棉花—棉铃虫—寄生蜂三级营养链间中红侧沟茧蜂的实时趋性反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以寄主植物-棉花Gossypium hirsutum、植食性昆虫-棉铃虫Helicoverpa armigera和寄生性天敌-中红侧沟茧蜂Microplitis mediator三营养级系统为研究对象,研究了中红侧沟茧蜂对不同龄期棉铃虫幼虫及其危害棉花植株的趋性行为反应以及棉铃虫幼虫取食诱导棉株挥发物的成分。另外,首次应用电子鼻zNoseTM,构建棉花植株常见挥发性化合物特征谱库,建立棉铃虫幼虫危害棉花植株的指纹图谱,实时监测了棉铃虫幼虫危害诱导棉花挥发物中β-蒎烯和β-月桂烯的释放节律。主要结果如下:
     1、采用“Y”形昆虫嗅觉仪测定中红侧沟茧蜂对不同龄期棉铃虫幼虫及其危害棉株的趋性行为反应。结果表明,中红侧沟茧蜂对3、4、5龄棉铃虫幼虫没有明显的趋向行为反应,1龄和2龄棉铃虫幼虫对中红侧沟茧蜂有显著的引诱作用,但中红侧沟茧蜂对1龄和2龄棉铃虫幼虫的趋性差异不显著。在中红侧沟茧蜂对不同龄期棉铃虫幼虫危害棉株的趋性行为反应测试中,设置两种类型处理,分别为棉铃虫幼虫为害棉株后去除棉铃虫幼虫(简称去虫)和棉铃虫幼虫为害棉株+棉铃虫幼虫复合处理(简称未去虫)。结果显示,1-5龄棉铃虫幼虫危害后去除棉铃虫幼虫及其虫粪处理的棉株与健康植株均对中红侧沟茧蜂有吸引作用,但二者对中红侧沟茧蜂的引诱力差异不显著。在未去虫的处理中,虫害诱导的植物挥发物比健康植株释放的挥发物更能吸引中红侧沟茧蜂,与健康植株存在显著性差异,而且不同龄期棉铃虫幼虫危害处理间差异较大,对中红侧沟茧蜂引诱作用的相对顺序为:5龄危害植株>2龄、4龄危害植株>1龄和3龄危害植株(2、4龄危害处理间差异不显著;1、3龄危害处理间差异不显著)。
     2、利用气质联用系统(GC-MS)对不同龄期棉铃虫幼虫危害棉株挥发物成分进行定性及定量分析,结果表明,1-5龄棉铃虫幼虫处理棉株与对照棉株相比挥发性信息物质在种类和含量上均有差异,本研究中,在健康植株、虫害诱导的棉株挥发物中均检测鉴定出近30种挥发性信息物质;健康棉株检测不到β-月桂烯和3,7-二甲基-1-辛醇的释放,而1-5龄棉铃虫幼虫取食处理均可检测到;去虫与未去虫两处理间挥发物的种类基本相同,只是在挥发物含量上存在差异。虫害诱导的植物挥发物含量明显高于健康植株释放的挥发物含量,说明棉铃虫幼虫取食对棉花挥发物有显著诱导作用;棉铃虫幼虫为害棉株+棉铃虫幼虫复合处理中的α-蒎烯、β-蒎烯、β-月桂烯、(E)-乙酸-3-己烯酯和(D)-柠檬烯等挥发物的释放量明显高于去除棉铃虫幼虫及其虫粪处理,且两处理间差异显著。
     3、采用电子鼻对棉花植株常见挥发物进行了定性分析,确定了每类化合物的相对保留指数,构建了棉花植株常见挥发性化合物特征谱库。同时利用电子鼻构建棉铃虫幼虫危害棉株的指纹图谱库,比对健康植株与棉铃虫幼虫危害棉株的色谱图及指纹图谱发现:棉铃虫幼虫危害棉株挥发物的种类和含量均比对照棉株多,而且未去除棉铃虫幼虫的处理与去除棉铃虫幼虫的处理相比,被诱导挥发物的含量显著升高,这与GC-MS的测定结果基本一致。
     4、通过电子鼻实时监测不同处理棉株挥发性化合物β-蒎烯、β-月桂烯的释放节律。结果发现,当棉铃虫幼虫危害棉花植株2 h后,β-蒎烯的释放量明显增加,与健康植株相比差异显著;β-月桂烯在棉铃虫幼虫危害2 h的释放量与对照相比没有显著差异,在棉铃虫幼虫危害2-4 h其释放量显著增加,在危害6-8 hβ-蒎烯和β-月桂烯分别达到各自最大释放量,随后缓慢回落,但仍然保持较高释放水平。
This study was based on a tritrophic system including cotton Gossypium hirsutum, cotton bollworm Helicoverpa armigera, and parasitoid Microplitis mediator, the behavioral responses of M. mediator to different instars cotton bollworm (CBW) larvae and cotton plant damaged by different instars CBW larvae were studied, cotton plant volatiles induced by CBW larvae were collected and analyzed in the laboratory. Furthermore, by using electronic nose zNoseTM for the first time, the cotton plant common volatiles library was constructed. We also got the fingerprint database of cotton plant infested by CBW larvae, and the real-time release rhythm ofβ-pinene andβ-myrcene from cotton plant damaged by CBW larvae treatment were monitored. The major results are listed as follows:
     1. The taxis responses of M. mediator to different instars CBW larvae and cotton plant damaged by different instars CBW larvae were measured in a Y-shaped olfactometer. The result showed that 3rd, 4th and 5th instar CBW larvae had non-significant attraction for M. mediator, while 1st and 2nd instar CBW larvae had significant attraction for M. mediator, but there was no significant differences between them. Among the behavioral responses of M. mediator to cotton plants damaged by different instars CBW larvae, there are two kinds of treatment, wiping out CBW larvae from cotton plant damaged by CBW larvae (dislodge larvae treatment) and damaged cotton plants +larval CBW (retain larvae treatment). The results revealed that both cotton plant damaged by CBW larvae and healthy cotton plant were attractive to M. mediator, yet there was no significant differences between them. As for damaged cotton plants + larval CBW, the volatiles from cotton plant infested by CBW larvae were more attractive to M. mediator than those of healthy plant, and there existed significant differences between them. There was notable differences among different instars, The relative selective preferences order was plant infested by 5th instar larvae of CBW> plant infested by 2nd and 4th instar larvae of CBW> Plant infested by 1st and 3rd instar larvae of CBW.
