H9N2亚型禽流感山东分离株的抗原变异及其对小白鼠致病性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
禽流感是由A型流感病毒引起的禽类传染病,临床表现为呼吸道感染,产蛋量下降,头颈水肿和腹泻。H9亚型禽流感为低致病力禽流感,能引起少量死亡或不死亡,表现为生长障碍和产蛋量下降。禽流感病毒变异频繁,传播速度快,给疫情的防控造成巨大的困难,使世界养禽业遭受巨大损失。研究并掌握禽流感的生物学特性和遗传进化规律,对有效的防控禽流感疫情有重要意义。为了掌握我国H9亚型禽流感的变异情况和流行规律,本研究从生物学特性和分子水平上对2009年从山东不同地区的规模化肉鸡场中分离到6株H9N2亚型流感病毒进行生物学特性、免疫相关性、分子遗传规律、对哺乳动物的致病性和对鸡的免疫保护性等方面的研究。
     通过血凝特性的测定、鸡胚致病力的测定等方法对6株禽流感H9N2亚型毒株的致病力进行分析和比较。结果表明:本试验分离到的2009年我国山东地区的这6株禽流感H9N2亚型毒株属于低致病性禽流感病毒,其HA效价在2~6~2~9之间,EID_(50)在10~(-7.75)/0.1mL~10~(-9.25)/0.1mL之间,TCID_(50)在10~(-8.00)/0.1mL~10~(-8.50)/0.1mL之间,6株H9N2禽流感病毒的EID_(50)和TCID_(50)数值相差不大,这说明2009年分离的H9流感病毒在鸡胚和哺乳动物细胞上的适应性比较接近。
     用有限稀释法对这6株病毒进行纯化,制备单因子血清,进行双交叉HI试验,从而分析它们的抗原相关性。不同时期和不同地区分离株的抗原性有所差异但没有发生根本性变化,试验选用的6株病毒的抗原相关性在0.91~1.02之间,同一病毒的单因子血清对该病毒的HI效价较高;6株病毒之间的差异性不大。
     从分子水平上分别研究了6株AIV H9N2分离株各基因片段的基因类型。对6株H9N2病毒的8个基因片段(PB2,PB1,PA,HA,NP,NA,M和NS)分别进行系统进化分析,作出系统进化树。HA基因进化树中,6株病毒存在同一个进化位置,都属于CK/SH/Y2/2008-like谱系,NA,NP,M,NS,PB1,PA基因进化树和HA基因进化树相同。然而,在PB2基因进化树中,6株病毒可以分为两个不同的进化分支,其中CK/SD/SG2/2009、CK/SD/WL/2009属于CK/SH/Y2/2008-like谱系,另外四株病毒CK/SD/PD/2009、CK/SD/HY/2009、CK/SD/SG1/2009、CK/SD/FX/2009却属于CK/SH/F/98-like谱系。因此6株病毒可以分为两个基因型:CK/SD/SG2/2009、CK/SD/WL/2009属于一个基因型,类似于CK/SH/Y2/2008-like谱系;CK/SD/PD/2009、CK/SD/HY/2009、CK/SD/SG1/2009、CK/SD/FX/2009是CK/SH/Y2/2008-like和CK/SH/F/98-like重组而来。
     为阐明H9N2流感病毒对哺乳动物致病性,分别以106EID50剂量攻毒6周龄BABL/c雌性小鼠,6株病毒都能在小鼠肺脏中复制,而且两株病毒能在攻毒7天后引起小鼠死亡。该试验结果具有重要公共卫生意义。
     以CK/SD/SG2/2009和某公司的鸡新城疫禽流感二联灭活疫苗(以下简称:新流疫苗)分别免疫28天的SPF试验鸡,用本试验分离株CK/SD/SG2/2009攻毒,两种疫苗都有保护性,但不同的部分分离的病毒滴度不同。本研究中我国山东分离到的H9N2亚型禽流感病毒不存在明显的抗原性差异,但是疫苗也不能产生完全的保护,这也可能和疫苗不能诱导完全的免疫保护有关。因此,合理的选择抗原针对性强的疫苗株非常重要,最好是选择和当前流行毒株抗原性一致的病毒株作为疫苗株。同时要制定合理的免疫程序,这样可以提高免疫后的抗体水平,更好的发挥疫苗的免疫保护作用。
Avian influenza is caused by influenza virus type A. The clinical manifestations are respiratory infection, decline in egg production and alvi profluvium. H9 subtype of avian influenza is low-pathogenicity avian influenza. It can cause decline in egg production, growth retardation and a small quantity death. The Mutation frequency of the Avian influenza virus is frequently and the speed of propagation is quick, so it is very difficult to prevent the dissemination of the Avian influenza virus. There are important significance to explore the genetic mutations of the hemagglutinin gene and the neuraminidase gene and the regularity of molecular epidemiology of H9 subtype avian influenza for prevention and curing the Avian influenza. In order to explore the genetic mutations of the hemagglutinin gene and the neuraminidase gene and the law of molecular epidemiology of H9 subtype avian influenza in China, Six influenza viruses were isolated from broilers in different parts of Shandong province in 2009,and explored their virulence, immune reference and the genetic mutations. The investigation includes five experiments.
