纤维素降解菌的分离、鉴定及产内切纤维素酶基因工程乳酸菌的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维素酶作为饲料添加剂,可提高饲料利用率和粗饲料的营养价值,降低饲料成本,在促进动物生长、减少粪便排放、改善生态环境和动物疾病防治等方面效果明显,同时通过纤维素高效降解菌发酵处理秸秆,可以合成含有丰富蛋白质的菌体细胞,这些分解产物和菌体亦可用于单细胞蛋白饲料。乳酸菌是人和动物肠道内的常见细菌,被公认为安全级(Generally Recognized As Safe, GRAS)微生物。它作为一种益生菌,具有维持肠道菌群微生态平衡、可激活机体粘膜免疫反应、抑制肠道内病原微生物的生长、增强动物机体免疫力等多种生物学功能。另一方面,基因工程乳酸菌可以集益生和外源基因表达的双重功能于一身,在功能食品、医疗保健、人工口服疫苗等领域的应用均具有诱人的前景。
     本实验从奶牛、山羊瘤胃内容物以及腐烂饲草中通过羧甲基纤维素钠(CMC-Na)平板选择培养刚果红染色法初步筛选到能够产生明显透明圈的细菌菌株18株、真菌菌株33株,通过测定纤维素酶活性进行复筛,分离到高效纤维素降解真菌和细菌各一株作为后续实验研究对象,通过克隆真菌NL-3的18S rDNA序列,并以其同源性为基础构建相关种属的系统发育树。结果表明, 18S rDNA序列全长504bp, Blast显示该菌株与青霉菌属同源; NL-3菌株在进化关系上也与青霉菌属(Penicillium)聚成一族。特别是与Penicillium decumbens strain JU-A10的同源性最高,其序列相似性达99%。结合菌株形态学与18S rDNA基因序列分析对分离菌株进行鉴定,初步鉴定为青霉属的斜卧青霉(Penicillium decumbens)。
     同时克隆了细菌N9的16S rDNA序列。测序分析表明,其16S rDAN序列全长1514bp。BLAST显示该菌株与枯草芽孢杆菌(Bacillus subtilis)同源。以同源性为基础构建了相关种属的系统发育树,该菌株在进化关系上与枯草芽孢杆菌聚成一族;结合生理生化特征及16S rDNA分子鉴定,将其鉴定为枯草芽孢杆菌。
     根据GenBank上已发表的枯草芽孢杆菌内切纤维素酶(eg)基因序列,针对pMG36e质粒的多克隆位点设计引物,以枯草芽孢杆菌N9的基因组DNA为模板,扩增eg基因序列。该基因序列全长1518bp,通过序列比对分析,eg与已报道的其它来源的内切纤维素酶的序列相似性最高在92%。并将其亚克隆至乳酸乳球菌表达质粒pMG36e中,构建重组乳酸乳球菌表达质粒pMG36e-eg。通过电转化方法将重组质粒转化至乳酸乳球菌MG1614感受态细胞,成功构建了产内切纤维素酶的基因工程乳酸菌。将此重组转化子点接至含CMC的M17平板上能够产生透明圈,收集表达产物后通过进行SDS-PAGE电泳、Western blot检测到内切纤维素酶分子量约54KD,与预期结果相吻合。
     本研究筛选到多株高效纤维素降解菌,并克隆了内切纤维素酶基因(eg),构建乳酸菌表达载体pMG36e-eg,构建了重组内切纤维素酶基因工程乳酸菌。以期利用乳酸菌表达系统得到高活性纤维素酶以及开发出产内切纤维素酶的多功能微生态制剂。
Cellulose as a feed additive can improve feed utilization rate and nutritional value of fodder and reduce feed costs. It is obvious in the promotion of animal growth, reduction of dejecta, the ecological environment improve and animal disease control. Meanwhile, through the fermentation of cellulose-degrading strains bacterial cells rich in protein are synthesized which can be used for single cell protein feed.
     Lactococcus lactis is the beneficial bacteria in annimal and human being’s gut, it is generally acknowledged as a security microorganism, on the one hand, it could maintain the ecological balance in the gut, stimulate the mucous membrane immune response of the organism, on the other hand, the recombinant gene Lactobacillus could be useful an resource for the development of functional foods, medical care and oral vaccine.
