温室白粉虱危害对无毛黄瓜次生代谢的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温室白粉虱是危害黄瓜(Cucumis sativus L)的世界性害虫,随着现代设施农业的迅速发展,创造了更有利于温室白粉虱繁殖的条件,其危害在我国北方普遍存在,局部地区尤为严重。目前关于黄瓜抗白粉虱及其机理的研究尚属空白,无毛黄瓜为普通普通有毛黄瓜的突变体,田间栽培发现其有抗白粉虱特性。本文以少有的抗性材料无毛黄瓜为试材研究了温室白粉虱为害对无毛黄瓜和普通有毛黄瓜次生代谢产物及其相关代谢酶的影响,为探讨温室白粉虱取食后诱导的黄瓜抗虫性防御反应和抗虫机制研究提供依据。主要研究结果如下:
     1无毛黄瓜可抑制温室白粉虱的生育繁殖,较普通有毛黄瓜具有抗白粉虱的特性,对白粉虱抗性明显,为稀有的抗虫新材料。
     2.遭受温室白粉虱危害后,抗性材料无毛黄瓜无论幼苗期还是成株期均迅速提高次生代谢途径中的次生代谢关键酶活性,使次生代谢物质的合成、运输等相互协作以积极防御白粉虱的侵害。无毛黄瓜POD活性及增长量显著高于普通有毛黄瓜,PAL和PPO活性具有不同程度的升高,增长量均高于普通有毛黄瓜,且三种酶活性达到峰值的时间均提前于普通有毛黄瓜。由此可见PAL、PPO和POD活性变化与无毛黄瓜的抗白粉虱能力紧密相关,均可作为黄瓜抗温室白粉虱的生理指标。
     3.无毛黄瓜幼苗及成株遭受温室白粉虱侵害后,叶片内木质素、单宁、总酚和类黄酮含量均不同程度的增加。两类型黄瓜幼苗遭受温室白粉虱侵害后四种物质含量变化均为先升高后降低,成株则为双峰曲线,接种一天后四种物质含量均有所降低,但又迅速的升高,增长量均明显高于普通有毛黄瓜,四种物质含量再次升高是若虫出现和侵害的结果。由此可见,木质素、单宁、总酚和类黄酮含量变化与抗白粉虱能力密切相关。
     4.三种酶活性的增强有利于无毛黄瓜次生代谢产物的合成及对温室白粉虱的抗性表达,同时三种酶高活性在不同叶片中高效表达。POD在幼苗第一叶和成株下部叶片中活性最高,PAL、PPO在幼苗第三叶和成株上部叶片中活性最高,单宁、木质素含量在老叶中含量较高,总酚和类黄酮含量在新叶中含量较高。这表明了酶与酶、叶与叶间有互作关系,植株叶与叶之间有信号响应的传递与互作,这是植株自我保护的一种系统的复杂的响应机制。不同部位的叶片次生代谢的差异性与无毛黄瓜抗白粉虱能力有密切关系。
     5.温室白粉虱侵害叶片后,直接受害叶片与未受害叶片的PAL、PPO、POD活性和单宁、木质素、总酚和类黄酮含量变化基本一致,但不同部位的增长和减少量明显不同,这是植物整体抗性的表现,同时提供了科学取样的依据。
Greenhouse whitefly(Trialeurodes vapotariorum) is a serious pest to cucumber in the world. With the rapid development of modern facility agriculture, more favorable conditions for reproduction of greenhouse whitefly was created, the damage appeared generally in northern China and was very seirous in some areas. There are rare researches on the resistance to whitefly and its resistance mechanism is unknown until now. The glabrous cucumber is a mutants of normal cucumber, it has the characteristic of ability of whitefly-resistance by field observation in field experiment. In this paper, with the rare mutant of cucumber, effects of secondary metabolites and related metabolic enzymes in glabrous cucumber and normal cucumber after greenhouse whitefly damaged was studied, the basis for the study on the defense response of cucumber after grennhouse whitefly fed and the insect-resistant mechanisms was provided. The main results were as follows:
     1 Glabrous cucumber could inhibit the growth of greenhouse whitefly, it had more strongly resistance to greenhouse whitefly reproduction than normal cucumber. Glabrous cucumber had the resistance to whitefly obviously and was the rare new materials for resistance to the insect.