     Through the determination of hemagglutination properties, infected chicken embryo, the virulence was analyzed and compared. The results show that the virulences of there virus were weak and there were small disparity in antigenicity. The HA potency is between 2~6 and 2~9, the HI potency for Standard antigen is between 10log2 and 11log2. The EID_(50) is between 10~(-7.75)/0.1mL and 10~(-9.25)/0.1mL. The EID_(50) is between 10~(-8.00)/0.1mL~10~(-8.50)/0.1mL. There are not quite different between EID_(50) and TCID_(50) of the six H9N2 avian influenza virus. This explains the H9 influenza virus which separate in 2009 are adaptability closer in chicken embryos and mammalian cells.
     Elected the six strains of virus which representing different regions and different periods and depurated these virues by Microdilution, maked manufacture single-factor serum and maked double cross-hemagglutination inhibition test. The correlation of the double cross-hemagglutination inhibition test is between 0.91 and 1.02. It is little different between the viruses.
     The whole cDNA fragments of the six influenza viruses isolated from broilers in different parts of Shandong province in 2009 were amplified by reverse transcription polymerase chain reaction, with primers specific to each gens. After cloning and sequencing, gene sequences were analyzed on homology and heredity evolution of molecule. HA gene phylogenetic tree, Six viruses exist in the same evolutionary position, all belong to CK/SH/Y2/2008-like lineage. the NA, NP, M, NS, PB1, PA are same with the HA gene phylogenetic tree with the phylogenetic tree. However, in the PB2 phylogenetic tree, Six viruses can be divided into two distinct evolutionary branches. CK/SD/SG2/2009 and CK/SD/WL/2009 are belong to CK/SH/Y2/2008-like lineage, the other four strains CK/SD/PD/2009, CK/SD/HY/2009, CK / SD/SG1/2009, CK/SD/FX/2009 are belong to CK/SH/F/98-like lineages. Therefore, six genotypes of the virus can be divided into two: CK/SD/SG2/2009, CK/SD/WL/2009 belong to a genotype, similar to CK/SH/Y2/2008-like pedigree; CK/SD/PD/2009, CK/SD/HY/2009, CK / SD/SG1/2009, CK/SD/FX/2009 are belone to the genotype whiche is reassortments of CK/SH/Y2/2008-like and CK/SH/F/98-like.
     To study the pathogenicity to mammals of six viruses, six-week-old-female BABL/c rats were inoculated with 10~6EID_(50) dosage of six viruses (in 50μL), respectively. The results was that all the six viruses can replicate in the lungs of rats, and two of six viruses can cause rats to die at 8 days past inoculation(DPI), which indicates that the virulence of H9N2 to rats have been increased. Therefore this study posed significance in human public health.