     Congo-red staining method was used to isolated 33 fugues and 18 bacteria strains of cellulose-decomposing from the rumen of the cows and sheep and rotten fodder. According to the detection of cellulase activity,one fungi and one bacteria strain with high efficient cellulose decomposing were isolated. The results showed that the complete 18S rDNA gene sequence was 504 bp. A phylogenetic tree was constructed by comparing the 18S rDNA sequence with other relative fungus species in the GenBank database. In the phylogenetic tree the strain NL-3, Penicillium decumbens strain JU-A10 constitute a branch with the similarity value 99%. According to morphologica characteristics and phylogenetic analysis, the strain NL-3 was identified as Penicillium decumbens. A phylogenetic tree was constructed by comparing the 16S rDAN sequence of the strain with other relative bacteria species in the GenBank database. According to Physiological and biochemical characteristics and phylogenetic analysis, the strain N9 was identified as Bacillus subtilis.
     According to the sequence of eg published on GenBank, eg gene was PCR amplified from N9 genome DNA by primer designed for Multiple cloning site of pMG36e. The complete gene sequence was 1518bp. By sequence analysis, the similarity value betwwen eg and other endo-cellulase was 92%. Recombinant Lactococcus lactis plasmid vectors pMG36e was constructed by subcloning eg gene. Recombinant genetic engineering Lactococcus lactis producing endoglucanases was constructed by transforming recombinant plasmid into competent cell of Lactococcus lactis MG1614. The recombinant transformants vaccinated to the M17 plates containing CMC could produce degradation halo. The sizes of expressed recombinant proteins was 54 KD by SD-PAGE analysis and Western blot analysis.
     Screening of high effective cellulose degradation strains, cloning of eg gene, constructing of Lactobacillus expression vector pMG36e-eg and recombinant genetic engineering Lactococcus lactis producing endoglucanases were completed in the study. It is expected that highly active cellulase are produced to use Lactobacillus expression system , and multi-functional microecological products producing endo cellulose are developed.
引文
蔡勇,阿依木古丽,臧荣鑫,等.芽孢杆菌CY1-3株碱性纤维素酶基因celC的克隆及其在大肠杆菌中的表达[J].中国兽医科学,2006,36(12):961-966
    陈金龙,王希辉,赵宏坤,等.禽肠炎沙门菌外膜蛋白OMPX基因的克隆及其在乳酸乳球菌中的表达[J].中国兽医学报,2011,4(4):489-492
    陈侠甫,阎维公.应用木10纤维素酶治疗马牛胃肠病[J].中国兽医杂志,1988,(2): 32-33
    陈晓春,陈代文.纤维素酶对肉鸡生产性能和营养物质消化利用率的影响[J].饲料研究,2005,11:7-9
    陈秀为.一组复合菌发酵秸秆的理化效应及饲喂效果[J].农业环境科学学报,2004,23(2):45-347
    程波财,魏华.乳酸菌与肠粘膜免疫[J].中国微生态学杂志,2001,13(5): 302-304.
    东秀珠,蔡妙英.常见细菌系统鉴定手册[M].科学出版社.2001
    洪玉梅,李建中.利用纤维素酶生产燃料酒精的研究进展[J].农村能源业,2007(23):462-464
    呼和,卢德勋,唐志强,等.适合反刍动物日粮类型多酶组合配方的研究[J].畜牧与饲料科学,2005,1: 5~8
    胡利勇.纤维素酶基因克隆及其功能性氨基酸研究进展[J].生物技术,2003,13(2):43-45
    胡婷婷,邱雁临.纤维素酶的研究现状与进展[J].化学与生物工程,2008(6):45-60.
    贾士芳,王荫榆,郭兴华等.乳杆菌电转化条件的研究,生物工程学报,1998,14(4):419-431
    程新.产尿毒素分解酶基因工程菌的构建[D].中南大学.2007:1-4
    瞿明仁,晏向华,黎观红.饲用真菌纤维素酶研究与应用[J].饲料工业.1999,20(12):30-32
    李兵,庄国强,林建强,等.纤维素酶基因在毕赤酵母中的拷贝数对其表达的影响[J].生物加工过程,2006,(11):12-16
    李素芬,霍贵成.纤维素酶的分子结构组成及其功能[J].中国饲料,1997,(13):12-14.