     2 After greenhouse whitefly damage, the secondary metabolism enzyme activities and content of secondary metabolites in glabrous cucumber rapadly increased and transported, they actively cooperated to resist whitefly. The POD activity and its increment in glabrous cucumber were significantly higher than those of normal cucumber, PAL and PPO activity increased differently, but increments were higher than normal cucumber and the peaks of three types of enzyme activity in glabrous cucumber were ahead of normal cucumber. Thus the changes of PAL, PPO and POD activity in glabrous cucumber were closely related to ability of the anti-whitefly, and PAL, PPO and POD can be used as physiological indicators.
     3 The contents of lignin, tannins, total phenol and flavonoids in leaves of two types of cucumber increased to varying degrees,after greenhouse whitefly infestated. The contents of four substances in cucumber seedlings were increased firstly and then decreased, but they showed the bimodal curve in adult period, the contents of four substances decreased after inoculation for one day, then increased rapidly, the increments of glabrous cucumber were significantly higher than those of normal cucumber, the contents of four substances increased again, because nymph appeared and inoculated.Therefore, the changes of lignin, tannins, total phenol and flavonoids contents were closely associated with the resistance to whitefly.
     4 The increases of three enzyme activity were in favor of the synthesis of secondary metabolites and the expression of resistance to greenhouse whitefly in glabrous cucumber, while the activities of three enzymes highly expressed in different leaves. POD activity in the first leaves of cucumber seedlings and in the down leaves of adult period was the highest, PAL、PPO activity in the third leaves of cucumber seedling and in up down leaves of adult period was the highest, content of tannin and lignin was higher in old leaves, content of total phenol and flavonoids was higher in the new leaves. It illustrated interaction relationships in the enzymes and the leaves. It also confirmed that plant leaves had signal response、transmission and interaction,which is a self-protection complex response system mechanism. The differences of secondary metabolites in glabrous cucumber leaves were a closely relationship with the resistance to whitefly.
     5 After greenhouse whitefly infestating the leaves, the changes of PAL, PPO, POD activity and the contents of tannin, lignin, total phenol and flavonoids in injured leaves and uninjured leaves were consistent, but the increments and the reductions in different leaves were significantly different. It was the performance of the overall resistance of the plant, which provided a scientific basis for sampling.
引文
安英鸽,李长青等.温室白粉虱在蔬菜田的发生消长规律和防治试验[J].西北农业学报,2006.15(4):86-88
    曹辰兴,郭红芸.黄瓜突变新类型—无毛黄瓜[J].中国蔬菜,1999(4): 29
    曹辰兴,张松,郭红芸.黄瓜茎叶无毛性状与果实瘤刺性状的遗传关系[J].园艺学报, 2001, 28 (6): 565-566
    陈建新,宋敦伦,采长群等[J].昆虫学报,1997,40(增刊):186-189
    姜涛等.烟粉虱刺吸诱导转Bt+CpTI基因棉苯丙氨酸解氨酶和氧保护酶系活性变化[J].山东农业科学,2009,10:48-53
    李清西,赵莉,张军等.温室白粉虱Trialeurodes vaporariorum Westwood生物学及其防治. [J]新疆农业大学学报,1977.20(2):22-28
    何水林,郑金贵,王晓峰等.植物次生代谢:功能、调控及其基因工程[J].应用与环境生物学报,2002,8(5):558—563.
    J曼.曹日强译.次生代谢作用[M].北京:科学出版社,1983
    孔垂华,胡飞.植物化感相生相克作用及其应用[M].北京:中国农业出版社
    李霞,阎秀峰,刘剑锋.氮素形态对黄檗幼苗三种生物碱含量的影响[J].生态学报,2005,25(9):2159-2l64
    李润植,毛雪,李彩霞.棉花诱导抗蚜性与次生代谢相关酶活性的关系[J].山西农业大学学报,1998,18(2):165-168
    李新岗,马养民,刘拉平,候慧波,马江平,肖飞.华山松球果挥发性萜类成分研究[J].西北植物学报,2005,25(10):2072-2076.