     Experimental chickens were immunized with the vaccine CK/SD/SG2/2009 and new vaccine, with CK/SD/SG2/2009 attack drugs. Two vaccines are protective. In this study, the six strains of H9N2 avian influenza viruses isolated from broilers in Shandong province are no significant difference in antigenicity, but the vaccine can not produce complete protection, and vaccine may not induce protective immunity completely relevant. Therefore, a reasonable choice of antigens targeted for vaccine strains is very important, it is best to choice the current strains in the same strain of the virus antigen as a vaccine strains. At the same time immune to the development of rational procedures, this can increase the antibody levels after immunization, better play the role of vaccine protection.
引文
柴丽娜,杨大光等.人和哺乳动物禽流感(H9N2亚型)、新城疫血清抗体水平的调查报告[J].湖北畜牧兽医2006,10: 9-10.
    陈伯伦,张泽纪,陈伟斌等.鸡A型AIV的分离与血清学初步鉴定[J].中国兽医杂志,1994,20(10): 3-5.
    陈福勇,夏春. A/CK/Beijing/1/96(H9N2)株核蛋白基因克隆和序列分析[J].中国预防兽医学报,1999,21(2): 130-133.
    陈杭薇,李雪辉.流感病毒A非结构蛋白功能的研究进展[J].病毒学报,2008 6: 23-25.
    陈少渠.浅谈禽流感病毒的变异[J].河南畜牧兽医,2005,26(1): 8-9.
    陈宣烁,钟婉玲,郑小敏等.禽流感病毒分子生物学的研究进展[J].中国畜牧兽医,2006,33(1): 63-67.
    程安春,汪铭书,豆文波等.禽流感病毒致病性的分子基础和公共卫生意义[J].中国家禽,2004,26(9): 53-56.
    程小雯.流行性感冒病毒及其实验技术[M].中国三峡出版社,1997,11.
    甘孟侯.禽流感[M].中国农业出版社,2002,第二版.
    甘孟侯.全球禽流感的流行形势[J].中国预防兽医学报,2004,26(6): 468-471.
    郭元吉,谢健屏等.流感病毒A/CK/Guangzhou/333/99(H9N2)毒株基因组特性的研究[J].中华实验和临床病毒学杂志,2002,16 (2): 142-145.
    郭霄峰,廖明,辛朝安. H9N2亚型禽流感病毒纤突蛋自基因的分析[J].中国人兽共患病杂志,2002,18(4): 17-19.
    郭霄峰,廖明,辛朝安.禽流感病毒KMI/ 99(H9N2)HA和NA基因的序列分析[J]. 畜牧兽医学报,2002,33(5): 486-491.
    郭元吉,温乐英,王敏等.我国猪群中H9N2亚型毒株HA和NA基因特性的研究[J]. 中华试验和临床病毒学杂志,2004,18(1): 7-11.
    何后军,戴益民,付光华等. AIV分子生物学进展[J].江西农业大学学报,2004,26 (2): 290-293.
    黄瑜,彭春香,傅光华等.禽流感病毒分子生物学研究进展[J].福建畜牧兽医,2004,26: 16-19.
    金元昌,李景鹏,张龙等.禽流感病毒分子生物学研究进展[J].动物医学进展,2003,24(1): 12-15.
    李建丽,马仲彬,王泽霖等.禽流感病毒遗传变异及其分子机制[J].中国动物检疫,2004,21(6): 44-46.
    李建伟.欧亚大陆H9N2亚型禽流感病毒分子演化的研究[博士论文]. 2002.
    李建伟,崔尚金,于康震.中国兽医科技[J]. 2001,31(11): 23-25.
    李玉清,王宁.流感的分子流行病学研究进展[J].疾病控制杂志,2001,5(1): 60-62.
