去铁胺对新生大鼠缺氧缺血性脑损伤的神经保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:通过检测去铁胺(DFO)早期干预对新生大鼠缺氧缺血性脑损伤(HIBD)后海马齿状回(DG)巢蛋白(nestin)和5-溴-2-脱氧尿嘧啶核苷(BrdU)表达的影响,以了解内源性新生神经干细胞(NSCs)的变化,以及HIBD大鼠学习记忆功能改善情况,以探讨DFO对新生大鼠HIBD的保护作用。方法:选择7日龄新生Wistar大鼠制备新生鼠HIBD模型,设置假手术组、HIBD对照组、DFO干预组。观察大鼠体重变化和病侧大脑大体改变,并利用HE染色光镜下观察脑组织病理改变;通过石蜡切片间接免疫荧光组织化学方法和计算机图像分析技术检测各组大鼠术后4天海马DG区nestin、BrdU表达的变化;在大鼠32日龄时采用Morris水迷宫实验检测三组大鼠的学习记忆功能。结果:1.三组新生大鼠体重增加有统计学差异(P<0.05), HIBD对照组和DFO干预组大鼠术后体重的增加明显低于假手术组。2.病侧大脑大体改变:术后4天部分病侧大脑局部见苍白区,在大鼠40日龄时部分病侧大脑萎缩、局部有空洞。3.脑组织病理改变:HE染色显示假手术组大鼠脑组织无异常病理改变;HIBD对照组大鼠病侧海马CA1区锥体细胞层次减少、排列紊乱,出现大量神经细胞核固缩、碎裂;DFO干预组大鼠脑病理改变较HIBD对照组明显减轻。4. nestin表达:三组大鼠比较DG区nestin表达有统计学差异(P<0.05), HIBD对照组nestin阳性细胞荧光强度较假手术组增加(P<0.05);DFO干预组nestin阳性细胞荧光强度较HIBD对照组增加(P<0.05)。5. BrdU的表达:三组大鼠比较DG区BrdU表达有统计学差异(P<0.05),HIBD对照组BrdU阳性细胞数较假手术组增加(P<0.05);DFO干预组BrdU阳性细胞数较HIBD对照组增加(P<0.05)。6. Morris水迷宫学习记忆能力测定:三组连续5天的逃避潜伏期及穿环指数比较均有统计学差异(P<0.05);假手术组穿环指数高于HIBD对照组(P<0.05),DFO干预组穿环指数高于HIBD对照组(P<0.05),假手术组和DFO干预组比较穿环指数无统计学差异(P>0.05)。结论:1.新生大鼠HIBD后存在大脑DG区内源性NSCs的代偿性再生;2.DFO早期干预可减轻新生大鼠HIBD后神经细胞的病理损伤;3.DFO早期干预后新生大鼠HIBD后海马DG区nestin、BrdU表达增加,提示DFO早期干预可促进内源性NSCs再生。4.HIBD使新生大鼠的空间学习记忆能力下降,而早期给予DFO干预较HIBD对照组有明显的改善作用。
Objective:To explore the neuroprotective effects of early intervention of deferoxamine (DFO) on neonatal rats with hypoxic-ischemic brain damage (HIBD) by testing expression of bromodeoxyuridine (BrdU) and nestin in the dentate gyrus region which means the activation of endogenous neural stem cells (NSCs); and also the improvement of learning and memory capabilities as an evidence of the neuroprotective effects of DFO were examed in neonatal rats with HIBD. Methods:The HIBD model was made in 7 days old Wistar rats and the rats were divided into 3 groups randomly:sham operation group, control group of HIBD, DFO treated group. Histological examination of the CA1 hippocampal region of the damaged hemisphere was conducted by haematoxylin-eosin (HE) stain with optical microscope and the body weight of the rats were measured. Expressions of nestin and BrdU in the CA1 hippocampal region were tested by indirect immunofluorescence labelling of paraffin-embedded tissues and image quantitative analysis through computer at 4th days after operation and learning and memory capabilities of each group were evaluated by Morris water maze at the age of 32 days after birth. Results:1. There was significant difference in increase of body weight among the three groups (P<0.05). The sham operation group had a significantly higher increase in body weight than the other two groups.2. Anatomical pathology revealed the pale area in some right hemisphere of the rats at 4th day after hypoxia and cerebral atrophy and cavitas at the age of 32 days after birth.3. Histopathological changes (HE staining):There were no morphological anomalies in the sham operation group. The neuron number in the CA1 pyramidal cell layer of the right hippocampus was decreased and the cells arranged in disorder in the control group of HIBD. At the same time, lots of neurons were necrotic and had karyopycnosis in the CA1 region. Compared with the control group of HIBD, the necrotic neurons in the CA1 region were obviously reduced in the DFO treated group.4. Expression of nestin:There was significant difference in the expression of nestin in the DG hippocampal region