游离脂肪酸和葡萄糖诱导人主动脉内皮细胞活性氧产生的分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文Ⅰ游离脂肪酸诱导血管内皮细胞活性氧产生的机制研究
     背景
     游离脂肪酸介导的氧化应激在代谢综合征心血管疾病的发生发展中起关键作用。过量活性氧(reactive oxygen species,ROS)的产生可通过直接氧化损伤DNA,蛋白质,脂质等大分子物质,或激活NF-κB,p38 MAPK,JNK等信号通路引起组织损伤和细胞功能异常。因此有效降低ROS产生,增加体内抗氧化能力对预防糖尿病心血管并发症的发生具有重要作用。
     AMPK可启动分解代谢途径从而增加ATP的产生,因此在能量代谢调控中发挥重要作用。目前研究证实AMPK信号通路的激活具有保护心血管效应。但机制不明。以往研究表明活性氧可激活AMPK通路。同时AMPK的激活可有效降低细胞内ROS水平。但是,AMPK通路的激活能否降低棕榈酸(palmitic acid,PA)介导的人血管内皮细胞内ROS产生的水平尚不清楚。
     硫氧还蛋白(thioredoxin,Trx)系统清除活性氧及还原二硫键的功能使该系统成为维持细胞氧化还原稳态的重要因素。许多研究表明,Trx在多种刺激(特别是氧化应激)下可诱导其表达的特性,提示Trx是细胞抵抗氧化应激的重要分子,能保护组织或细胞免受多种刺激的损伤。然而,Trx是否参与AMPK通路对细胞内ROS产生的调节以及AMPK通路如何调节Trx的表达,均需要进一步的验证。
     近年研究发现,FOXO转录因子在细胞周期、新陈代谢、DNA修复、细胞凋亡、抵抗氧化应激、长寿等方面发挥重要的调节作用。最近研究发现,FOXOs还可直接调节Gadd45和锰超氧化物歧化酶(manganese superoxide dismutase,MnSOD)基因表达,保护静息细胞免受氧化损伤,促使DNA修复。FOXO转录因子在细胞对氧化应激反应中的作用已部分阐明。现有研究表明ROS可激活FOXO,但同时FOXO也可抵抗生理性氧化应激,增加细胞存活。但是,FOXO是否为Trx的转录调节因子,以及AMPK通路对FOXO的转录活性的影响尚不明确。
     针对以上问题,我们提出如下假说:AMPK通路的激活能够通过增强抗氧化剂Trx的表达而降低细胞内ROS产生的水平。FOXO作为转录因子参与了该过程的调控。AMPK-FOXO信号通路可能是减少体内氧化应激损伤的重要防御机制,是治疗代谢综合征心血管疾病的潜在治疗靶点。
     方法
     1.细胞培养:原代人主动脉内皮细胞(human aortic endothelial cells,HAECs),使用内皮细胞生长培养基-2(endothelial cell growth medium-2,EGM-2),在37℃和5%CO_2孵育箱中进行培养。细胞被转染siRNAs,或者被刺激以不同浓度的AICAR或者PA以构建细胞模型。
     2.脂肪酸白蛋白复合物的配制:将可溶性棕榈酸(PA)溶解在200mM的酒精当中,并与10%的无游离脂肪酸,低内毒素的BSA混合,使其终浓度在1-5mM。所有溶液的PH值调整在7.5左右,使用滤器消毒,-20℃储存。将不含有PA的BSA溶液作为对照。在处理细胞之前,将储存的PA按照1:10的比例,使用培养基进行稀释。
     3.siRNA诱导的基因沉默:使用特异的siRNA进行基因沉默,包括AMPKsiRNA,Trx siRNA和FOXO3a siRNA。使用LipofectAMINE~(TM) 2000脂质体包裹,并转染HAECs。被转染的HAECs细胞,再使用PA和AICAR等进行处理。
     4.质粒DNA的转染:分别使用0.5μg野生型FOXO3表达质粒(HA-FOXO3aWT),负显性型FOXO3a表达质粒(dominant-negative HA-FOXO3a TM delta DM,DN)和持续激活型FOXO3a表达质粒(constitutively active HA-FOXO3a TM,CA)处理内皮细胞。首先使用LipofectAMINE~(TM) 2000脂质体包裹,并转染HAECs。被转染的HAECs细胞,再使用PA和AICAR等进行处理。