     2. The qualitative and quantitative analyses of the cotton plant volatiles induced by different instars CBW larvae were conducted by using GC-MS, the results showed that the kinds and contents of volatiles from cotton plant infested by CBW larvae were more than those of healthy plant. About 30 kinds of volatiles were qualitatively identified, healthy plant did not detect the release ofβ-myrcene and 1-octanol, 3,7-dimethyl-, but cotton plant damaged by CBW larvae could be detected. The type of volatiles from cotton plant damaged by CBW larvae (dislodge larvae treatment) were the same as those of holding CBW larvae treatment, there was difference in the aspect of content. The content of volatiles from cotton plants infested by CBW larvae were markedly higher than healthy plants, this stated that CBW larvae had striking induction to cotton plant volatiles. Moreover, compared with cotton plant damaged by CBW larvae (dislodge larvae treatment), the contents ofα-pinene,β-pinene,β-myrcene, 3-hexen-1-ol, acetate, (E)-and (D)-limonene in retaining CBW larvae treatment were extraordinary higher, and there was significant differences between them.
     3. By using electronic nose for the first time, cotton plant common volatile compounds were qualitative analyzed in laboratory. We determined relative retention index for each type of compounds, then constructed the cotton plant common volatiles library. based on the library, the volatiles from cotton plant infested by CBW larvae were collected, and we also got the fingerprint database of cotton plant damaged by CBW larvae. Comparing the healthy plant with cotton plant infested by CBW larvae, it was found that both the kinds and contents of volatiles from cotton plant damaged by CBW larvae treatment were notably higher than those of control (no treatment). Furthermore, the contents of volatiles from cotton plant damaged by CBW larvae (retaining larvae treatment) were significantly higher than those of cotton plant damaged by CBW larvae (dislodge larvae treatment), which was basically the same as the results obtained from GC-MS.
     4. Moreover, by using electronic nose, the real-time release rhythm ofβ-pinene andβ-myrcene from cotton plant infested by CBW larvae treatment were monitored. The results showed that when cotton plant damaged by CBW larvae for two hours,β-pinene released significantly increased compared with the control. However, there was no difference in the contents ofβ-myrcene between the cotton plant damaged by CBW for two hours and healthy plant. After invested for 2-4 hours, theβ-myrcene contents markedly increased. And after 6-8 hours, the contents ofβ-pinene andβ-myrcene reached their maximum release respectively, and then slow down, but still maintained a high level of release.
引文
蔡晓明,孙晓玲,董文霞,等. 2009.应用zNoseTM分析被害茶树的挥发物[J].生态学报, 29(1): 169-177.
    杜孟浩,严兴成,娄永根,等. 2005.褐飞虱唾液中诱导水稻释放挥发物的活性组分研究[J].浙江大学学报, 31: 237-244.
    杜永均,严福顺. 1994.植物挥发性次生物质在植食性昆虫、寄主植物和昆虫天敌关系中的作用机理[J].昆虫学报, 37: 233-250.
    郭予元主编. 1998.棉铃虫的研究[M].北京:中国农业出版社, 85.
    韩宝瑜,周成松. 2007.茶蚜(Toxoptera aurantii (Boyer))蜜露分泌节律及对多种天敌的引诱效应[J].生态学报, 27: 3637-3643.
    韩宝瑜,周鹏,付建玉,等. 2005.昆虫化学信息素诱集绒茧蜂控制茶尺蠖的研究[J].茶叶科学, 26: 72-75.
    韩宝瑜. 2001.茶蚜体表漂洗物对天敌的引诱活性及组分分析[J].昆虫学报, 44: 541-547.
    韩宝瑜,陈宗懋. 2000.七星瓢虫和异色瓢虫四变种成虫对茶蚜蜜露的搜索行为和蜜露的组分分析[J].生态学报, 20: 495-501.
    黄小燕,赵向阳,方智勇. 2008.电子鼻在气体检测中的应用研究[J].传感器与微系统, 27(6): 47-49, 52.
    刘小侠,张青文,李建成,等. 2004.寄主大小对中红侧沟茧蜂产卵和发育的影响[J].中国生物防治, 20(2): 110-113.
    练永国,王素琴. 2007.挥发性信息化合物对玉米螟赤眼蜂寄主选择行为的影响[J].昆虫学报, 50: 448-451.
    鲁玉杰,张孝羲. 2001.信息化合物对昆虫行为的影响[J].昆虫知识, 38(4): 262-266.
    吕要斌,刘树生. 2004.外源茉莉酸诱导植物反应对菜蛾绒茧蜂寄生选择行为的影响[J]. 昆虫学报, 47: 206-212.
    李正西,陈常铭,唐明远. 1993.长角广腹细蜂的搜索利它素[J].昆虫学报, 36: 45-50.
    娄永根. 1999.信息化合物在稻虱缨小蜂寄主选择行为中的作用[D].杭州:浙江大学应用昆虫学研究所.
    娄永根,程家安. 1997.植物-植食性昆虫-天敌三营养层次的相互作用及其研究方法[J] . 应用生态学报, 8(3): 325-331.
    欧晓明,江汉华,陈常铭. 1997.茶毒蛾黑卵蜂识主利它素的研究[J].中国生物防治, 13: 2-7.
    彭金英,黄勇平. 2005.植食性昆虫诱导的挥发物及其在植物通讯中的作用[J].植物生理学通讯, 41: 679-683.
    秦秋菊,高希武. 2005.昆虫取食诱导的植物防御反应[J].昆虫学报, 48(1):125-134.
    苏建伟,高峰,戈峰,等. 2007.棉铃虫危害对转基因棉花挥发物成分和释放速率的影响[J].植物保护, 33(1): 29-33.
    陶淑霞,万方浩,赵奎军,等. 2000.引诱赤眼蜂产卵的他感化合物物质源研究及生物活性测定[J].中国农业科学, 33: 59-63.
    王锦举,宗良炳. 1990.螟黄赤眼蜂寻找寄主利他素的研究[J].见:昆虫学研究文集,北京:北京农业大学出版社, 1-5.
    王振营, Hass S A. 2000.绿豆叶片提取液对玉米螟赤眼蜂寄生率的影响[J].植物保护学报, 27: 190-191.