    刘金华,史为民,吴清民.鸡源H9N2亚型流行性感冒病毒神经氨酸酶基因序列分析[J].病毒学报,2004,20(7): 589-591.
    刘胜旺,孔宪刚,王玮等.鸡传染性支气管炎病毒核蛋白基因的克隆及在杆状病毒系统中的表达[J].中国预防兽医学报,2001,23(6): 401-403.
    卢建红,彭大新,吴艳涛.扬州大学学报[J]. 2003,24(1): 18-22.
    彭大新. H9N2亚型禽流感病毒血凝素基因的遗传变异[J].扬州大学学报,2002 (23): 6-9.
    乔传玲,张建林,贾永清等.禽流感病毒血凝素与核蛋白在重组禽痘病毒中的共表达[J].动物医学进展,2003,24(1): 81-88.
    石火英,刘秀梵.利用反向遗传技术研究H9N2亚型AIV传播途径的分子机制[J].微生物学报,2006,46(1): 48-53.
    唐志芬,师东方,刘常军等.流感病毒(H9V2)地方株NA基因的克隆及序列分析[J]. 中国兽医杂志,2005,(3): 16-18.
    吴宝成.禽A型流感病毒的生态学与流行病学[J].广西畜牧兽医,1997,13(3): 57-59.
    吴乃虎.基因工程原理下册[M].科学出版社: 1998,第二版154-170.
    吴清民. AIV核蛋白基因表达的研究[D].中国农业大学博士论文,2002
    谢芝勋,谢志勤,庞耀珊等.应用三重聚合酶链反应同时检测鉴别鸡3种病毒性呼吸道传染病的研究[J].中国兽医科技,2001,31(1): 33-36.
    薛霖莉.禽流感病毒(H5N1)NA基因的克隆与序列分析[博士学位论文].山西农业大学,2005.
    薛景山.禽流感及其研究动态[J].中国兽医科技,1998,28(4): 12-16.
    杨汉春.动物免疫学(第2版)[M].中国农业大学出版社,1996: 146-147.
    杨翠华,宫新城.高致病力禽流感综述[J] .兽医专辑(畜禽业),2003,3: 6-8.
    殷大奎等.口岸传染病控制[M].北京医科大学出版社: 2000.
    殷震,刘景华.动物病毒学[M].北京科学出版社.
    余滨.禽流感的流行状况与研究进展[J].湖北预防医学杂志,2004,15(3): 29-32.
    于康震,陈化兰等. 97香港禽流感[J].中国畜禽传染病,1998(3): 187-191.
    张家祝,陆永昌.禽流感与人类健康[J].检验检疫科学,2004,14(1): 57-60.
    张建林,于康震,陈化兰等.禽流感病毒分离株A/ Goose/ Guangdong/ 1/ 96(H5N1)全基因克隆及序列分析[J].中国预防兽医学报,2000,22(3): 232-235.
    张秀美.禽病防治完全手册[M].中国农业出版社,2005: 52-54.
    周旭,李益民等.流感病毒血凝素基因、神经氨酸酶基因在小鼠中的免疫效果观察[J]. 微生物学免疫学进展,2001,29(1): 15-19.
    朱建国,陆苹.禽流感病毒核蛋白研究进展[J].中国预防兽医学报,2003,25(l): 72-74.
    Albo C, Valencia A, Portela A. Identification of an RNA binding region within the N-terminal third of the influenza A virus nucleoprotein. [J]. J Virol, 1995, 69(6): 3799-3806.
    Alexander D J. A review of avian influenza in different bird species[J]. Vet. Microbiology, 2000, 74: 3-13.
    Banks, J. E. S. Speidel and D. J. Alexander. Characterization of an influenza a virus isolated from a hmnan-is an interrnediated host necessary for the emergence of pandemic influenza viruses Arch[J]. Viro1, 1998, 143: 781-787.
    Bean W J, Cox N J and Kendal. A P. Recombinations of human influenza A virus in Nature[J]. Nature, 1980, 284: 638-640.