     5.免疫荧光染色:将处理好的细胞使用含有一抗1%BSA进行孵育,并用得克萨斯红标记的二抗进行处理。使用DAPI染核,装备有Leica DC 100数字相机的Leic DMLS荧光显微镜采集图像。应用Image-Pro Plus V4.5分析软件进行分析。
     6.蛋白印迹分析:使用细胞裂解液提取细胞的总蛋白。将含有15μg微粒蛋白的每个标本和蛋白Marker一起分别加入不同的泳道。在10%SDS-聚丙烯酰胺凝胶上电泳移动,再用一湿电转染仪电转染到聚偏氟乙烯膜(PVDF)上。将膜封闭后,使用一抗孵育,清洗后,再使用HRP结合的二抗孵育。滴加显色液显色。强弱用表达的蛋白和β-actin条带积分光密度的比值表示。
     7.实时定量PCR:使用Trizol提取细胞的总RNA。应用iScript cDNA合成酶将mRNA逆转录成cDNA。使用iCycler iQ荧光探针系统进行实时PCR。采用Trx与β-actin的循环阈值(threshold cycle,Ct)的比值并通过公式2△~(Ct)(△Ct=β-actin Ct-gene of interest Ct)表示mRNA的相对水平。
     8.细胞内ROS的检测:应用CM-H_2DCFDA荧光探针检测细胞内ROS水平。使用装备有Leica DC 100数字相机的Leic DMLS荧光显微镜采集图像。应用Image-Pro Plus V4.5分析软件进行分析。
     9.Trx活性分析:采用胰岛素二硫还原法分析Trx的活性。应用412 nm的吸收光谱进行测量。Trx活性使用与对照组的相对比值进行表示。
     10.染色质免疫沉淀分析:我们使用Upstate公司生产的染色质免疫沉淀分析试剂盒。首先将处理过的HAECs用甲醛孵育,以形成DNA-蛋白质复合体。应用特异抗体-蛋白A-琼脂糖浆对DNA-蛋白质复合体进行免疫沉淀(IgG作为阴性对照)。将这些免疫复合物珠子进行清洗,沈脱和解链。使用苯酚/氯仿/易戊酯酒精混合物萃取DNA片段。然后,将免疫沉淀的DNA片段作PCR,使用1.5%的琼脂糖胶分离PCR产物。
     11.免疫沉淀分析:将处理过的细胞在冰上裂解60分钟。细胞裂解液与抗体和蛋白A/G-琼脂糖珠子共同孵育4℃过夜以进行免疫沉淀。使用提取液清洗珠子两遍,然后再使用含有0.5 M氯化锂的提取液清洗两遍。使用SDS样本试剂直接洗脱蛋白质,然后进行蛋白印迹分析。
     12.激酶活性分析:使用AMPK特异性抗体将AMPK从细胞裂解液中沉淀出来。并将含AMPK的免疫磁珠与重组FOXO3在含有100μM ATP的激酶活性分析液中孵育20分钟,温度控制在30℃。将样本跑胶转膜,使用抗苏氨酸和丝氨酸抗体进行标记。
     结果
     1.AMPK降低PA所致的血管内皮细胞ROS升高:AICAR本身对基础ROS水平影响很小。PA能显著增加细胞内ROS水平。AICAR可降低PA所致的细胞内ROS水平的升高,呈剂量依赖性,最高浓度500umAICAR可降低ROS水平高达60%。同时用特异小分子干扰核糖核酸(siRNA)来抑制AMPK表达不仅增加基础ROS水平,同时增加PA所致的ROS水平增高。AICAR诱导的ROS减低可由AMPK SiRNA阻断。
     2.AMPK增加抗氧化剂Trx的表达:AICAR引起的AMPK激活无论是在PA存在还是不存在的情况下均可显著增加Trx的表达。PA本身可暂时性引起Trx表达的增加,但长期PA处理可降低Trx表达。用特异siRNA敲除AMPK可抑制基础状态Trx的表达及AICAR引起的Trx表达增加。
     3.Trx沉默可阻止AICAR诱导的ROS降低:Trx siRNA不仅增加基础ROS水平,同时增强PA所致的ROS水平的增加。同时Trx siRNA阻止AICAR诱导的ROS降低。
     4.AMPK在转录水平调节Trx表达:通过实时定量PCR,发现AICAR可显著增加Trx mRNA并呈剂量依赖性。特异性siRNA敲除AMPK可降低基础Trx表达。同时降低AICAR诱导的Trx mRNA水平。