    于慧春,王俊. 2008.电子鼻技术在茶叶品质检测中的应用研究[J].传感技术学报, 21(5): 748-752.
    于惠林,张永军,潘文亮,等. 2007.田间条件下不同诱导棉花挥发性物质的鉴定[J].应用生态学报, 18(4): 859-864.
    于惠林,张永军,孙国军,等. 2006.棉铃虫天敌中红侧沟茧蜂Microplitis mediator对不同处理棉花的趋性行为反应[J].应用与环境生物学报, 12: 67-71.
    周大荣,宋彦英,何康来,等. 1997.玉米螟赤眼蜂适宜生境的研究和利用:Ⅱ玉米螟赤眼蜂在不同生境中的分布与种群消长[J].中国生物防治, 13: 49-52.
    张峰,阚伟,张钟宁. 2001.寄主植物-蚜虫-天敌三重营养关系的化学生态学研究进展[J]. 生态学报, 21: 1025-1033.
    邹卫辉,雷朝亮,张帆. 2002.寄主利它素对稻螟赤眼蜂寄生行为的影响[J].昆虫知识, 39: 370-373.
    张晓华,常伟,李景明,等. 2007.电子鼻技术对苹果贮藏期的研究[J].现代科学仪器, (6): 120-123.
    Agbogba B C, Powell W. 2007. Effect of the presence of a nonhost herbivore on the response of the aphid parasitoid Diaeretiella rapae to host-infested cabbage plants [J]. Journal of Chemical Ecology, 33: 2229-2235.
    Alborn H T, Brennan M M, Tumlinson J H. 2003. Differential activity and degradation of plant volatile elicitors in regurgitant of tobacco hornworm (Manduca sexta) larvae [J]. Journal of Chemical Ecology, 29: 1357-1372.
    Alborn H T, Turlings T C J, Jones T H, et al. 1997. An elicitor of plant volatiles from beet armyworm oral secretion [J]. Science, 276: 945-949.
    Allen G, Kamien D, Berry O, et al. 1999. Larviposition, host cues, and planidial behavior in the sound-locating parasitoid fly Homotrixa alleni (Diptera: Tachinidae) [J]. Journal of Insect Behavior , 12: 67-79.
    Arimura G, K?pke S, Kunert M, et al. 2008. Effects of feeding spodoptera littoralis on lima bean leaves: IV. diurnal and nocturnal damage differentially initiate plant volatile emission [J]. Plant Physiology, 146: 965-973.
    Arimura G I, Kost C, Boland W. 2005. Herbivore-induced, indirect plant defences [J]. Biochim. Biophys. Acta, 1734: 91-111.
    Arimura G, Huber D P W, Bohlmann J. 2004. Forest tent caterpillars (Malacosoma disstria) induce local and systemic diurnal emissions of terpenoid volatiles in hybrid poplar (Populus trichocarpa _ deltoides): cDNA cloning, functional characterization, and patterns of gene expression of (–)-germacrene D synthase, PtdTPS1 [J]. Plant Journal, 37: 603-616.
    Arimura G, Ozawa R, Shimoda T, et al. 2000. Herbivory-induced volatiles elicit defence genes in lima bean leaves [J]. Nature, 406: 512-515.
    Beale M H, Birkett M A, Bruce T J A, et al. 2006. Aphid alarm pheromone produced bytransgenic plants affects aphid and parasitoid behaviour [J]. Proceedings of the National Academy of Sciences, 103: 10509-10513.
    Birkett M A, Chamberlain K, Guerrieri E, et al. 2003. Volatiles from whitefly-infested plant elicit a host-location response in the parasitoid, Encarsia formosa [J]. Journal of Chemical Ecology, 29: 1589-1600.
    Birkett M A, Campbell C A M, Chamberlain K, et al. 2000. New roles for cis-jasmone as an insect semiochemical and in plant defense [J]. Proceedings of the National Academy of Sciences, 97: 9329-9334.
    Boo K S, Chung I B, Han K S, et al. 1998. Response of the lacewing Chrysopa cognata to pheromones of its aphid prey [J]. Journal of Chemical Ecology, 24: 631-643.
    Bostock R M. 2005. Signal cross-talk and induced resistance: straddling the line between cost and benefit [J]. Annual Review of Phytopathology, 43: 545-580.
    Budenberg W J. 1990. Honeydew as a contact kairomone for aphid parasitoids [J]. Entomologia Experimentalis et Applicata, 55: 139-148.
    Camors F B J, Payne T. L. 1972. Response of Heydenia unica(Hymenoptera: Pteromalidae) to Dendroctonus frontalis(Coleptera: Scolytidae) pheromones and a host-tree terpene [J]. Ann. Entomol. Soc. Am, 65:31-33.
    Carpinoa S, Rapisarda T, Belvedere G, et al. 2008. Volatile fingerprint of Piacentinu cheese produced with different tools and type of saffron [J]. Small Ruminant Research, 79: 16-21.
    Carroll M. 2006. Attraction of Spodoptera frugiperda larvae to volatiles from herbivore-damaged maize seedlings [J]. Journal of Chemical Ecology, 32: 1911-1924.
    Cheng A X, Lou Y G, Mao B Y, et al. 2007. Plant Terpenoids: Biosynthesis and Ecological Functions [J]. Journal of Integrative Plant Biology, 49(2): 179-186.
    Colazza S, Fucarino A, Peri E, et al. 2004. Insect oviposition induces volatile emission in herbaceous plants that attracts egg parasitoids [J]. Journal of Experimental Biology, 207: 47-53.
    Colazza S, Mcelfresh J S, Millar J G. 2004b. Identification of volatile synomones, induced by Nezara viridula feeding and oviposition on bean spp:, that attract the egg parasitoid Trissolcus basalis [J]. Journal of Chemical Ecology, 30: 945-964.
    Colazza S, Salerno G, Wajnberg E. 1999. Volatile and contact chemicals released by Nezara viridula (Heteroptera: Pentatomidae) have a kairomonal effect on the egg parasitoid Trissolcus basalis (Hymenoptera: Scelionidae) [J]. Biological Control, 16: 310-317.
    Connor E C, Rott A S, Samietz J, et al. 2007. The role of the plant in attracting parasitoids: response to progressive mechanical wounding [J]. Entomologia Experimentalis et Applicata, 125: 145-155.
    D’Alessandro M, Turlings T C J. 2006. Advances and challenges in the identification of volatiles that mediate interactions among plants and arthropods [J]. The Royal Society of Chemistry, 131: 24-32.