    Biswas S K, Boutz P L, Nayak D P Influenza virus nucleoprotein interacts with influenza virus polymerase proteins[J]. J Virol, 1998, 72(7): 5493-5501.
    Capua I, Alexander D J. Avian influenza and human health[M]. Acta Trop, 2002.
    Cappucci D T. Isolation of avian influenza virus(subtype H5N2)from chicken eggs during anatural outbreak [J]. Avian Diseases, 1985, 29: 1195-1200.
    Chen B L, Zhang Z J, Chen W B, et al. Isolation and preliminary serological characterization of type A influenza viruses from chickens[J]. Chin. J. Vet. Med, (Chinese)1994, 22: 3–5.
    Chen H, Li Y, Li Z, et al. Properties and dissemination of H5N1 viruses isolated during an influenza outbreak in migratory waterfowl in western China[J]. J Virol, 2006, 80: 5976-5983.
    Chen W, Calvo P A, Malide D et al. A novel influenza A virus mitochondria) protein that induces cell death[J]. Nat Med, 2001, 7(12): 1306-1312.
    Couceiro J S,Kehn S. Molecular basis for the generatioanin pigs of influenza A viruses with pandemic potential[J]. J Virol, 1998, 72(9): 7367-7373.
    Cox N J, Subbarao K. Global epidemiology of influenza: past and present[J]. Annu Rev Med, 2000, 51: 407-421.
    David A, Steinhauer I. Role of hemagglutinin cleavage for the pathogenicity of influenza virus [J]. Virology,1999, 258(1): 1-20.
    David J D, Earn J D and Simon A L. Ecology and evolution of the flu[J]. Trends in Ecology and Evolution, 2002, 17(7): 334-340.
    De Clercq E. Antiviral agents active against influenza A viruses[J]. Nat Rev Drug Discov, 2006, 5(12): 1015-1025.
    De la Luna S, Martin J, Portela A, et al. Influenza virus naked RNA can be expressed upon transfection into cells co-expressing the three subunits of the polymerase and the nucleoprotein from simian virus 40 recombinant viruses[J]. J Gen Virol, 1993, 74(3): 535-539.
    Demo T,Jou W M,Fiers W. Recombinant newaminidase vaccine protects against lethal influenza [J]. Vaccine, 1996,14(6): 561-569.
    Donatelli I, Campitelli L, Di T L, et al. Characterization of H5N2 influenza viruses from Italian poultry[J]. J Gen Virol, 2001, 82: 623-630.
    Elster C, Larsen K, Gagno J, et al. Influenza virus M1 protein binds to RNA through its nuclear localization signal[J]. J Gen Virol, 1997, 78: 1589-1596.
    Elton D, Medcalf L, Bishop K, et al. Identification of amino acid residues of influenza virus nucleoprotein essential for RNA binding [J]. J Virol, 1999, 73: 7357-7367.
    Fouchier R A, Munster V, Wallensten A, et al. Characterization of a novel influenza A virus hemagglutininsubtype(H16)obtained from black-headed gulls[J]. J Virol, 2005, 79: 2814-2822.
    Fenner E, Bachmann P A, et a1.Veterinary Virology[M]. Academic press, Orlando, F L,1987: 473-484.
    Guo Y, Krauss S, Senne D A, et al. Characterization of the Pathogenicity of Members of the Newly Established H9N2 Influenza Virus Lineages in Asia[J]. Virology, 2000, 267(2): 279-288.
    Guan Y, Shortridge K F, Krauss S, et al. Molecular characterization of H9N2 influenza viruses. Were they the donors of the internal genes of H5N1 viruses in Hong Kong[J]. Proc Natl Acad Sci USA, 1999, 96: 9363-9367.
    Hankins R, Nagata K, Kato A, et al. Mechanism of influenza virus transcription inhibition by matrix(M1)protein[J]. Res Virol, 1990, 141: 305-314.