among the three groups (P<0.05). Measurement of the fluorescence intensity of nestin-positive cells revealed that the DFO treated group was the highest compared with the control group of HIBD, while the sham operation group was the least (P<0.05).5. Expression of BrdU:There was significant difference in the expression of BrdU in the DG hippocampal region among the three groups (P<0.05). Measurement of the number of BrdU-positive cells revealed that the DFO treated group was the maximum compared with the control group of HIBD, while the sham operation group was the minimum (P<0.05).6. The use of Morris water maze in learning and memory:Both the latencies to find a hidden platform in the water maze on 5 consecutive days and the annulus-crossing index had significant differences among the three groups (P<0.05). The annulus-crossing index in the control group of HIBD was the minimum. But there was no significant difference between the sham operation group and the DFO treated group (P> 0.05). Conclusions:1. Expression of the endogenous NSCs increased in neonatal rats with HIBD, it means that the endogenous NSCs were activated after HIBD.2. Early intervention of DFO to the neonatal rats with HIBD can reduce the damage of the neurons in pathology.3. Early intervention of DFO to the neonatal rats with HIBD can increase the expression of BrdU and nestin, which means early intervention of DFO can improve the regeneration of the endogenous NSCs.4. Early intervention of DFO to the neonatal rats with HIBD can improve the capabilities of learning and memory which were waken due to HIBD.
引文
1.金汉珍,黄德珉,关希吉.实用新生儿学.北京:人民卫生出版社,2002.785.
    2. Vannucci SJ, Hagberg H. Hypoxia-ischemia in the immature brain. J Exp Biol,2004, 207:3149-3154.
    3. Nelson CW, Wei EP, Povlishock JT, et al. Oxygen radicals in cerebral ischemia. Am J Physiol,1992,263 (5 Pt 2):H1356-H1362.
    4. Winterbourn CC. Toxicity of iron and hydrogen peroxide:the Fenton reaction. Toxicol Lett,1995,82-83:969-974.
    5. Hum PD, Koehler RC, Blizzard KK, et al. Deferoxamine reduces early metabolic failure associated with severe cerebral ischemic acidosis in dogs. Stroke,1995,26(4):688-694.
    6. Sorond FA, Ratan RR. Ironing-out mechanisms of neuronal injury under hypoxic-ischemic conditions and potential role of iron chelators as neuroprotective agents. Antioxid Redox Signal,2000,2(3):421-436.
    7. Rogalska J, Danielisova V, Caputa M. Effect of neonatal body temperature on postanoxic, potentially neurotoxic iron accumulation in the rat brain. Neurosci Lett,2006, 393 (2-3):249-254.
    8. Palmer C, Menzies SL, Roberts RL, et al. Changes in iron histochemistry after hypoxic-ischemic brain injury in the neonatal rat. J Neurosci Res,1999,56(1):60-71.
    9. Kaur C, Ling EA. Periventricular white matter damage in the hypoxic neonatal brain: role of microglial cells. Prog Neurobiol,2009,87(4):264-280.
    10. Aldinucci C, Carretta A, Ciccoli L, et al. Hypoxia affects the physiological behavior of rat cortical synaptosomes. Free Radic Biol Med,2007,42(11):1749-1756.
    11. Brittenham GM, Griffith PM, NienhuisAW, et al. Efficacy of deferoxamine in preventing complications of iron overload in patients with thalassemia major. N Engl J Med,1994,331:567-573.
    12.黄越芳,庄思齐,梁英杰,等.去铁胺对新生大鼠缺氧缺血性脑的保护作用.中国病理生理杂志,2007,23(8):1535-1539.