    刘兴平,戈峰,陈春平等.我国松树诱导抗虫性研究进展[J].林业科学,2003,39(5):119-128
    刘勇,倪汉祥,孙京瑞.抗虫活性物质的研究与应用前景[J].植物保护,2000,26(5):29-31
    李祖荫,李兆华,徐汝梅.温室白粉虱Trialeurodes vaporariorum(Westwood)的形态、生物学特性及各虫态的历期的研究[J].北京师范大学学报,1980,(3,4):137-150.
    林桂权.植物次生代谢产物在生物防御中的作用[J].现代企业教育,2009,171-172
    刘淑娟.植物次生代谢物的分布及其应用[J].泰山学院学报.2003,11
    娄永根,程家安.稻虱缨小蜂对水稻品种挥发物的行为反应[J].华东昆虫学报,1996,5(1):60~64
    娄永根,程家安.植物一植食性昆虫一天敌三营养层次的相互作用及其研究方法[J].应用生态学报,1997,8(3):320-327
    娄永根,程家安.1997.植物的诱导抗虫性[J].昆虫学报,40(3):320-331
    娄永根,程家安.虫害诱导的植物挥发物:基本特性,生态学功能及释放机制[J].生态学报,2000,20(6):1097-1106
    马瑞燕,孔维娜,郝利军.温室白粉虱对几种园艺植物的偏好性[J].昆虫知识. 2005, 42(3):301-304
    缪勇,陈树仁,德龙等.秋冬大棚番茄温室白粉虱种群动态的初步研究[J].生产率系统,2001,27(3):55-58
    戚春章,胡建平.软毛无卷须黄瓜突变株的性状研究[J].园艺学报,1989, 16 (2):123-126
    钦俊德,昆虫与植物的关系. [J]生物学通报,1985,10:17-18
    钦俊德.昆虫与植物的关系:论昆虫与植物的相互作用及其演化[M].科学出版社,1987.
    Smith C M著.冯明光译. 1992.植物抗虫性的研究与应用[M].北京:中国农业科技出版社,292
    Strong D. R., Cawton J. H.著.刘如友等译.植物上的昆虫:群落格局和机制[M].杨陵:天则出版社, 1990,304
    王莉,史玲玲,刘玉军.不同光质对长鞭红景天悬浮细胞生长及苯丙氨酸解氨酶PAL的影响[J].林业科学,2007,43(6):49-51.
    王莉,史玲玲,张艳霞等.植物次生代谢物及其研究进展[J].武汉植物学研究,2007,25(5):500-508
    王探柱,张青文,杨奇华,周明群,植物抗虫性的化学基础[J].植物保护,1993.19(6):39-41
    汪俏梅,曹家树.芥子油苷研究进展及其在蔬菜育种上的应用前景[J].园艺学报,2001(增刊):669-675
    翁祖信,冯兰香,李宝栋等.蔬菜病虫害的诊断与防治[M].天津:天津科学技术出版社,1994.226-230.
    武予清,郭予元等.棉花植株中的单宁测定方法研究[J].应用生态学报,2000,11(2):23-245
    向玉勇,李子忠等.烟粉虱和温室粉虱的研究进展[J].山地农业生物学报,2004,23(4):352-359
    肖崇厚.中药化学[M].上海:上海科学技术出版社,199l,323—374.
    徐汝梅等.温室白粉虱的种群动态及其对黄生理生化特性影响的研究[J].生态学报.1987,7(4):339-348.
    徐涛,孔垂华,胡飞.红蓟化感作用研究Ⅱ.挥发油对不同营养水平下植物的化感作用[J].应用生态学报,1999.10:748—750.
    许燕华,骆萍,卢山等.次生萜类生物合成的调控[J].中国科学基金,2000:197-199.
    姚新生.天然药物化学(第4版) [M].北京:人民卫生出版社.2004.173-177.
    尤民生,侯有明,魏辉等.植物诱导防御的空间和时间效应[J].武夷科学,2000,16:195-201
    张春妮等.甘蓝幼苗受桃蚜危害后叶片中部分酶活性的变化[J].西北植物学报,2005,25(8):1566-1569
    张立莹,警致和,徐浊梅.温室白粉虱(Trialeurodes vaporariorum Westw.)对黄瓜生长、产量、品质影响的分析[J].北京农业大学学报,1989,l5(2):201-207
    张克斌、许文贤、胡木林等.小麦吸浆虫在关中再度猖獗的特点、成因与对策[J].西北农业大学学报,1988年增刊(小麦吸浆虫、黄斑星天牛专辑),1-9
    张瑛,严福顺.虫害诱导的植物挥发性次生物质及其在植物防御中的作用[J].昆虫学报,1998,41:204-213
    张芝利,陈文良,王军.京郊温室白粉虱发生的初步观察和防治[J].昆虫知识,1980,17(4):158-160
    赵福庚,何龙飞,罗庆云.植物逆境生理生态学[M].北京:化学工业出版社,2004.