    Hinsbaw V S.Water-borne transnussion of influenza viruses[J]. ImterVirology,1979(11): 66-68.
    Homme P J, Easterday B C, Anderson D P. Avian influenza virus infections. II. Experimental epizootiology of influenzaΑ-turkey-Wisconsin-1966 virus in turkeys[J]. Avian Dis, 1970, 14(2): 240-7.
    Janiee M Riberdy, Kirsten J Flynn, Juergen stech, et al. Protection against a lethal avian influenza Avirus in a mmmalian system[J]. Journal of Virology, 1999, 73(2): 1453-1459.
    Kawaoka Y, Chambers T M, Sladen W L, et al. Is the gene pool of influenza viruses in shorebirds and gulls different from that in wild ducks[J]. Virology, 1988, 163(1): 247-50.
    Kawaoka Y, Nestorowicz A, Alexander D J, et a1.Molecular analyses of the liemagglutinin genes of H5 influenza virses: origin of a virulent turkey strain[J]. Virology, 1987, 158 : 218-227.
    Kilbourne E D, Smith C, Brett I, Pokorny B A.The total influenza vaccine failure of 1947 revisited: major intrasubtypic antigenic change can explain failure of vaccine in a post-world War II epidemic[J]. Proc Natl acad Sci USA, 2002(16): 10748-52
    K. M. Xu, K. S. Li,J. D. Smith et al. Evolution and Molecular Epidemiology of H9N2 Influenza A Viruses from Quail in Southern China, 2000 to 2005[J]. J Virol, 2007, 81(6): 2635–2645.
    Lee C W, Song C S,Lee Y J, et al. Sequence analysis of the hemagglutinin gene of H9N2 Korean avian influenza viruses and assessment of the pathogenic potential of isolate MS96[J]. Avian Dis, 2000, 44: 527-535.
    Lee C W, Senne D A, Suarez D L.Effect of vaccine use in the evolution of Mexican Lineage H5N2 avian influenza virus[J]. J Viro1, 2004,78(15): 8372-8381.
    Li C, Yu K, Tian G et al. Evolution of H9N2 influenza viruses from domestic poultry in Mainland China[J]. Virology, 2005, 340(1): 70-83.
    Lin Y P, Shaw M, Gregory V, et al. Avian-to-human transmission of H9N2 subtype influenza A viruses: relationship between H9N2 and H5N1 human isolates[J]. Proc Natl Acad Sci USA, 2000, 97: 9654–9658.
    Liu H Q, Liu XF, Cheng J et al. Phylogenetic analysis of the Hemagglutinin genes of twenty-six avian influenza viruses of subtype H9N2 isolated from chickens in China during 1996-2001[J]. Avian Disease, 2003, 47: 116-127.
    Liu J, Xiao H, Lei F. Highly pathogenic H5N1 influenza virus infection in migratory birds [J]. Science, 2005, 309(5738): 1206.
    Liu H Q, Liu X F, Cheng J, et al. Phylogenetic analysis of the hemagglutinin genes of 26 avian influenza viruses of subtype H9N2 isolated from chickens in China During 1996–2001[J]. Avian Dis, 2003, 47: 116–127.
    Lyndon J Mitnaul, Maria R Castrucci, K Gopal Murti, et al.The Cytoplasmic Tail of Influenza A Virus Neuraminidase(NA) Affects NA Incorporation into Virions, Virion Morphology, and Virulence in Mice but Is Not Essential for Virus Replication[J]. Journal of Virology, 1996,70(2): 873-879.
    Matrosovich M, Tuzikov A, Bovin N, et al. Early alterations of the receptor-binding properties of H1, H2 and H3 avian influenza virus hemagglutinins after their introduction into mammals[J]. J Virol, 2000,74(18): 8502-8512.
    Makarova N V, Kaverin N V, Krauss S, et a1.Transmission of eurasian avian H2 influenza virus to shorebirds in North America[J]. J Gen Virol, 1999, 80: 3167-3171.