    13. Kartikasari AE, Georgiou NA, Visseren FL, et al. Endothelial activation and induction of monocyte adhesion by nontransferrin-bound iron present in human sera. FASEB J,2006, 20(2):353-355.
    14. Sarco DP, Becker J, Palmer C, et al. The neuroprotective effect of deferoxamine in the hypoxic-ischemic immature mouse brain. Neurosci Lett,2000,282(1-2):113-116.
    15. Nishino J, Kim I, Chada K, et al. Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf expression. Cell,2008,135(2): 227-239.
    16. Gage, F.H. Mammalian neural stem cell. Science,2000,287(5457):1433-1438.
    17.孙金峤,沙彬,周文浩,等.缺血性损伤对未成熟脑脑室下区神经新生的影响.中国当代儿科杂志,2009,11(5):397-400.
    18. Lendahl U, Zimmerman LB, Mckay RD. CNS stem cells express a new class of intermediate filament protein. Cell,1990,60(4):585-595.
    19. Krum JM, Rosenstein JM. Transient coexpression of nestin, GFAP, and vascular endothelial growth factor in mature reactive astroglia following neural grafting or brain wounds. Exp Neurol,1999,160(2):348-360.
    20. Scorza CA, Arida RM, Cavalheiro EA, et al. Expression of nestin in the hippocampal formation of rats submitted to the pilocarpine model of epilepsy. Neurosci Res,2005,51(3): 285-291.
    21.陈惠金,周泽汉,周建德,等.新生大鼠缺氧实验装置的研制.上海实验动物科学,1999,19(1):45-46.
    22. Vannucci RC, Connor JR, Mauger DT, et al. Rat model of perinatal hypoxic-ischemic brain damage. J Neurosci Res,1999,55(2):158-163.
    23. Papazisis G, Pourzitaki C, Sardeli C, et al. Deferoxamine decreases the excitatory amino acid levels and improves the histological outcome in the hippocampus of neonatal rats after hypoxia-ischemia. Pharmacological Research.2008,57(1):73-78.
    24. van der Kooij MA, Groenendaal F, Kavelaars A, et al. Combination of deferoxamine and erythropoietin:therapy for hypoxia-ischemia induced brain injury in the neonatal rat? Neuroscience Letters.2009,451(2):109-113.
    25. Vorhees CV, Williams MT. Morris water maze:procedures for assessing spatial and related forms of learning and memory. Nature Protocals.2006,1(2):848-858.
    26.邱宏,金国琴,金如锋,等.水迷宫重复测量数据的方差分析及其在SPSS中的实现.中西医结合学报,2007,5(1):101-105.
    27. Gutteridge JM, Richmond R, Halliwell B. Inhibition of the iron-catalysed formation of hydroxyl radicals from superoxide and of lipid peroxidation by desferrioxamine. Biochem J,1979,184(2):469-472.
    28. Vannucci RC. Experimental biology of cerebral hypoxia-ischemia:relation to perinatal brain damage. Pediatr Res,1990,27(4 Pt 1):317-326.
    29. Rice JE 3rd, Vannucci RC, Brierley JB. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neural,1981,9(2):131-141.
    30. Hagberg H, Bona E, Gilland E, et al. Hypoxia-ischaemia model in the 7 day old rat:possibilities and shortcomings. Acta Paediatr Suppl,1997,422: 85-88.
    31. Liu CL, Siesjo BK, Hu BR. Pathogenesis of hippocampal neuronal death after hypoxia-ischemia changes during brain development. Neuroscience,2004,127:113-123.
    32. de Haan M, Wyatt JS, Roth S, et al. Brain and cognitive-behavioural development after asphyxia at term birth. Dev Sci,2006,9:350-358.
    33. Taupin P. BrdU immunohistochemistry for studying adult neurogenesis:paradigms, pitfalls, limitations, and validation. Brain Res Rev,2007,53(1):198-214.
    34. Gratzner HG. Monoclonal antibody to 5-bromo-and 5-iododeoxyuridine:a new reagent for detection of DNA replication. Scinece,1982,218(4571):474-475.
    35.张志军,万琪,汪文,等.成年大鼠脑缺血再灌注损伤后海马齿状回神经发生的实验研究.中华老年心脑血管病杂志,2002,4(5):345.