    D′Auria J C, Pichersky E, Schaub A. 2007. Characterization of a BAHD acyltransferase responsible for producing the green leaf volatile ( Z) -3-hexen-1-yl acetate in Arabidopsis thaliana [J]. The Plant Journal, 49: 194-207.
    De Boer J G, Posthumus M A, Dicke M. 2004. Identification of volatiles that are used in discrimination between plants infested with prey or nonprey herbivores by a predatory mite [J].Journal of Chemical Ecology, 30: 2215-2230.
    Degenhardt D C, Lincoln D E. 2006. Volatile emissions from an odorous plant in response to herbivory and methyl jasmonate exposure [J]. Journal of Chemical Ecology, 32: 725-743.
    Degenhardt J, Gershenzon J, Baldwin I T, et al. 2003. Attracting friends to feast on foes: engineering terpene emission to make crop plants more attractive to herbivore enemies [J]. Plant Biotechnology, 14: 169-176.
    Dicke M, vanLoon J J A. 2000. Multitrophic effects of herbivore-induced plant volatiles in an Evolutionary context [J]. Entomologia Experimentalis et Applicata, 97: 237-249.
    Dicke M. 1999. Specificity of herbivore-induced plant defences [A]. In: Chadwick DJeds. Insect-Plant Interactions and Induced Plant Defence Novartis Foundation [C]. Chichester: John Wiley& Sons, 43-54.
    Dick M. 1999. Are herbivore-induced plant volatiles reliable indicators of herbivore identity to foraging carnivore arthropods [J]? Entomologia Expermentalis et Applicata, 91: 131-142.
    Dong W X, Wang R, Zhang Z N. 2000. Electroantennal responses of a parasitoid Microplitis mediator to cotton plant volatiles [J]. Acta Entomologia Sinica, 43(Suppl.): 119-125.
    Du Y, Poppy G M, Powell W, et al. 1998. Identification of semiochemicals released during aphid feeding that attract parasitoid Aphidius ervi [J]. Journal of Chemical Ecology, 24: 1355-1368.
    Eichenseer H, Mathews M C, Bi J L, et al. 1999. Salivary glucose oxi-dase: multifunctional roles for Helicoverpa zea [J]? Archives of Insect Biochemistry and Physiology, 42: 99-109.
    Engleberth J, Alborn H T, Schmelz E A, et al. 2004. Airborne signals prime plants against insect herbivore attack [J]. Proceedings of the National Academy of Sciences, 101: 1781-1785.
    Fatouros N E, van Loon J J A, Hordijk K A, et al. 2005. Herbivore-induced plant volatiles mediate in-flight host discrimination by parasitoids [J]. Journal of Chemical Ecology, 31: 2033-2047.
    Gabrys B J, Gadomski H J, Klukowski Z, et al. 1997. Sex pheromone of cabbage aphid Brevicoryne brassicae: Identification and field trapping of male aphids and parasitoids [J]. Journal of Chemical Ecology, 23: 1881-1890.
    Geervliet J B F, Ariens S, Dicke M, et al. 1998. Long-distance assessment of patch profitability through volatile infochemicals by the parasitoids Cotesia glomerata and C. rubecula (Hymenoptera: Braconidae) [J]. Biological Control, 11: 113-121.
    Geervliet J B F, Posthumus M A, Vet L E M, et al. 1997. Comparative analysis of headspace volatiles from different caterpillar-infested or uninfested food plants of Pieris species [J]. Journal of Chemical Ecology, 23: 2935-2954.
    Gershenzon J, Dudareva N. 2007. The function of terpene natural products in the natural world [J]. Nature Chemical Biology, 3: 408-414.
    Gershenzon J. 1994. The cost of plant chemical defense against herbivory: a biochemical perspective [A]. BERNAYS E A. Insect-Plant Interaction [C]. Florida: CRC Press, Boca Raton, 105-173.
    Girling R D, Hassall M, Turner J G, et al. 2006. Behavioural responses of the aphid parasitoid Diaeretiella rapae to volatiles from Arabidopsis thaliana induced by Myzus persicae [J]. Entomologia Experimentalis et Applicata, 120: 1-9.
    Halitschke R, Schittko U, Pohnert G, et al. 2001. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera: Sphingidae) and its natural host Nicotiana attenuate.Ⅲ. Fatty acid-amino acid conjugates in herbivore oral secretions are necessary and sufficient for herbivore-specific plant responses [J]. Plant Physiology, 125: 711-717.
    Hare J D, Morgan D J W, Nguyun T. 1997. Increased parasitization of California red scale in the field after exposing its parasitoid, Aphytis melinus to a synthetic kairomone [J]. Entomologia Experimentalis et Applicata, 82: 73-81.
    Hawkes C, Coaker T H. 1979. Factors affecting the behavioral responses of the adult cabbage root fly, Delia brassicae, to host plant odor [J]. Entomologia Experimentalis et Applicata, 25: 45-58.
    Heil M. 2008. Indirect defence via tritrophic interactions [J]. New Phytologist, 178(1): 41-61.
    Heil M, Koch T, Hilpert A, et al. 2001. Extrafloral nectar production of the ant-associated plant, Macaranga tanarius, is an induced, indirect, defensive response elicited by jasmonic acid [J]. Proceedings of the National Academy of Sciences, 98: 1083-1088.
    Honkanen T, Haukioja E. 1998. Intra-plant regulation of growth and plant-herbivore interactions [J]. Ecoscience, 5: 470-479.
    Horikoshi M, Takabayashi J, Yano S. 1997. Cotesia glomerata female wasps use fatty acids form plant-herbivore complex in host searching [J]. Journal of Chemical Ecology, 23(6): 1505-1515.
    Hsiao T H. 1985. Feeding behavior [A]. KERKUGA, GILBERTL I. Comprehensive Insect Physilogy, Biochemistry and Pharmacology [C].Cambridge: Harvard University Presss, 471-512.
    Hunter M D. 2003. Effects of plant quality on the population ecology of parasitoids [J]. Agricultural and Forest Entomology, 5:1-8.
    Hunter M D. 2002. A breath of fresh air: beyond laboratory studies of plant volatile-natural enemy interactions [J]. Agricultural and Forest Entomology, 4: 81-86.