     5.FOXO3a参与AMPK诱导的Trx上调:Trx基因5‘端含有多个高度保守的转录因子结合区域。我们验证转录因子FOXO3是否参与AMPK诱导的Trx表达。特异性siRNA敲除AMPK可阻止AICAR诱导的Trx表达,无论是在蛋白还是转录水平。
     6.FOXO3a直接与Trx启动子结合:为验证FOXO3a是否直接调节Trx转录,我们在体外验证FOXO3a是否直接与Trx启动子结合。FOXO3a的结合位点是5'-(C/G)(A/T)AAA(C/T)A,-3'。Trx基因启动子区域包含6个FOXO3a结合位点,(tgAAAGAgtga at-1346/-1342,tgAAAGAagga at-1339/-1335,gaAAACAcagaat-1236/-1232,caAAATAccgc at-859/-855,ggAAACActga at-807/-803,和tgAAAGAacag at-613/-609)。CHIP检测结果显示FOXO 3a与位点4和位点5结合能力弱,但与位点6结合能力强。更重要的是AICAR处理可显著增加FOXO 3a与位点6的结合,表明FOXO3a参与了Trx的转录调节。
     7.AMPK增加FOXO3a的核转位:免疫荧光显示AICAR显著增加FOXO3a的核转位同时AMPK SiRNA可阻止这一过程。同时我们检测AMPK是否能直接磷酸化FOXO3a在体外激酶检测中,以纯化的AMPK作为激酶,重组FOXO3a作为底物,结果显示AMPK可直接在丝氨酸和缩氨酸位点磷酸化FOXO3a,AICAR可增加FOXO3a的磷酸化。以上研究表明FOXO3a可直接被AMPK磷酸化,进而发生核转位,与Trx启动子结合,增加Trx转录。
     8.FOXO3a结合p300在Trx启动子区形成转录激活复合物:ChIP检测发现AICAR处理可显著增加p300与Trx启动子在保守位点6的结合。我们进一步验证体内FOXO3是否与p300相关。采用免疫共沉淀方法证实了FOXO3与p300相关,AICAR处理可显著增加这种相关性,表明p300与Trx启动子区域的结合至少部分是由FOXO3介导的。同时采用双CHIP检测FOXO3与p300是否在Trx启动子区域同一转录复合体内。首先用FOXO3抗体进行免疫沉淀,后用p300进行免疫沉淀。在免疫复合物内相关的DNA由PCR扩增。结果表明FOXO3与p300在Trx启动子同一区域内形成转录激活复合物。
     结论
     1.PA能显著的增加人主动脉内皮细胞内ROS水平。
     2.AMPK激活可通过上调Trx表达显著降低PA所致的细胞内ROS的升高。
     3.转录因子FOXO3a介导了AMPK对Trx的调节。
     4.AMPK通过增加FOXO3a核转位,促进其DNA与Trx启动子区域结合而增加Trx的转录。
     5.AMPK-FOXO3a信号通路对代谢应激下细胞内超氧化物水平有保护作用,是治疗糖尿病心血管并发症的潜在治疗靶点。
Baekgroud
     Oxidative stress induced by free fatty acids(FFA) plays a key role in the development of cardiovascular diseases in metabolic syndrome.Excessive generation of reactive oxygen species(ROS) can cause tissue injury and cellular dysfunction by directly oxidizing and damaging DNA,proteins,and lipids as well as by activating several cellular stress-sensitive pathways such as nuclear factor-kappa beta,p38 MAPK,and JNK.Reducing ROS production and increasing antioxidant availability are important in preventing diabetic cardiovascular complications.