    36. Zhang R, Zhang Z, Wang L, et al. Activated neural stem cells contribute to stroke-induced neurogenesis and neuroblast migration toward the infarct boundary in adult rats. J Cereb Blood Flow Metab,2004,24(4):441-448.
    37. Hochfield S, Mckay RD. Identification of major cell classes in the developing mammalian nervous system. J Neurosci,1985,5(12):3310-3328.
    38. Marvin MJ, Dahlstrarid J, Lendahl U, et al. A rod end deletion in the intermediate filament protein nestin alters its subcellular localization in neuroepithelial cells of transgenic mice. J Cell Sci,1998,111 (Pt 14):1951-1961.
    39. Brewer GJ. Regeneration and proliferation of embryonic and adult rat hippocampal neurons in culture. Exp Neurol,1999,159(1):237-247.
    40. Li Y, Chopp M. Temporal profile of nestin expression after focal cerebral ischemia in adult rat. Brain Res,1999,838(1-2):1-10.
    41. Abe K. Therapeutic potential of neurotrophic factors and neural stem cells against ischemic brain injury. J Cereb Blood Flow Metab,2000,20(10):1393-1408.
    42. Gould E, Reeves AJ, Fallah M, et al. Hippocampal neurogenesis in adult Old World primates. Proc Natl Acad Sci U S A,1999,96(9):5263-5267.
    43. Becq H, Jorquera I, Ben-Ari Y, et al. Differential properties of dentate gyrus and CA1 neural precursors. J Neurobiol,2005,62(2):243-261.
    44. Gutteridge JM, Paterson SK, Segal AW, et al. Inhibition of lipid peroxidation by the iron-binding protein lactoferrin. Biochem J,1981,199(1):259-261.
    45. Halliwell B. Protection against tissue damage in vivo by desferrioxamine:what is its mechanism of action? Free Radic Biol Med,1989,7(6):645-651.
    46. Palmer C. Hypoxic-ischemic encephalopathy. Therapeutic approaches against microvascular injury, and role of neutrophils, PAF, and free radicals. Clin Perinatol,1995, 22(2):481-517.
    47. Sorond FA, Shaffer ML, Kung AL, et al. Desferroxamine infusion increases cerebral blood flow:a potential association with hypoxia-inducible factor-1. Clin Sci (Lond),2009, 116(10):771-779.
    48. Misumi S, Kim TS, Jung CG, et al. Enhanced neurogenesis from neural progenitor cells with Gl/S-phase cell cycle arrest is mediated by transforming growth factor betal. Eur J Neurosci,2008,28(6):1049-1059.
    49. Katchanov J, Harms C, Gertz K, et al. Mild cerebral ischemia induces loss of cyclin-dependent kinase inhibitors and activation of cell cycle machinery before delayed neuronal cell death. J Neurosci,2001,21:5045-5053.
    1. Pin TW, Eldridge B, Galea MP. A review of developmental outcomes of term infants with post-asphyxia neonatal encephalopathy. Eur J Paediatr Neurol,2009,13(3):224-234.
    2. Low JA.Determining the contribution of asphyxia to brain damage in the neonate. J Obstet Gynaecol Res,2004,30(4):276-286.
    3. Lawn JE, Cousens S, Zupan J.4 million neonatal deaths:when? Where? Why? Lancet, 2005(9462),365:891-900.
    4.胡亚美,江载芳.诸福棠实用儿科学.北京:人民卫生出版社,2002.445.
    5.金汉珍,黄德珉,关希吉.实用新生儿学.北京:人民卫生出版社,2002.785.
    6. Blackburn S. Central nervous system vulnerabilities in preterm infants, part Ⅱ. J Perinat Neonatal Nurs,2009,23(2):108-110.
    7. Blackburn S. Central nervous system vulnerabilities in preterm infants, part I. J Perinat Neonatal Nurs,2009,23(1):12-14.
    8. Sorond FA, Shaffer ML, Kung AL, et al. Desferroxamine infusion increases cerebral blood flow:a potential association with hypoxia-inducible factor-1. Clin Sci (Lond),2009, 116(10):771-779.
    9.黄越芳,庄思齐,梁英杰,等.去铁胺对新生大鼠缺氧缺血性脑的保护作用.中国病理生理杂志,2007,23(8):1535-1539.