    Ishiwari H, Suzuki T, Maeda T. 2007. Essential compounds in herbivore-induced plant volatiles that attract the predatory mite Neoseiulus womersleyi [J]. Journal of Chemical Ecology, 33: 1670-1681.
    James D G, Grasswitz T R. 2005. Field attraction of parasitic wasps, Metaphycus sp. and Anagrus spp. using synthetic herbivore-induced plant volatiles [J]. Biocontrol, 50: 871-880.
    James D G. 2005. Further field evaluation of synthetic herbivore-induced plant volatiles as attractants for beneficial insects. Journal of Chemical Ecology, 31: 481-495.
    James D G, Price T S. 2004. Field testing of methyl salicylate for recruitment and retention of beneficial insects in grapes and hops [J]. Journal of Chemical Ecology, 30: 1613-1628.
    Jones R L, Lewis W J, Bowman M C, et al. 1971. Host-seeking stimulant for parasite of corn earworm: isolation, identification, and synthesis [J]. Science, 173: 842-843.
    Kainoh Y, Tatsuki S, Kusano T. 1990. Host moth scales: a cue for host location for Ascogaster reticulatus Watanbe(Hymenoptera: Braconidae) [J]. Appl. Ent. Zool., 25: 17-25.
    Kalberer N M, Turlings T C J, Rahler M. 2001. Attraction of a leaf beetle (Oreina cacaliae) to damaged host plants [J]. Journal of Chemical Ecology, 27: 647- 661.
    Kamano Y, Shimizu K, Kainoh Y, et al. 1989. Mating behavior of Ascogaster reticulatus Watanbe(Hymenoptera: Braconidae), an egg-larval parasitoid of the smaller tea tortris, Adoxophyes sp. (Lepidoptera tortricidae)Ⅱ. Behavioral sequence and a role of sex pheromone [J]. Appl. Ent. Zool., 24(4): 372-378.
    Kessler A, Baldwin I T. 2001. Defensive function of herbiyore-induced plant volatile emisions in nature [J]. Science, 291: 2141-2144.
    Khan Z R, James D G, Midega C A O, et al. 2008. Chemical ecology and conservation biological control [J]. Biological Control, 45: 210-224.
    Khan Z R, Pickett J A, Van den B J, et al. 2000. Exploiting chemical ecology and species diversity: stemborer and Striga control for maize and sorghum in Africa [J]. Pest Management Science, 56: 957-962.
    Khan Z R, Ampong-Nyarko K, Chilishwa P, et al. 1997. Inter-cropping increases parasitism of pests [J]. Nature, 388: 631-632.
    Krips O E, Willems P E L, Gols R, et al. 2001. Comparison of cultivars of ornamental crop Gerbera jamesonii on production of spider mite-induced volatiles, and their attractiveness to the predator Phytoseiulus persimilis [J]. Journal of Chemical Ecology, 27: 1355-1372.
    Kunert M, Biedermann A, Koch T, et al. 2002. Ultrafast sampling and analysis of plant volatiles by a hand-held miniaturized GC with pre-concentration unit: Kinetic and quantitative aspects of plant volatile production [J]. Journal of Separation Science, 25: 677-684.
    Lewis W J, Marthin W R T. 1990. Semiochemicals for use with parasitoids : Status and Future [J]. Journal of Chemical Ecology, 16(11): 3067-3089.
    Lewis W J, Tumlinson J H. 1988. Host detection by chemically mediated associative learning in a parasitic wasp [J]. Nature, 331: 257-259.
    Lewis W J, Jones R L, Sparks A N. 1971. A host-seeking stimulant for the egg parasite, Trichogramma evenescens: its source and a demonstration of its laboratory and field activity [J]. Annals of the Entomological Society of America, 65: 1087-1089.
    Liu S S, Jiang L H. 2003. Differential parasitism of Plutella xylostella (Lepidoptera: Plutellidae) larvae by the parasitoid Cotesia plutellae (Hymenoptera: Braconidae) on two host plant species [J]. Bulletin of Entomological Research, 93: 65-72.
    Lo P M, Lo B P, Peri E, et al. 2002. Responses of Aphytis chilensis to the synthetic sex pheromone of the Oleander scale. IOBC/WPRC Bulletin, 25: 1-6.
    Lou Y, Hua X Y, Turlings T C J, et al. 2006. Differences in induced volatile emissions among rice varieties result in differential attraction and parasitism of Nilaparvata lugens eggs by the parasitoid Anagrus nilaparvatae in the field [J]. Journal of Chemical Ecology, 32(11): 2375-2387.
    Lou Y G, Du M H, Turlings T C J, et al. 2005. Exogenous application of jasmonic acid induces volatile emissions in rice and enhances parasitism of Nilaparvata lugens eggs by the parasitoid Anagrus nilaparvatae [J]. Journal of Chemical Ecology, 31: 1985-2002.
    Lou Y G, Cheng J A. 2003. Role of rice volatiles in the foraging behaviour of the predator Cyrtorhinus lividipennis for the rice brown planthopper Nilaparvata lugens [J]. BioControl, 48: 73-86.
    Loughrin J H, Manukian A, Heath R R. 1995. Volatiles emitted by different cotton varieties damaged by feeding beet armyworm larvae [J]. Journal of Chemical Ecology, 21(8): 1217-1227.
    Loughrin J H, Manuklan A, Heath R R, et al. 1994. Diurnal cycle of emission of induced volatile terpenoids hy herblvore-injured cotton plants [J]. Proc. Nati. Acad. Sci. USA. 91: 18836-11840.
    Matsui K, Kurishita S, Hisamitsu A, et al. 2000. A lipid-hydrolysing activity involved inhexenal Formation [J]. Biochemical Society Transactions, 28: 857-860.
    Mattiacci L, Dicke M, Posthumus M A. 1995.β-Glucosidase: an elicitor of herbivore-induced plant odor that attracts host-searching parasitic wasps [J]. Proceedings of the National Academy of Sciences, 92: 2036-2040.
    McCall P J, Turlings T C J, Lewis W J, et al. 1993. Role of plant volatiles in host location by the specialist parasitoid Microplitis croceipes Cresson (Hymenoptera: Braconidae) [J]. Journal of Insect Behavior, 6: 625-639.
    Meiners T, Westerhaus C, Hilker M. 2000. Specificity of chemical cues used by a specialist egg parasitoid during host location [J]. Entomologia Experimentalis et Applicata, 95:151-159.