    赵淑娟,刘狄,胡之璧.植物次生代谢基因工程[N].中国生物工程杂志,2003,23(7):53~56
    赵文峰,张泽民等.不同抗性玉米自交系感蚜期四种酶活性变化分析[J].山东农业科学,2010,10:46-49.
    中国科学院中国植物志编辑委员会.中国植物志[M].北京:科学出版社,1986,73(1):205
    周明牂,谢以铨.麦杆蝇的综合防治[A].科学出版社,1979,见:中国主要害虫综合防治,337-348
    周尧.中国粉虱名录[J].中国昆虫学,1949,3 (4):1-18
    Adler L. S. Alkaloid uptake increases fitness in a hemiparasitic plant via reduced herbivory and increased pollination[M]. Am Natl, 2000.156(1): 92-99
    Adler L. S., Karban R., Strauss S. Y. Direct and indirect effects of alkaloids on plant fitness via herbivory and pollination[J]. Ecology,2001. 82(7): 2032-2044
    Agrawal AA. Induced responses to herbivory in wild radish: effects on several herbivores and plant fitness[J]. Ecology, 1999. 80(5): 1713-172
    Agrawal AA. Induced responses to herbivory and increased plant performance[J]. Science, 1998.279:1201-1202
    Agrawal AA, Klein C. N. What omnivores eat: direct effects of induced plant resistance on herbivores and indirect consequences for diet selection by ornnivores[M].Anim Ecol, 2000b.69:525-535
    Agrawal AA., Kobayashi C., and Thaler J. S. Influence of prey availability and induced host plant resistance on omnivory by western flower thrips[J]. Ecology, 1999c.80(2): 518-523
    Allison S. D., Schultz J. C. Differential activity of peroxidase isozymes in response to wounding,gypsy moth,and plant hormones in northern red oak (Quercus rubra L.) [J]. Journal of Chemical Ecology, 2004,30:1363-1379
    Baldwin I. T. An ecologically motivated analysis of plant_herbivore interactions in native tobacco[J]. Plant Physiology, 2001,127(4): 1449-1458
    Bais H. P., Vepachedu R.,Gilroy S. Science[J],2003,301:1377-1380
    Belefant M. H., Porter D. R., Pierce M. L.. An early indicator of resistance in barley to Russian wheat aphid[J]. Plant Physiology,1994,105:1289-1294
    Bergelson J. M., Lawton J. H. Does foliage damage inf1uence predarion on the insect herbivores of birch?[M]. Eeology,1988,69(2):434-445
    Bryant J. P., Chapin F. S., Klein D. R. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory[J]. Oikos.1983,40:357-368.
    Cane D. E. Comprehensive Natural Products Chemistry[A]. In:Cane D E ed. Isoprenoid Biosynthesis[M].Oxford:Pergamon.1998.