    林雪彦,牛钟相.动物消化道乳酸菌粘附机制及影响因素研究进展[J].家畜生态学报,2006,5 (3) : 109-112
    林雪彦,王中华,李福昌,等.乳酸杆菌黏附鸡消化道上皮细胞超微结构的观察[J].中国兽医学报.2008,28 (12):1367-1368
    刘北东,杨谦.绿色木霉AS3.3711的葡聚糖内切酶Ⅲ基因的克隆与表达[J].环境科学,2004,(9):127-132
    刘北东,杨谦.绿色木霉AS3.3711的葡聚糖内切酶Ⅴ基因的克隆与表达[J].高技术通讯,2004,(8):28-32
    刘北东.绿色木霉AS3.3711的葡聚糖内切酶Ⅰ基因的克隆与表达[J].北京林业大学学报,2004,(6):72-75
    刘朝亮,陈璞,林少宝,等.纤维素、半纤维素酶对奶牛泌乳性能的影响[J].中国乳品工业,2008,36(10):36-38
    刘洁,李宪臻,高培基.纤维素酶测定方法评述.工业微生物,1994,24(4):27-32
    刘素玲,冉玉平,曾蔚.一种适用于PCR反应的酵母菌、无绿藻及丝状真菌DNA提取方法[J].中国真菌学杂志,2006,1(6):340-342
    刘小平.添加纤维复合酶饲养肉仔鸡效果初探[J].四川畜牧兽医,1997(4):14
    刘延林,李华.酒酒球菌的快速特异性PCR鉴定[J].微生物学杂志,2006,26(6) :26-29
    刘燕,张宏福,孙哲.纤维素酶的分子生物学与基因工程的研究进展[J].饲料工业,2007,18:11-14
    齐云,袁月祥,陈飞,等.一组纤维素分解菌的分离、筛选及其产酶条件的研究[J].天然产物研究与开发,2003(15): 510-512
    秦江帆.纤维素酶对肉用仔鸡生产性能的影响[J].饲料博览,1996(2):12-14
    荣华,邱成书,胡国全,等.一株大熊猫肠道厌氧纤维素菌的分离鉴定、系统发育分析及生物学特性的研究[J].应用与环境生物学报,2006,12(2):239-242
    萨姆布鲁克J,拉塞尔D.W著(黄培堂,等译).分子克隆实验指南(第三版) [M].北京:科学技术出版社,2002
    沈萍.微生物学实验(第三版) [M]北京:高等教育出版社,1999
    石磊,赵由才,柴晓利.我国农作物秸秆的综合利用技术进展[J].中国沼气,2005,23(2):11-14
    史达,宋岩,李一经,乳酸乳球菌作为黏膜免疫活载体疫苗传递抗原的研究进展,微生物学报2006,(04) 22-24
    司振书,江成.瘤胃微生物对纤维素的降解及其作用.微生物学杂志,2003,23(6):61~64
    汪川,刘衡川,裴晓方,等.非融合表达β-半乳糖苷酶的重组乳酸乳球菌的构建和性能研究[J].2009,40( 1) : 29-32
    王贵权,吕兴有,高振全.纤维素酶治疗牛消化道疾病150例.[J].黑龙江畜牧兽医,1991,7:11-13
    王建华,李桂杰.安全饲料添加剂—动物微生态制剂研发现状与展望[C].中国首届农业生物技术发展论坛文集.北京:中国农业出版社,2003,188-195
    王建荣,张曼夫,黄涛.绿色木霉纤维素霉CBHⅡ基因的结构研究[J].遗传学报,1995,22(1):74-80
    王玲等.复合酶制剂对肉雏鸡消化性能的影响[J].饲料工业,2000(9):32-33
    王照忠,晁生玉;尚有安.日粮中添加纤维素复合酶对奶牛乳脂率影响的试验报告[J].养殖与饲料.2007,10:69-71
    魏景超.真菌鉴定手册[M].上海:上海科学技术出版社,1979
    向华,卫文仲,谭华荣,等.人铜锌超氧化物歧化酶基因的克隆和在乳酸乳球菌中的表达[J].生物工程学报,2000(1): 6-9
    肖壮志.瑞氏木霉内切葡聚糖酶Ⅲ基因的克隆及在酿酒酵母中的表达[J].微生物学报,2001,41(4):391-396
    徐奇友.纤维素酶在蛋鸡日粮中的应用研究[J].饲料工业,1998(1):12-13
    杨玉华,等.复合酶在北京肉鸭日粮中的应用效果[J].饲料工业,2000(1):20-21
    尹清强等.复合酶制剂对猪增重的影响[J].饲料研究.1992,3:5
    尹清强等.纤维素酶对兔增重肠绒毛结构胃内容物及睾丸内无机元素含量的影响[J].黑龙江畜牧兽医.1992,1:14-17
    袁丽婷.玉米秸秆预处理技术研究进展[J].中国酿造,2008(197):1-6
    张崇玉,姚宝强,杨在宾.复合酶对猪日粮中蛋白质和能量消化率的影响[J].山东畜牧兽医,2010,(1):7-8
    张传富,顾文杰,彭科峰,等.微生物纤维素酶的研究现状[J].生物信息学,2007,(1):34-36
    张晶晶.乳酸菌食品级nisin控制的基因表达系统NICE[J].中国生物工程杂志,2006,26(3):68-72
    张俐娜.天然高分子改性材料及应用[M].北京:化学工业出版社,2006
    张志华,洪葵.核酸序列直接分析在真菌鉴定方面的应用[J].华南热带农业大学学报,2006,12(2):39-42
    赵新刚.洗涤用碱性纤维素酶及其产生菌的分离方法[J].微生物学通报,1999,26(1):63-65
    郑凤英,张英珊.我国秸秆资源的利用现状及其综合利用前景.西部资源,2007,16(1):25-26
    朱玉环,陈祖洁.纤维素酶在反刍动物饲料中的应用研究[J].沈阳农业大学学报.1996,27:64-69
    Bates E, et al.Expression of a Clostridiumthermocellum end oglucanase gene in Lacto bacillusplantarum[J].Applied and EnvironmentalMicrobi logy, 1989, 55(2): 2095-2097
    Bayer E A, Lamed R.The cellulose paradox:pollutant par excellence and/or a reclaimable natural resource[J].Biodegradation, 1992, 3:171-188