    Mitchell E R, Tingle F C, Heath R R. 1990. Ovipostional responses of three Heliothis species (Lepidoptrea: Noctuidae) to alleochemicals from cultivated and wild host plants [J]. Journal of Chemical Ecology, 16(6): 1817-1827.
    Mith?fer A, Wanner G, Boland W. 2005. Effects of feeding Spodoptera littoralis on lima bean leaves. II. Continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission [J]. Plant Physiology, 137: 1160-1168.
    Morgan D, Hare D. 1998. Volatile cues used by the parasitoid, Aphytis melinus, for host location: California red scale revisited [J]. Entomologia Experimentalis et Applicata , 88: 235-245.
    Mori N, Yoshinaga N, Sawada Y, et al. 2003. Identification of volicitin-related compounds from the regurgitant of lepidopteran caterpillars [J]. Bioscience, Biotechnology, and Biochemistry, 67: 1168-1171.
    Nathan P, Havil L, Kenneth F, et al. 2000. Compound effects of induced plant responses on insect herbivores and parasitoids: implications for tritrophic interactions [J]. Ecological Entomology, 25: 171-179.
    Neveu N, Grandgirard J, Nenon J P, et al. 2002. Systemic release of herbivore-induced plant volatiles by turnips infested by concealed root-feeding larvae Delia radicum L. [J]. Journal of Chemical Ecology, 28: 1717-1732.
    Ngi-Song A J, Overholt W A, Njagi P G N, et al. 1996. Volatile infochemicals and used in host and host habitat location by Cotesia flavipes Cameron and Cotesia sesamiae (Cameron) (Hymenoptera: Braconidae), larval parasitoids of stemborers on graminae [J]. Journal of Chemical Ecology, 22(2): 307-323.
    Ngi-Song A J, Overholt W A. 1997. Host location and acceptance by Cotesia flaviopes Cameron and C.sesamiae (Cameron) (Hymenoptera: Braconidae), Parasitoids of African Gramineous stemborers: Role of frass and other host cues [J]. Biological Control, 9: 136-142.
    Ozawa R, Shiojiri K, Sabelis M W, et al. 2004. Corn plants treated with jasmonic acid attract more specialist parasitoids, thereby increasing parasitization of the common armyworm [J]. Journal of Chemical Ecology, 30: 1797-1808.
    Ozawa R, Arimura G, Takabayashi J, et al. 2000. Involvement of jasmonate and salicylate-related signaling pathways for the production of specific herbivore-induced volatiles in plants [J]. Plant Cell Physiology, 41: 391-398.
    Panagoua E Z, Sahgal N, Magan N, et al. 2008. Table olives volatile fingerprints: Potential of an electronic nose for quality discrimination [J]. Sensors and Actuators B: Chemical, 134: 902-907.
    ParéP W and Tumlinson J H. 1999. Plant volatiles as a defense against insect herbivores [J].Plant Physiology, 121: 325-331.
    ParéP W, Tumlinson J H. 1997. Induced synthesis of plant volatiles [J]. Nature, 385:30-31.
    Payne T L, Birch M C, Kennedy C E J. (eds). 1986. Mechanisms in Insect Olfaction. London: Oxford Press.
    Peri E, Sole A, Wajnberg E, et al. 2006. Effect of host kairomones and oviposition experience on the arrestment behavior of an egg parasitoid [J]. Journal of Experimental Biology, 209: 3629-3635.
    Pettersson E M, Boland W. 2003. Potential parasitoid attractants, volatile composition throughout a bark beetle attack [J]. Chemoecology, 13: 27-37.
    Pickett J A, Bruce T J A, Chamberlain K, et al. 2006. Plant volatiles yielding new ways to exploit plant defence. In: Chemical Ecology: From Gene to Ecosystem (M. Dicke and W. Takken, eds.). Springer, Netherlands, pp161-173.
    Potting R P J, Vet L E M, Dicke M. 1995. Host microhabitat location by stem-borer parasitoid Cotesia flavipes: the role of herbivore volatiles and locally and systemically induced plant volatiles [J]. Journal of Chemical Ecology, 21(5): 525-539.
    Price, P W. 1986. Ecological aspects of host plant resistance and biological control: interactions among three trophic levels [A]. In: Boethel D J, Eikenbary R D. Interactions of plant resistance and parasitoids and predators of insects [C]. Chichester: Ellis Horwood, 11-13.
    Prokopy R J, Webster R P. 1978. Ovipesition-deterring pheromone of Rhagoletis pomonellaa kairomone for its parasitoid Opius lectus [J]. Journal of Chemical Ecology, 4: 481-494.
    Rasmann S, K?llner T G, Degenhardt J, et al. 2005. Recruitment of entomopathogenic nematodes by insect-damaged maize roots [J]. Nature, 434: 732-737.
    Reddy G V P, Holopainen J K, Guerrero A. 2002. Olfactory responses of Plutella xylostella natural enemies to host pheromone, larval frass, and green leaf cabbage volatiles [J]. Journal of Chemical Ecology, 28: 131-143.
    R?se U S R, Tumlinson J H. 2005. Systemic induction of volatile release in cotton: how specific is the signal to herbivory [J]. Planta, 222: 327-335.
    R?se U S R, Tumlinson J H. 2004. Volatiles released from cotton plants in response to Helicoverpa zea feeding damage on cotton flower buds [J]. Planta, 824-832.
    R?se U, Manukian A, Heath R R, et al. 1996. Volatile semiochemicals released from undamaged cotton leaves(a systemic response of living plants to caterpillar damage). Plant Physiology, 111: 487-495.
    Rodriguez S C, Poland T M, Miller J R, et al. 2006. Behavioral and electrophysiological responses of the emerald ash borer, Agrilus planipennis, to induced volatiles of Manchurian ash,
    Fraxinus mandshurica [J]. Chemoecology, 16: 75-86.
    Rodriguez S C, Crafts-Brandner S J, Williams L, et al. 2002. Lygus hesperus feeding and salivary gland extracts induce volatile emissions in plants [J]. Journal of Chemical Ecology, 28: 1733-1747.
    Rodriguez S C, Crafts-Brandner S J, ParéP W, et al. 2001. Exogenous methyl jasmonate induces volatile emissions in cotton plants [J]. Journal of Chemical Ecology, 22: 679-695.