    Chaman M. E., Coruera L. J. Zuniga GE, Induction ofsoluble and cellwall Peroxidases byaPhid infestation in barley.Journal of Agricultural and Food[M]. Chemistry, 2001, 49 (5):2249-2253
    Chilton S. Genetic engineering of plants secondary metabolism for insect protection. In: Carozzi N,Koziel M eds,Advances in insect control:the role of transgenetlc plants[M]. London:Taylar&Francis Press,1997:237-263
    Chittoor J. M., Leach J. E. White FF.Induction of peroxidase during defense against pathog- ens. In:Datta SK,Muthukrish Nan S(eds)Pathogenesis-related proteins in plants[M]. CRC Boca Raton,FL,USA,1999,171-193
    Coley P. D., Massa M., Lovelock C. E. Efects of elevated CO2 on foliar chemistry of sap lings of nine species of trop ical tree [J]. Oecologia,2002,133:62-69
    Constabel C. P., Ryan C. A. A survey of wound-and methyl jasmonate-induced leaf polyphenol oxidase in crop plants[J]. Phytochemistry, 1998, 47(4):507-511
    David. Whitefly biology[J]. Annu Rev Entomol,1991,16(36):431-457
    Dangl J. L., McDowell J.M. Two modes of pathogen recognition by plants[M]. Proc. Natf. Acad. Sci. USA .2006,103(23):8 575-8 576
    Dennis S Hill. Agricultuar insectpests of temperate regions and their control [M]. Cambrida- ge Vniverity Press,1987.210
    Dicke M. Local and systemic production of volatile herbivore-induced terpenoids:their role in plant-herbivore mutualism[J]. Plant Physiol,1994,143:465-472
    Dicke M. In: Chadwick D. J., Goode J. (eds.), Insect-Plant Interactions and Induced Plant Defence[M]. Wiley, Chicester(Novartis Foundation Symposium 223), 1999. 43-59
    Dicke M.,Sabelis M. W. et al. Plant strategies of manipulating predator-prey interactions through allelochermeals:Prospects for application on pest control.[J]. Cheem.Eeol. 1990,16(11):3190-3218
    Dixon R. A., ChenF, ParvathlK. The biosynthesis of monolignois:“ametabolic grid”,or independent pathways to guaiacyl and syringyl units?[J]. Phytochemistry,2001,57: 106 9-1084
    Dixon R. A. Naturalproducts and plantdisease resistance[J]. Nature,2001, 411: 843-847
    Espelie K. E. and Bernay E. A. Diet-related differences in the cuticular lipides of Manduca sexta larvae.[J]. Chem. Ecol.,1989,5: 2003-2007
    Facchini P. J., Huber Allanach K. L., Taxi L. W. Plant aromatic L-amino aciddecarbox ylas- es:evolution,biochemistry,regulation,and metabolic engineefing applications[J]. Phyto- chemistry,2000,54(2):121-38
    Faeth S. H. Host leaf selection by leaf miners:interactions among three trophic levels[J]. Ecology,1985,66(3):870-875
    Faeth S. H. Indirect interactions between temporally separated herbivores mediated by the host plant[J]. Ecology,1986,67(2):479-696
    Faeth S. H. Structural damage to oak leaves alter natural enemy attack on a leafminer[M]. Ento- mol.Exp.Appl.1990,57:57-63
    Faini F., Labbe C. Biochemical Systematics and Ecology[J].1997,25(3):189-193
    Felton G. W., Donato K., Delvecchio R.J. Activation of plant foliar oxidases by insect feeding reduces nutritive quality of foliage for noctuid herbivore[J].Journal of Chemical Ecology,1989,15:667–2694
    Ferry N.,Edwards M. G., Gatehouse J. A., et al. Plant insect interactions:Molecular approac- hes to insect resistance[M]. Curt Opin Biotechnol,2004,15(2):155-161
    Fowler S. V., Macgarvin M. The effects of leaf damage on the performance of insect herbivores on birch,Betula pubescens[J].Anim. Ecology,1986,55:565-573
    Gerk A.,et al. Ann.Soc. Entolmo1.Bresil,1995,24(1):89-97
    Gershenzon J., Croteau R. Terpenoids[A]. In:Rosenthal G. A. eds.Herbivores,Their Interac- tions with Secondary Metabolis theChemical Participants,Vo1.1 C[M].New York: Ac- ademic Press,l991.165-219
    Gerson E. A., Kelsey R. G. Piperidine alkaloids in nitrogen fertilized Pinus ponderosa [J]. Jounal of Chemical Ecology,1999,25:2027-2039
    Guenther A. B., Monson R. K., Fall R. Isoprene and monoterpene emission rate variability: Observations with eucalyptus and emission rate algorithm development[J]. J Geophys Res,1991,96(D6):10799-10808
    Gonzáles W. L., Fuente-Contreras E., Niemeyer H. M. Host plant and natural enemy impact oncereal aphid competition in a seasonal environment[J]. Oikos, 2002.96(3): 481-491
    Hagerman A. E., Butler L. G. Choosing appropriate methods and standards for assaying tannin[J].J Chem Ecol, 1989,15(6):1795-1810
    Hahlbrock K., Bednare P., Ciolkowski I. et al.Non-seIfrecognition transcriptional reprogra- mming and secondary metabolite accumulation interactions[M]. Proc.Natl. Acad. Sci. USA.2003,100(S2):14569- 14576
    Hashimoto T., Nakajima K., Ongona G. Two tropinonereductases with distinct stereospeci- ficities from cultured roots of Hyoscyamus niger[J]. Plant Physiol,1992,100:836-845.
