. The diabetogenic effects of excessive ethanol: reducing beta-cell mass, decreasing phosphatidylinositol 3-kinase activity and GLUT-4 expression in rats [J]. Br J Nutr., 2008, 1-7.
    [50] Corcoran MP, Lamon-Fava S, et al. Skeletal muscle lipid deposition and insulin resistance: effect of dietary fatty acids and exercise[J]. Am. J. Clinical Nutrition., 2007, 85(3): 662 - 677.
    [51] Wong V, Szeto L, et al. Enhancement of muscle glucose uptake by the vasopeptidase inhibitor, omapatrilat, is independent of insulin signaling and the AMP kinase pathway[J]. J. Endocrinol., 2006, 190(2): 441 - 450.
    [52] Chang L, Chiang SH, et al. TC10alpha Is Required for Insulin-Stimulated Glucose Uptake in Adipocytes[J]. Endocrinology, 2007, 148(1): 27 - 33.
    [53] Valerle H, Maler, Derek R, et al. V-and t-SNARE protein expression models of insulin resistance Normalization of glycemia by rosiglitazone treatment corrects overexpression of cellubrevin,vesicle-associated membrane protein-2, and syntazxin 4 in skeletal muscle of zucker diabetic fatty rats [J]. Diabetes, 2000, 49:618-625.
    [54] Yaspelkis BB ,Lessard SJ, et al. Exercise reverses high-fat diet-induced impairments on compartmentalization and activation of components of the insulin-signaling cascade in skeletal muscle[J]. Am J Physiol Endocrinol Metab., 2007, 293(4): E941 - E949.
    [55] Saengsirisuwan V, Perez FR, et al. Interactions of exercise training andα-lipoic acid on insulin signaling in skeletal muscle of obese Zucker rats [J]. Am J Physiol Endocrinol Metab., 2004, 287: E529 - E536.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700