    Rojas J, Castillo A, Virgen A. 2006. Chemical cues used in host location by Phymastichuscoffea, a parasitoid of coffee berry borer adults, Hypothenemus hampei [J]. Biological Control, 37: 141-147.
    Sandanayaka W. 2006. Host location and ovipositional behavior of Platygaster demades Walker (Hymenoptera: Platygastridae), an egg parasitoid of apple and pear leaf curling midges [J]. Journal of Insect Behavior, 19: 99-113.
    Schnee C, Kllner T G, Held M, et al. 2006. The products of a single maize sesquiterpene synthase form a volatile defence signal that attracts natural enemies of maize herbivores [J]. Proceedings of the National Academy of Sciences, 103: 1129-1134.
    Schmelz E A, Alborn H T, Banchio E, et al. 2003. Quantitative relationships between induced jasmonic acid levels and volatile emission in Zea mays during Spodoptera exigua herbivory [J]. Planta, 216: 665-673.
    Schoonhoven L M, Jermy T, Vanloon J J A. 1998. Insect-plant biology: From Physiology to Evolution [M]. London:Chapman and Hall.
    Schwartzberg E G, Kunter G, Stephan C, et al. 2008. Real-time analysis of alarm pheromone emission by the pea aphid (Acyrthosiphon Pisum) under predation [J]. Journal of Chemical Ecology, 34: 76-81.
    Scutareanu P, Bruin J, Posthumus M A, et al. 2003. Constitutive and herbivore-induced volatiles in pear, alder and hawthorn trees [J]. Chemoecology, 13: 63-74.
    Shiojiri K, Kishimoto K, Ozawa R, et al. 2006. Changing green leaf volatile biosynthesis in plants: An approach for improving plant resistance against both herbivores and pathogens [J]. Proceedings of the National Academy of Sciences, 103: 16672-16676.
    Soler R, Harvey J A, Kamp A F D, et al. 2007. Root herbivores influence the behaviour of an above ground parasitoid through changes in plant-volatile signals. Oikos, 116:367-376.
    Spiteller D, Boland W. 2003. N-(17-Acyloxy-acyl)-glutamines: novel surfactants from oral secretions of lepidopteran larvae [J]. Journal of Organic Chemistry, 68: 8743-8749.
    Spiteller D, Dettner K, Boland W. 2000. Gut bacteria may be involved in interactions between plants, herbivores and their predators: Microbial biosynthesis of N-acylglutamine surfactants as elicitors of plant volatiles [J]. Biological Chemistry, 381: 755-762.
    Steidle J L M, Van Loon J J A. 2003. Dietary specialization and infochemical use in carnivorous arthropods: testing a concept [J]. Entomologia Experimentalis et Applicata, 108: 133-148.
    Steidle J L M, Van Loon J J A. 2002. Chemoecology of parasitoid and predator oviposition behaviour. In: Hilker M, Meiners T (eds) Chemoecology of insect eggs and egg deposition. Blackwell, Berlin, pp 291-317.
    Steinberg S, Dicke M, Vet L E M. 1993. Relative importance of infochemicals from first and second trophic level in long-range host location by the larval parasitoid Cotesia glomerata [J]. Journal of Chemical Ecology, 19: 47-59.
    Strand M R, Vinson S B. 1982. Stimulation of oviposition and successful rearing of Telenomus heliothidis (Hymenoptera: Scelionidae) on nonhosts by use of a host-reeognition kairomone [J]. Entonophaga, 27: 365-370.
    Takasu K, Rains G C, Lewis W J. 2007. Comparison of detection ability of learned odors between males and females in the larval parasitoid Microplitis croceipes [J]. EntomologiaExperimentalis et Applicata, 122: 247-251.
    Takasu K, Lewis W J. 2003. Learning of host searching cues by the larval parasitoid Microplitis croceipes [J]. Entomologia Experimentalis et Applicata, 108: 77-86.
    Takabayashi J, Takahashi S, Dicke M, et al. 1995. Developmental stage of herbivore Pseudoletia separata affects production of herbivore-induced synomone by corn plants [J]. Journal of Chemical Ecology, 21: 273-287.
    Tamaki Y. 1997. Chemistry of the test cover. In: Soft scale insects: their biology, natural enemies and control(Y. Ben-Dov and C.J. Hodgson eds). New York: Elseiver Amsterdam-Lausanne, pp55-72.
    Thaler J S. 1999. Jasmonate-inducible plant defenses cause increased parasitism of herbivores [J]. Nature, 399: 686-689.
    Tingle F C, Heath R R, Mitchell E R. 1989. Flight response of Heliothis subflexa females (Lepidoptra: Noctuidae) to an attractant from Groundcherry, Physalis angulata [J]. Journal of Chemical Ecology, 15: 221-231.
    Tinzaara W, Gold C S, Dicke M, et al. 2005. Olfactory responses of banana weevil predators to volatiles from banana pseudostem tissue and synthetic pheromone [J]. Journal of Chemical Ecology, 31: 1537-1553.
    Truitt C L, Wei H X, ParèP W. 2004. A plasma membrane protein from Zea mays binds with the herbivore elicitor volicitin [J]. Plant Cell, 16: 523-532.
    Tumlinson J H, Turlings T C J, Lewis W J. 1992. The semiochemical complexes that mediate insect parasitoid foraging [J]. Agr.Zool.Rev., 5: 221-252.
    Turlings T C J, Ton J. 2006. Exploiting scents of distress:the prospect of manipulating Herbivore-induced plant odours to enhance the control of agricultural pests [J]. Current Opinion in Plant Biology, 9: 421-427.
    Turlings T C J, W?cker F L. 2004. Recruitment of predators and parasitoids by herbivore-injured plants. Advances in Insect Chemical Ecology, pp. 21-75. Cambridge University Press, Cambridge.
    Turlings T C J, Alborn H T, Loughrin J H. et al. 2000. Volicitin, an elicitor of maize volatiles in oral secretion of Spodoptera exigua: isolation and bioactivity [J]. Journal of Chemical Ecology, 26: 189-202.
    Turlings T C J, Lengwiler U B, Bernasconi M L. et al. 1998. Timing of induced volatile emissions in maize seedlings [J]. Planta, 207: 146-152.
    Turlings T C J,Loughrin J H,McCall P J. et al. 1995. How caterpillar-damaged plants protect themselves by attracting parasitic wasps [J]. Proc. Nati. Acad. Sci., USA. 92:4169-4174.