    HaukioJa E. lnduction of defenses in trees[M].Annu.Rev.Entomol.l990,36:25-42
    Hawkins B. A. Foliar damage,parasitiods and indirect competition:a test using herbivores of birth[J].Eeol.Entomol.1988,13:301-308
    Hu MY,Klocke J. A.,Chiu S. F. Response of five insects to botanical insecticides, rhod- ojaponin-Ⅲ[J]. J Econ Entomol,1993,86(3):706-711
    Jeffree C. E. The cuticle, epicuticular wax and trichomes of plants, with reference to their structure, functions and evolution. In: Insects and the plant surface, B. Juniper and S. R. Southwood, eds[M]. London: Edward Arnold Ltd, 1986,23-64
    Jones, R. L. et al. Host-seeking stumilant for parasite of corn earworm: isolation, identificat- ion and synthesis[J].Science,1971,173: 842- 843
    Karban R. Induced resistance and plant density of a native shrub,Gossypium thurberi,affect its herbivores[J]. Ecology,1993,74(1):l-8
    Kessler A., Baldwin I. T. Defensive function of herbivore_induced plant volatile emissions in nature[J]. Science,2001.291: 2141-2144
    Kaloshian I. Gene-for-gene disease resistance:Bridging insect pest and pathogen defense[J]. Chem .Eco1.,2004,30(12):24l9-2 438
    Kessler A. Baidwin I. T. Plant responses to insect herbivory[M].Ann Rev Plant Biol. 2002, 53 (53):299-328
    Klaus M., Herrmann. The shikimate pathway[J].Ann Rev Plant Phys Plant Mol Bio, 199 9,50:473-503
    Kogan M. Plant resistance in pest management[A]. In Introduction to Insect Pest Managem- ent[M],Edited by Metcalf,R.L.&W.Luckmann,John Wiley&sons,In.,New york, 1975, 103-146
    Kogan M., Paxton J. Natural inducers of plant resistance to insects[A].In:Hedin P A ed. Plant resistance to inseets.Washlngton,DC:American Chemical Society,1983,153-172
    KUTCHAN T. M. Ecological arsenal and developmental dispatcher:The paradigm of secondary metabolism [J]. Plant Physiology,2001,125:58-60
    Leszczynski B., Warchol J.,Niraz S. Insect Science Application.1985, 6 (2):157-158
    Li J., Ou-Lee T.M., RabaR, etal. Arabidopsis flavonoidmutants are hypersensitive toUV-B irradiation [J]. PlantCell 1993, 5:171-179
    Liu T. X.,et al. Research Bulletin-Geogia Agric[J]. Exper.Station,1993,412:11
    Lombardero M.J., Ayres M. P., Lorio P. L. Jr,et al. Environmental effects on constitutive and inducible resin defences of Pinus taeda[J]. Ecology Letters,2000, 3:329-339
    Lyase. Polyphenoloxidase,and Peroxidase in Cucumber Seedlings by Bemisia tabaci (Gennadius)(Hemiptera:Aleyrodidae)Infestation[J]. Agricultural Sciences in China, 2008, 7(1):82-87
    MaxwellF.G. Host plant resistance to insects-nutritional and pest management relationships [A]. InInsect and Mite Nutrition[M],Edited by J. G. Rodriguez,North Holland, Amster- dam,1972,599-609
    McMullen M. D., Byme P. F., Snook M. E., Quantitative trait loci and metabolic pathways [J].Proc Natl Acad Sci USA. 1998, 95:1996-2000
    MeCaskill D., Critear R. Some caveats for bioengineering terpeniod metabolism in plant[J]. Trends biotechnology,1998,16:369-355
    Panda N. principles of Host-plant Risistance to Insect Pests[M].John Wwiley &Sons, New York, 1979
    ParéP. W., Tumlinson J. H. Plant volatiles as a defense against insect herbivores[J]. Plant Ph- ysiol, 1999.121:325-332
    Patrick F.D., Lagrimini L. M..Examination of the biological effcets of high anioni Peroxida- se Productionin to baeeo Plants grown under field conditions[J].Inscet Pest damage. TransgenieResearch,2006,15:197-204