    Birch P R J, Sims P F G, Broda P.Substrate-dependent differential splicing of introns in the regions encoding the cellulose binding domains of two exocello biohydrolase I like genes in Phanerochaete chrysosporium.Appl Environ Microbiology, 1995, 61:3741-3744.
    Bongers R.S, Veening J.W, Van Wieringen M, et al. Development and charact-erization of a subtilin-reguLated expression system in Bacillus subtilis: strict control of gene expression by addition of subtilin, Appl Environ Microbiol, 2005 (71) 8818-8824
    Boraston AB, Bolam D N, Gilbert H J, Davies G J.Carbohydrate-Binding Modules:Fine Tuning Polysaccharide Recognition.Biochem J, 2004, 1-46
    Bringel F, et a1.Characterization, cloning, curing, and distribution in lactic acid bacteria of pLP1, a plasmid from Lacto bacillusplantarum CCM1904 and its use in shuttle vector construction[J].Plasmid, 1989, 22:193-202
    Bringel F, et a1.Optimized transformation by electroporation of Lacto bacillus plantarum strains by plasmid vectors[J].Applied and EnvironmentalMicrobiology, 1990, (33):664-670
    Christakopoulos P, Goodenough P W, Kekos D.Purification and characterization of an extracellularβ-glucosidase with transglycosylation and exo-glucosidase activites from Fusarium oxysporum.Eur Biochem, 1994, 224: 378-385
    Claeyssens M, Tlebeurgh H V, Tomme P, Wood T M, Mcrae S I.Fungal cellulase systems: Comparison of the specificities of the cellobiohydrolases isolated from Penicillium pinophilum and Trichoderma reesei.Biochem J, 1989, 261:819-825
    Davies G, Henrissat B.Structures and mechanisms of glycosyl hydrolases.Structure, 1995, 3:853-859
    Delves Broughton J, Blackburn P, Evans R.J, et al.Applications of the bacteriocin, nisin, Antonie Van Leeuwenhoek, 1996 (69) 193-202
    Devos W.M, Gene expression systems for lactic acid bacteria, Curr Opin Microbiol, 1999 (2) :289 - 295
    Divne C, Stahlberg J, Reinikainen T, et al.The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei.Sci, 1994, 265:524-528
    Duwa P, Sourice S, B.Cesselin, G.Lamberet, K.Vido, P.Gaudu, Y.Le Loir, F. Violet Loubiere P, Gruss A, Respiration capacity of the fermenting bacterium Lactococcus lactis and its positive effects on growth and survival, J Bacteriol, 2001(183) 4509-4516
    Eun J.S, Beauchemin K.A.Assessmentof the efficacy ofvarying experimental exogenous fibrolytic enzymes using in vitro fermentation characteristics.Anim. Feed Sci Techno.l 2007, 132:322-326
    Fan L T, Lee Y H, Beardmore D H.Major chemical and physical features of cellulose materials as substrates for enzymatic hydrolysis.Adv Biochem Eng/ Biotech, 1980(b), 14:101-117
    Fan L T, Lee Y H, Beardmore D H.Mechanism of the enzymatic hydrolysis of cellulose:effects of major structural features of cellulose on enzymatic hydrolysis. Biotechnol Bioeng, 1980(a), 22(1): 177-199
    Fuglsang A, Lactic acid bacteria as prime candidates for codon optimization, Biochem BiopHys Res Commun, 2003(312) :285-291