    Turlings T C J, McCall P J, Alborn H T. et al. 1993. An elicitor in caterpillar oral secretions that induces corn seedlings to emit chemical signals attractive to parasitic wasps [J]. Journal of Chemical Ecology, 19: 411-425.
    Turlings T C J, W?ckers F L, Vet L E M, et al. 1993. Learning of host-finding cues by hymenopterous parasitoids [M]. Insect Learning: Ecological and Evolutionary Perspectives, pp. 51-78. Chapman & Hall, New York.
    Turlings T C J, Tumlinson J H. 1992. Systemic release of chemical signals by herbivore-injuredcorn [J]. Proc. Nati. Acad. Sci. USA. Plant Biol. 89:8399-8402.
    Turlings T C J, Tumlinson J H, Eller F J, et al. 1991. Larval damaged plants: Source of volatile synomones that guide the parasitoid Cotesia marginiventris to the micro-habitat of its hosts [J]. Entomologia Experimentalis et Applicata, 58:75-82.
    Turlings T C J, Tumlinson J H, Lewis W J. 1990. Exploitation of Herbivore-Induced Plant Odors by Host-Seeking Parasitic Wasps [J]. Science, 250: 1251-1253.
    van Poecke R M P, Dicke M. 2002. Induced parasitoid attraction by Arabidopsis thaliana: involvement of the octadecanoid and the salicylic acid pathway [J]. Journal of Experimental Botany, 53: 1793-1799.
    Van Baarlen P, Topping C, Sunderland K. 1996. Host location by Gelis festinans, an eggsac parasitoid of the linyphiid spider Erigone atra [J]. Entomologia Experimentalis et Applicata, 81: 155-163.
    Venzon M, Janssen A, Sabelis M W. 1999. Attraction of a generalist predator towards herbivore-infested plants [J]. Entomologia Experimentalis et Applicata, 93: 305-314.
    Verkerk R H J, Wright D J. 1996. A review: Multitrophic interactions and management of the diamondback moth [J]. Bulletin of Entomological Research, 86: 205-216.
    Vet L E M, Lewis W J, Papaj D R. et al. 2003. A variable-response model for parasitoid foraging behavior [M]. Quality Control and Production of Biological Control Agents: Theory and Testing Procedures, pp. 25-39. CABI Publishing, Wallingford ,UK.
    Vet L, Lewis W, Carde R. 1995. Parasitoid foraging and learning [A]. Chemical Ecology of Insects 2, pp. 65-101. Chapman & Hall, New York.
    Vet L E M, Dicke M. 1992. Ecology of infochemicals used by natural enemies in a tritrophic context [J]. Ann Rev Entomol., 37: 141-172.
    Vet L, Janse C, van Achterberg C. et al. 1984. Microhabitat location and niche segregation in two sibling species of drosophilid parasitoids: Asobara tabida (Nees) and A. rufescens (Foerster) (Braconidae: Alysiinae) [J]. Oecologia (Berlin), 61:182-188 .
    Vet L E M. 1983. Host habitat location through olfactory cues by Leptopilina clavipes Hymenoptera Eucoilidae, a parasitoid of fungivorous Drosophila: the influence of conditioning [J]. Netherlands Journal of Zoology, 33:225-248.
    Vinson S B. 1998. The general host selection behavior of parasitoid Hymenoptera and a comparison of initial strategies utilized by larvaphagous and oophagous species [J]. Biological Control, 11: 79-96.
    Vinson S. 1988. Comparison of host characteristics that elicit host recognition behavior of parasitoid Hymenoptera [A]. Advances in Parasitic Hymenopteran Research, pp. 285-291. Brill, Amsterdam, the Netherlands.
    Vinson S B. 1984. Parasitoids-host relationship [A] . Kerkut G A, Gilbert L I. Comprehensive Insect Physiology, Biochemistry and Pharmacology [C] . London: Pergamon Press, 417-469.
    Vinson S, Iwantsch G. 1980. Host suitability for insect parasitoids [J]. Annual Review of Entomology, 25: 397-419.
    Visser J H. 1986. Host odor perception in phytophagous insects [J]. Annual Review of Entomology, 31: 121-144.
    Vuorinen T, Reddy G V P, Nerg A M, at el. 2004. Monoterpene and herbivore-inducedemissions from cabbage plants grown at elevated atmospheric CO2 concentration [J]. Atmos Environ., 38: 675-682.
    W?cker F, Lewis W. 1999. A comparison of colour-, shape-, and pattern-learning by the hymenopteran parasitoid Microplitis croceipes [J]. Entomologia Experimentalis et Applicata, 103: 135-138.
    Wei J N, Zhu J, Kang L. 2006. Volatiles released from bean plants in response to agromyzid files [J]. Planta, 224: 279-287.
    Weissbecker B, Van Loon J J A, Posthumus M A, at el. 2000. Identification of volatile potato sesquiterpenoids and their olfactory detection by the two-spotted stink bug Perillus bioculatus [J]. Journal of Chemical Ecology, 26: 1433-1445.
    Welseloh R M. 1980. Behavioral changes in Apanteles melanoscelus females exposed to gypsy moth silk [J]. Environ. Entomol., 9: 345-349.
    Whitman D W, Eller F J. 1990. Parasitic wasps orient to green leaf volatiles [J]. Chemeoecology, 1: 69-76.
    Wiskerks J S C , Dicke M, Vet L E M. 1993. Larval parasitoid uses aggregation pheromone of adult host in foraging behaviour : A solution of the reliablity-detectability problem [J]. Oecologia, 93: 145-148.
    Wang X Y, Yang Z Q, Juli R. at el. 2010. Host-seeking behavior and parasitism by Spathius agrili Yang (Hymenoptera: Braconidae), a parasitoid of the emerald ash borer [J]. Biological Control, 52:24-29.
    Yu H L, Zhang Y J, Guo Y Y, at el. 2008. Field evaluation of synthetic herbivore-induced plant volatiles as attractants for beneficial insects [J]. Environmental Entomology, 37: 1410-1415.
    Zeringueh J. 1987. Changes in cotton leaf chemistry induced by volatile elicitor [J]. Phyiochem, 26: 1357-1360.
    Zhang H M, Wang J. 2007. Detection of age and insect damage incurred by wheat, with an electronic nose [J]. Journal of Stored Products Research, 43: 489-495.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700