    Robertson, G. W. et al. Further evidence that resistance in raspberry to vorus vector aphid, Amphorophora idaei, is related to the chemical composition of the leaf surface[J].Ann. Appl. Biol.,1991,119: 443-449
    Robinson R. W.and Mishanec W. A radiation-induce seedling marker gene for cucumbers [J]. Veg. Imp. Nwsl.1964(6):2
    Shen B., Zheng z,Dooner H. K. A maise sesquiterpene cyclase gene induced by insect her- bivory and volicitin:characterization of wild-type and mutant alleles[J]. Pro Nati Acad Sci.2000,97(26):14808-14812
    Smith C. M., Boyka E. The molecular bases of plant resistance and defense responses to ap- hid feeding:current status[M].Entomol.Exp.App1.2007,122(1):1~16
    Staudt M., Seufen G. Light-dependent emission of monoterpenesby holm oak (Quercus ilex L.)[J]. Nat Urwissenschaf Ten,1995,82:89-92
    Stoner K. A. Glossy leaf wax and plant resistance to insects in Brassica oleracea under natu- ral infection[J].Environ. Entomol.,1990,19: 730-739
    Taiz L., Zeiger E. Sunderland,Massaehusetts:Sinauer Associates Inc,Publishers[J]. Plant Physiology.2006
    Tscharntke T., Thiessen S., Dolch R., Boland W. Herbivory,induced resistance and interpla- nt signal transfer in Alnus glutinosa[J].Biochemical Systematics and Ecology, 2001, 29: 1025-1047
    Tsumuki H. et al. Leaf surface wax as a possible resistance factor of bar Walling L. L. The myriad plant responses to herbivores[J]. J.Plant Growth Reg.2000,19(2):195-216
    Turlings T. C. J., Tumlinson J. H., Lewis W. J. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps[J].Scienee,1990,250:1251-1253
    Turlings T. C. J., Tumlinson J. H., et al. Isolation and identification of allelochemieals that attract the larval parasitoid Cotesia marginiventris(Cresson),to the microhabitat of one of its hosts[J]. Chem. Eeol.1991,17(11):2235-2251
    Vet L E. M., Dic keM. Ecology of infochermcal use by natural enemies in a tritrophic cont- cext[J].Aunu.Rev.Entomol.1992,37:141-172
    Waibel H. The Economics of Integrated Pest Control in Irrigated Rice-A Case Study from The Phillipines[M]. Springer-Verlag,Berlin.1987
    Wang Ch-Sh et al. Measure on tannin contents in several groups of cotton varieties[J]. Chin Cotton,1987,(2):22-24
    Wan J., Duning F. M., Bent A. F. Probing plant-pathogen interactions and downstream def- ense signal ingusing DNA microarrays[J].Funct.Integr.Gnom. 2002,2(6):259-273
    West C. Factors underlying the late seasonal appearance of the lepidopterous leaf-mining guild on oak[J].Ecol.Entomol.1985,10:111-120
    Westhuizen A. J., Qian X. M., Botha A. M. Differential induction of apoplastic peroxidase and chitinase activities in susceptible and resistant wheat cultivars by Russian wheat aphid infestation[J].Plant Cell Reports, 1998a,18:132–137
    Westhuizen A. J.,Qian X. M.,Botha A. M.β-1,3-glucanases in wheat and resistanceto the Russian wheat aphid[M]. Physiologia Plantarum,1998b,103:125–131.
    Wink M. Phytochemistry[J],2003,64:3-19
    Wink M., Schimmer O., In:Wink E,ed.Function of Plant Secondary Metabolites and Their Exploitation in Biotechnology,Annual P1ant Reviews [C]. Shefield:Shefield Academic Press and CRC Press,1999,17-133
    Yu C. K., Springob K., Schmidt J., et al. Stilbene synthase gene(SbSTS1) is involved in host and nonhost defense responses in sorghum [J]. PlantPhysio,l2005, 138: 393-401

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700