    10. Wainwright MS, Grundhoefer D, Sharma S, A nitric oxide donor reduces brain injury and enhances recovery of cerebral blood flow after hypoxia-ischemia in the newborn rat. Neurosci Lett,2007,415(2):124-129.
    11. Shalak L, Perlman JM. Hypoxic-ischemic brain injury in the term infant-current concepts. Early Hum Dev,2004,80(2):125-141.
    12.汤亚南,赵凤临,陈白羽.亚低温对新生儿缺氧缺血性脑损伤的保护作用——随机对照试验Meta分析.中华围产医学杂志,2008,11(2):101-106.
    13. Martin JL, Ma D, Hossain M, et al. Asynchronous administration of xenon and hypothermia significantly reduces brain infarction in the neonatal rat. British Journal of Anaesthesia,2007,98(2):236-240.
    14. Wahl AS, Buchthal B, Rode F, et al. Hypoxic/ischemic conditions induce expression of the putative pro-death gene Clcal via activation of extrasynaptic N-methyl-D-aspartate receptors. Neuroscience,2009,158(1):344-352.
    15. Papazisis G, Pourzitaki C, Sardeli C, et al. Deferoxamine decreases the excitatory amino acid levels and improves the histological outcome in the hippocampus of neonatal rats after hypoxia-ischemia. Pharmacol Res,2008,57(1):73-78.
    16. Groenendaal F, Vles J, Lammers H, et al. Nitrotyrosine in human neonatal spinal cord after perinatal asphyxia. Neonatology,2008,93(1):1-6.
    17. Shalak L, Perlman JM:Hypoxic-ischemic brain injury in the term infant-current concepts. Early Hum Dev,2004,80(2):125-141.
    18. Ohtani R, Tomimoto H, Kondo T, et al. Upregulation of ceramide and its regulating mechanism in a rat model of chronic cerebral ischemia. Brain Res,2004,1023(1):31-40.
    19. Morales A, Lee H, Goni FM, et al. Sphingolipids and cell death. Apoptosis,2007, 12(5):923-939.
    20. Nelson CW, Wei EP, Povlishock JT, et al. Oxygen radicals in cerebral ischemia. Am J Physiol,1992,263 (5 Pt 2):H1356-H1362.
    21. Winterbourn CC. Toxicity of iron and hydrogen peroxide:the Fenton reaction. Toxicol Lett,1995,82-83:969-974.
    22. Hum PD, Koehler RC, Blizzard KK, et al. Deferoxamine reduces early metabolic failure associated with severe cerebral ischemic acidosis in dogs. Stroke,1995,26(4): 688-694.
    23. Sorond FA, Ratan RR. Ironing-out mechanisms of neuronal injury under hypoxic-ischemic conditions and potential role of iron chelators as neuroprotective agents. Antioxid Redox Signal,2000,2(3):421-436.
    24. Vannucci SJ, Hagberg H. Hypoxia-ischemia in the immature brain. The Journal of Experimental Biology,2004,3149-3154.
    25. Rogalska J, Danielisova V, Caputa M. Effect of neonatal body temperature on postanoxic, potentially neurotoxic iron accumulation in the rat brain. Neurosci Lett,2006, 393 (2-3):249-254.
    26. Palmer C, Menzies SL, Roberts RL, et al. Changes in iron histochemistry after hypoxic-ischemic brain injury in the neonatal rat. J Neurosci Res,1999,56(1):60-71.
    27. Kaur C, Ling EA. Periventricular white matter damage in the hypoxic neonatal brain: role of microglial cells. Prog Neurobiol,2009,87(4):264-280.
    28. Aldinucci C, Carretta A, Ciccoli L, et al. Hypoxia affects the physiological behavior of rat cortical synaptosomes. Free Radic Biol Med,2007,42(11):1749-1756.
    29. Sarco DP, Becker J, Palmer C, et al. The neuroprotective effect of deferoxamine in the hypoxic-ischemic immature mouse brain. Neurosci Lett,2000,282(1-2):113-116.
    30.刘宝琴,熊虹,王群思.窒息新生儿血浆血管活性肠肽、超氧化物歧化酶、丙二醛水平与脑损伤的关系.实用儿科临床杂志,2007,22(14):1064-1065.