    Gao PJ, Chen GJ, Wang TH, et al.Non-hydrolytic Disruption of Crystalline Structure of Cellulose by Cellulose Binding Domain and Linker Sequence of Cellobiohydrolase I from Penicillium janthinellum.Acta Biochim Biophys Sin, 2001, 33(1):13-18
    Gasson M.J, Progress and potential in the biotechnology of lactic acid bacteria, FEMS Microbiology Reviews, 1993 (12) 3-19
    George S P, Ahmad A, Rao M B.Studies on carboxymethyl cellulose produced by an alkalothermophilic Actinomycete[J].Bioresour Technol,2001(77):71-175
    Ghose T K.Measurement of cellulose activities.PureAppl Chem., 1987, 59: 257-268
    Gilliland S.E.Health and nutritional benefits from lactic acid bacteria, FEMS Microbiol Rev 1990(7) 175-188
    Godbole S, Decker S R, Nieves R A.Cloning and expression of Trichoderma reesei cellobiohydrolase I in Picha pastorss[J].Biotechnology Progress.1999, 15:828-833
    Gorbach S.L.Lactic acid bacteria and human health, Ann Med, 1990 (22): 37-41 Hai-Rong Cheng, Ning Jiang.Extremely rapid extraction of DNA from bacteria and yeasts[J].Biotechnology Letters, 2006, 28: 55–59
    Hall J, Black G W, Ferreira L MA, et al.The non-catalytic cellulose-binding domain of a novel cellulase from Pseudomonas fluorescens subsp.cellulosa is important for the efficient hydrolysis of Avicel.Biochem J, 1995, 309:749-756
    Hansen J.N.Nisin as a model food preservative, Crit Rev Food Sci Nutr, 1994 (34) 69-93 Henrich B, et a1.Food-Grade delivery systemfor controlled gene expression in Lactococcus lactis[J].Applied and EnvironmentalMicrobiology, 2002, 68(11):5429-5436
    Henrissat B.Cellulases and their interaction with cellulose.Cellulose, 1994, 1(3):169-196 Hildén L, Johansson G.Recent developments on cellulases and carbohydrate- binding modules with cellulose affinity.Biotechnol Letters, 2004, 26:1683-1693
    Hsu S.T, Breukink E, Tischenko M.A, et al. The nisin-lipid II complex reveals a pyropHospHate cage that provides a blueprint for novel antibiotics, Nat Struct Mol Biol, 2004 (11): 963-967
    Irwin D C, Spezio M, Walker L P, Wilson D B.Activity studies of eight purified cellulases: specificity, synergism, and binding domain effects.Biotechnol Bioeng, 1993, 42:1002-1013
    Itavaara M, Siikaho M, and Viikari L.Enzyme degradation of cellulose-based materials.Journal of Environmental Polymer Degradation, 1999, 7(2):67-73
    Iyer P V, Wu Z-W, Kim S B, Lee Y Y.Ammonia Recycled percolation Process for Pretreatment of Herbaceous Biomass.Appl Biotechnol, 1996, 57-58: 121-132
    Juergen Loeffler.Identification of rare Candida speci es and ot her yeast s by pol ymerase chain reaction and slot blot hybridization.Diagnostic Microbiol ogy and Infectious Disease.2000, 38:207-212