    Marie A, Rameix W, Andru T, et al. Avian influenza A virus polymerise association with nucleoprotein, but not polymerise assembly, is impaired in human cells during the course of infection [J]. J Virol, 2009: 1320-1331.
    Naeem K, Ullah A, Manvell R J, et al. Avian influenza A subtype H9N2 in poultry in Pakistan[J]. Vet Rec, 1999, 145: 560.
    Newcomb L L, Kuo R L, Ye Q, et al. Interaction of the influenza a virus nucleocapsid protein with the viral RNA polymerase potentiates unprimed viral RNA replication [J]. J Virol, 2009, 83(1): 29-36.
    Noton S L, Medcalf E, Fisher D et al. Identification of the domains of the influenza A virus M1 matrix protein required for NP binding, oligomerization and incorporation into virions[J]. J Gen Virol, 2007, 88(8): 2280-2290.
    Peiris M, Yuen K Y, Leung C W, et al. Human infection with influenza H9N2[J]. Lancet, 1999, 354(9182): 916-7.
    Perez D R, Donis R O. Functional analysis of PA binding by influenza a virus PB 1: effects on polymerise activity and viral infectivity [J]. J Virol, 2001,75(17): 8127-8136.
    Perk S, Banet-Noach C, Shihmanter E et al. Genetic characterization of the H9N2 influenza viruses circulated in the poultry population in Israel. Comp Immunol Microbiol Infect Dis, 2006, 29(4): 20-23.
    Perroncito, E. Epizoozia tifoide nei gallinacei[J]. Ann. Acad. Agricoltura Torino, 1878, 21: 87-126.
    Philpoot M, Easterday B C,Hinshaw V S.Neutralizing epitopes of the H5 Heamagglutinin from avirulent avian Influenza virus and their relationship to pathogenicity[J]. J Viro1, 1989, 63: 3453-3458.
    Poon L L, Pritlove D C, Sharps J, et al. The RNA polymerise of influenza virus, bound to the 5' end of virion RNA, acts in cis to polyadenylate mRNA[J]. J Virol, 1998, 72(10): 8214-8219.
    Pritlove D C, Fodor E, Seong B L, et al. In vitro transcription and polymerase binding studies of the termini of influenza A virus cRNA: evidence for a cRNA panhandle[J]. J Gen Virol, 1995,76(9): 2205-2213.
    Pritlove, D C, Poon, L L, Devenish L J, et al. A hairpin loop at the 5' end of influenza A virus virion RNA is required for synthesis of poly(A)+ mRNA in vitro [J]. J Virol, 1999, 73(3): 2109-2114.
    Roland Z, Andi K, Annett E, et al. Prevalence of PB1-F2 of influenza A viruses. [J]. J Gen Virol, 2007, 88: 536-546.
    Schafer W. Sero-immunologic studies on incomplete forms of the virus of classical fowl plague[J]. Arch. Exp. Vet. Med, 1955, 9: 218-230.
    Semie D A,Panigraphy B.Webster R G et al. Survey of the HA cleavage site as a marker of pathogeniciy potential[J]. Avian Disease, 1996, 40 (1): 425-437.
    Suarez D L, Schultz-Cherry S. Immunology of avian influenza virus: a review [M]. Dev Comp Immunol, 2000.
    Sakaguchi T, Tu Q, Pinto L H et al. The active aligomeric state of the minimalistic influenza virus M2 ion channel is a tetramer[J]. Proc Nail Acad Sci USA, 1997, 94: 5000 -5004.
    Sakaguchi T, Lesser G P, Lamb R A. The ion channel activity of the influenza virus M2 protein affects transport through the Golgi apparatus [J]. J Cell Boil, 1996, 133: 733 -747.
    Se J N, Colman P M. Three dimensional structure of the neuraminidase of influrnza virus A/Tokyo/3/67A resolution [J]. J molec, Boil, 1991, 221: 473-486.