    31.李东亮,王小引,韩华.孕酮对缺氧缺血新生大鼠脑组织SOD和GSH-Px活性的影响.中国药理学通报,2007,23(2):276-277.
    32.李晓娟,王小引,孕酮对缺氧缺血性脑病新生大鼠皮层和海马神经元凋亡及一氧化氮水平的影响.实用儿科临床杂志,2008,23(16):1274-1275.
    33. Morales P, Fiedler JL, Andres S, et al. Plasticity of hippocampus following perinatal asphyxia:effects on postnatal apoptosis and neurogenesis. J Neurosci Res,2008,86(12): 2650-2662.
    34. Johnston MV. Excitotoxicity in perinatal brain injury. Brain Pathol,2005,15(3): 234-240.
    35. Leist M, Jaattela M. Four deaths and a funeral:from caspases to alternative mechanisms. Nat Rev Mol Cell Biol,2001,2(8):589-598.
    36. Martin LJ, Al-Abdulla NA, Brambrink AM, et al. Neurodegeneration in excitotoxicity,global cerebral ischemia, and target deprivation:A perspective on the contributions of apoptosis and necrosis. Brain Res Bull,1998,46(4):281-309.
    37. Russell JC, Whiting H, Szuflita N, et al. Nuclear translocation of X-linked inhibitor of apoptosis (XIAP) determines cell fate after hypoxia ischemia in neonatal brain. J Neurochem,2008,106(3):1357-1370.
    38. Bredesen DE. Key note lecture:toward a mechanistic taxonomy for cell death programs. Stroke,2007,38(2 Suppl):652-660.
    39. Levine B, Yuan J. Autophagy in cell death:an innocent convict? J Clin Invest,2005, 115(10):2679-2688.
    40. Debnath J, Baehrecke EH, Kroemer G. Does autophagy contribute to cell death? Autophagy,2005,1(2):66-74.
    41. Balduini W, Carloni S, Buonocore G. Autophagy in hypoxia-ischemia induced brain injury:evidence and speculations. Neurobiol Dis,2008,32(3):329-339.
    42. Carloni S, Buonocore G, Balduini W. Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Autophagy,2009,5(2):221-223.
    43. Lai AY, Todd KG. Microglia in cerebral ischemia:molecular actions and interactions. Can J Physiol Pharmacol,2006,84(1):49-59.
    44. Leonardo CC, Eakin AK, Ajmo JM, et al. Versican and brevican are expressed with distinct pathology in neonatal hypoxic-ischemic injury. J Neurosci Res,2008,86(5): 1106-1114.
    45. Chew LJ, Takanohashi A, Bell M. Microglia and inflammation:impact on developmental brain injuries. Ment Retard Dev Disabil Res Rev,2006,12(2):105-112.
    46. Kaur C, Sivakumar V, Yip GW, et al. Expression of syndecan-2 in the amoeboid microglial cells and its involvement in inflammation in the hypoxic developing brain. Glia, 2009,57(3):336-349.
    47. Leonardo CC, Pennypacker KR. Neuroinflammation and MMPs:potential therapeutic targets in neonatal hypoxic-ischemic injury. J Neuroinflammation,2009,6:13.
    48.江莲,郑伟,张会芬.地塞米松干预对缺氧缺血性脑损伤脑组织髓鞘碱性蛋白的影响.中华围产医学杂志,2008,11(4):262-266.
    49. Tringali G, Pozzoli G, Lisi L, et al. Erythropoietin inhibits basal and stimulated corticotropin-releasing hormone release from the rat hypothalamus via a nontranscriptional mechanism. Endocrinology,2007,148(10):4711-4715.
    50.王莹,扬祖铭,朱海娟.外源性褪黑素对缺氧缺血性脑损伤新生大鼠血浆促肾上腺皮质激素和皮质酮的影响.实用儿科临床杂志,2008,23(6):430-432.
    51.苏秋妮,陈敏,杨秀霖.新生鼠脑损伤后神经蛋白聚糖的变化.福建医科大学学报,2008,42(1):18-22.
    52. Ramaswamy V, Horton J, Vandermeer B, et al. Systematic review of biomarkers of brain injury in term neonatal encephalopathy. Pediatr Neurol,2009,40(3):215-226.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700