    Kenyon W J, Esch S W, Buller C S.The curdlan-type exopolysaccharide produced by Cellulomonas flavigena KU forms part of an extracellular glycocalyx involved in cellulose degradation.Antonie van Leeuwenhoek, 2005, 87:143-148
    Kotake T, Kaneko S, Kubomoto A, et al.Molecular cloning and expression in Escherichia coli of a Trichoderma viride endo-beta-galactanase gene[J].Biochem, 2004, 377(3):749-755
    Laureano Perez L.Spectroscopic and chemical characterization of biomass. Michigan State University, 2005, 21-35
    Lee M.H, Roussel Y, Wilks M, S, et al.Expression of Helicobacter pylori urease subunit B gene in Lactococcus lactis MG1363 and its use as a vaccine delivery system against H.pylori infection in mice, Vaccine, 2001 (19): 3927- 3935
    Leer R J, et a1.Gene disruption inLactobacillus plantarumstrain 80 by site specific recombination: isolation of a mutant strain deficient in conjugated bile acid hydrolase activity[J].Mol.Gen.Genet, 1993, (239):269-272
    Lynd L R, Weimer P J, et al.Microbial cellulose utilization:fundamentals and biotechnology.Microbiol.Mol Biol Rev, 2002, 66(3):506-577
    Lynd LR, Wyman CE, Gerngross TU.Biocommodity engineering[J].Biotechnol Prog, 1999, 15(5): 777-793
    Masohiro N, Masahiro G, Hirofumi O, et al.L-Sorbose induces cellulase gene transcription in the cellulolytic fungus Trichoderm a reesei[J].Curr Genet, 2001, 38:329-334
    Medve J, Karlsson J, Lee D, Tjerneld F.Hydrolysis of microcrystalline celluloseby cellobiohydrolase I and endoglucanase II from Trichoderma reesei:adsorption,sugar production pattern, and synergism of the enzymes.Biotechnol Bioeng, 1998, 59:621-634
    Medve J,Stohlberg J, Tjerneld F.Adsorption and synergism of cellobiohydrolase I and cellobiohydrolase II of Trichoderma reesei during hydrolysis of micro- crystalline cellulose.Biotechnol Bioeng, 1994, 44:1064-1073
    Mierau I, Kleerebezem M.10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis, Appl Microbiol Biotechnol, 2005 (68): 705-717
    Nidetzky B, Steiner W.Anew approach for modeling cellulasecellulose adsorption and the kinetics of the enzymatic hydrolysis of microcrystalline cellulose.Biotechnol Bioeng, 1993, 42:469-479
    Nidetzky B, Zachariae W, Gercken G, Hayn M, Steiner W.Hydrolysis of cellooligosaccharides by Trichoderma reesei Cellobiohydrolases:experimental data and kinetic modeling, Enz Microb Technol, 1994,16:43-52
    Nieves R A, Chou Y C, Himmel M E, Thomas S R.Quantification of Acidothermus cellulolyticus E1 endoglucanase and Thermomonosporafusca E3 exoglucanase usingenzyme-linked immunosorbent assay(ELISA).Appl Biochem Biotechnol, 1995, 51:211-223
    Nsereko V L, Beauchemin K A, MorgaviD P.et a.l Effect of a fibrolytic enzyme preparation from Trichoderma longibrachiatum on the rumen microbial population of dairy cows.Can J Microbia, January, 2002, 48(1): 14~20.