    Sha B, Luo M. Structure of a bi-functional membrane-RNA binding protein: influenza virus matrix protein M1 [J]. Nat Struct Boil, 1997, 4: 239-244.
    Sharp G. B, Kawaoka Y, Wright S M, et al. Wild ducks are the reservoir for only a limited number of influenza A subtypes[J]. Epidemiol Infect, 1993, 110(1): 161-76.
    Shope R E. Swine influenza III Filtration experiments and etiology[J]. J. Exp. Med. 1931, 54: 373-385.
    Shortridge K F, Zhou N N, Guan Y, et al. Characterization of avian H5N1 influenza viruses from poultry in Hong Kong [J]. Virology, 1998, 252: 331-342.
    Smith, W C, Andrewes H and Laidlaw P P A virus obtained from influenza patients [J] . Lancet, 1993, 1: 66-68.
    Spackman E. A brief introduction to the avian influenza virus[J]. Methods Mol Biol, 2008, 436: 1-6.
    TaisWe H, Yoshihiro K P Threat posed by Avian influenza A viruses[J]. Clinical Microbiology Reviews, 2001, 14(1): 129-149.
    Taisuke H, Yoshihiro K. Pandemic threat posed by avian influenza A viruses [J]. Clinical Microbiology Reciews, 2001, 14(1): 129-149.
    Vahlenkamp T W, Harder T C. Influenza virus infections in mammals[J]. Berl Munch Tierarztl Wochenschr, 2006, 119(3-4): 123-131.
    Vey M, Orlich M, Adler S, et al et al. Hemagglutinin activation of pathogenic avian influenza viruses of serotype H7 requires the protease recognition motif R-X-K/R-R[J]. Virology,1992, 188(1): 408-413.
    Vreede F T, Brownlee G G. Influenza virion-derived viral ribonucleoproteins synthesize both mRNA and cRNA in vitro[J]. J Virol, 2007, 81(5): 2196-2204.
    Webster R G, Bean W J, Gorman O T, et al. Evolution and ecology of influenza A viruses [J]. Microbiol Rev, 1992, 56: 152-179.
    Webster R G, Hinshaw V S, Bean, W J, et al. Characterization of an influenza A virus from seal[J]. Virology 1981, 113(2): 712-724.
    Wood J M, Kawaoka, Newberry L A, et a1. Standardization of activated H5N2 Influenza vaccine and efficacy against lethal[J]. Avian Dis, 1985, 29: 867-872.
    Xi yan Xu,Kanta Subbarao, Nancy J, et al. Genetic characterization of pathogenic influenza A/Guangdong/ 1 /96(H5N1)virus: similarity of its HA gene to those of H5N1 viruses from the 1997 outbreak in Hong Kong. Virology, 1999, 261: 15-19.
    Xu C T, Fan W X, Wei R, et al. Isolation and identification of swine influenza recombinant A/Swine/Shandong/1/2003(H9N2)virus. Microbes Infect, 2004, 6(10): 919-25.
    Xu X, Subbarao K, Cox N, et al. Genetic characterization of the pathogenic influenza. A/Goose/Guangdon/1/ 96 (H5N1)virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong[J]. Virology, 1999, 261: 15-19.
    Yoshikawa T, Suzuki Y, Nomoto A, et al. Antibo responses and protection against influenza virus infection in different congenic strains of mice immunized intranasally with adjuvant-combined A/Beijing/262/95(H1N1)virus hemagglutinin or netttaminidase[J]. Vaccine, 2002, 21(1-2): 60-66.
    Zambon M C. Epidemiology and pathogenesis of influenza[J]. J Antimicrobial Chemotherapy, 1999, 44 Suppl B: 3-9.
    Zhu Q, Zarnitsyn VCS Ye L et al. Immunization by vaccine-coated microneedle arrays protects against lethal influenza virus challenge [J]. Proc Natl Acad Sci U S A, 2009, 106(19): 7968-7973.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700