    Orpin C G.Studies on the rumen flagellateNeocallimastix frontalis[J].J Gen Microbiol, 1975, 91: 249-262
    Posno M, et a1.Incompatibility of Lacto bacillusvectorswith replicons derived fromsmall crypticLactobacillusplasmids and segregational instability ofthe introduced vectors[J].Applied and Environmental Microbiology, 1991, 57:1822-1828
    Reese E T, Sui R G H, Levinson H S.The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis.Bacteriol J, 1950, 59:485-497
    Reilly K, Carruthers VR, Attwood GT.Design and Use of 16S Ribosomal DNA Directed Primers in Competitive PCRs to Enumerate Proteolytic Bacteria in the Rumen[J].Microb Ecol, 2002, 43:259-270
    Rixon J E, et a1.Integration of an unstable plasmid into the chromosome of Lacto bacillus plantarum[J].FEMS Microbiol Lett, 1990, (71):105-110
    Ronald M, Peter J.Use of congo red polysaccaride interaction inenumeration and characterization of cellulilytic bacteria from the bovin rumen[J].ApplicationEnvironmental Microbiology, 1982, 38:148-158
    Sanders M E, Nicholson M A.A method for genetic transformation of nonprotoplasted Streptococcus lactis[J].Appl Environ Microbiol, 1987, 53(8):1730-1736
    Schwarz W H.The cellulosome and cellulose degradation by anaerobic bacteria.Appl Microbiol Biotechnol, 2001, 56:634-649
    Simon D, Rouault A.Construction of a vector plasmid family and its use for molecular cloning in Streptococcus lactis[J].Biochimie, 1988, 70(4):559-566
    Sintsyn A P, Gusakov A V, Vlasenko E Y.Effect of structural and physicochemical features of cellulosic substrates on the efficiency of enzymatic hydrolysis.Appl Biotechnol, 1991, 30:43-59
    Sjostrom E著(王佩卿,丁振森译).木材化学[M].中国林业出版社, 1985
    Srisodsuk M, Lehtio J, Linder M, et al.Trichoderma reesei cellobiohydrolase I with an endoglucanase cellulose-binding domain:action on bacterial micro crystalline cellulose.Biochem J, 1997, 57:49-57
    Stiles M.E, Holzapfel W.H.Lactic acid bacteria of foods and their current taxonomy, Food Microbiol, 1997 (36):1-29
    Teeri T T, Koivula A, Linder M, et al.Trichoderma reesei cellobiohydrolases: why so efficient on crystalline cellulose Biochem Soc Trans, 1998, 26:173-178
    Teeri T T.Crystalline cellulose degradation:new insight into the function of cellobiohydrolases.Trends Biotechnol, 1997, 15:160-167
    Trees Scheirlinck, et a1.Integration and Expression ofα-Amylase and Endoglucanase Genes in the Lacto bacillus plantarum Chromosome[J].Applied and Environmental Microbiology.1989, 9:2130-2137
    Vander GM, Vander VJM, Kok J, et al.Construction of lactocoual expression vector expression of hen egg white lysozyme in Lactococcus lactis subsp.Lactis Appl Environ Microbiol, 1989, 55 (1): 224-228
    Vladut-Talor M, Kauri T, Kushner D J.Effects of cellulose on growth, enzyme production and ultrastructure of a Cellulomonas species.Arch.Microbiol, 1986, 144(3):191-195
    Watanabe M, Sumida N, Yanai K, et a1.Anovel saponin hydrolase from Neocosmospora vasinfecta var.vasinfecta[J].Appl EnvironMicrobiol, 2004, 70(2): 65-72
    Wilson, Catriona A.Studies on the cellulase of therumen anaerobic fungus Neocallimastrix frontalis, with special reference to the capacity of the enzyme to degrade [J].Enzyme and Microbial Technology, 1994, 14(2):258-264
    Wood T M, McCrae S I, Macfarlane C C.The Isolation, Purification and Properties of the Cellobiohydrolase Component of Penicillium funiculosum Cellulase.Biochem J, 1980, 189: 51-65
    Wood T M, Wilson C A, McCrae S I.Synergism between components of the cellulase system of the anaerobic rumen fungus Neocallimastix frontalis and those of the aerobic fungi Penicillium pinophilum and Trichoderma koningii in degrading crystalline cellulose.Appl Microbiol Biotechnol,1994, 41(2):257-261
    Wood T M.Cellulolytic enzyme system of Trichoderma koningii.Separation of components attacking native cotton, Biochem J, 1968, 109: 217-227

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700