     The AMPK pathway responds to energy depletion by stimulating metabolism for ATP generation and plays an important role in controlling metabolism.It has been increasingly recognized that activation of this pathway has vascular protective effects; however,the mechanisms involved are not completely understood.Reactive oxygen species can activate the AMPK pathway.Previous studies have shown that activation of the AMPK pathway reduces intracellular ROS levels.However,it is still unknown whether the activation of the AMPK pathway may affect PA(palmitic acid) induced intracellular ROS levels in human aortic endothelial cells.
     The regulation of cellular redox balance is critically determined by the activity of Trx(thioredoxin) system.Some studies have shown that the expression of Trx was dramatically increased by several stimuli,especially the oxidative stress.It seems that Trx is an important antioxidant protein and protect the tissues and cells from several oxidative stress injuries.It is unclear that whether Trx is involved in the AMPK pathway reduced intracellular ROS production and how the AMPK pathway regulates the expression of Trx.
     FOXO transcription factors are important regulators of metabolism,cell-cycle progression,DNA repair,apoptosis,oxidative stress resistance,and longevity.The role of FOXO in regulating cellular functions under oxidative stress has been partially clarified.Recent findings found that FOXOs could regulate the expression of Gadd45 and MnSOD(manganese superoxide dismutase) directly and protect cell from oxidative injure,thus promote the DNA damage repair.This suggests that ROS can activate FOXO.Although FOXOs mediate ROS-induced apoptosis under lethal conditions,they can increase cell survival in response to physiologic oxidative stress, a function that is required for long-term regenerative potential and cell longevity. However,whether FOXO is the transcriptional factor of Trx and whether the AMPK pathway affects the activity of FOXO are still unclear.
     In the present study,we hypothesized that the activation of AMPK pathway may reduced the intracellular ROS levels by increasing the expression of antioxidant Trx. FOXO may be the transcriptional factor of Trx.Thus,the AMPK-FOXO pathway may be an important defense mechanism against excessive ROS levels induced by metabolic stress and could be a therapeutic target in treating cardiovascular diseases in metabolic syndrome.
     Methods
     1.Cell culture:Primary human aortic endothelial cells(HAECs) were cultured at 37℃in 5%CO_2 in endothelial cell growth medium-2(EGM-2).The cells were transfected with siRNAs,treated with the AICAR or PA at various concentrations for the time periods indicated in the text.
     2.Preparation of fatty acid-albumin complexes:Saturated palmitic acid(PA) was dissolved in ethanol at 200 mM and then combined with 10%FFA-free, low-endotoxin BSA to final concentrations of 1-5 mM.The pH of all solutions was adjusted to approximately 7.5,and the stock solutions were filter-sterilized and stored at-20℃until used.Control solutions containing ethanol and BSA were prepared similarly.Working solutions were prepared fresh by diluting the stock solution(1:10) in 2%fetal calf serum-EBM.There was 1%BSA in all PA media;however,the PA/BSA ratio varied with the PA concentrations.
     3.siRNA-indueed gene silencing:Silencing gene expression was achieved using specific siRNA including,AMPK siRNA,Trx siRNA and FOXO3a siRNA. Transfection of HAECs with siRNAs was carried out using LipofectAMINE~(TM) 2000, according to the manufacturer's instruction.Transfected cells were then treated with PA and AICAR at the designated concentrations for the time periods indicated in the text.
     4.In Vitro Transfection of Plasmid DNA:HAECs were transfected with 0.5ug of FOXO3a plamid DNA including wide type(HA-FOXO3A WT),constitutively active(HA-FOXO3a TM) and dominant-negative(HA-FOXO3a TM deltaDM) The transfection was carried out using LipofectAMINETM 2000 according to the manufacturer's instructions.Transfected cells were then treated with PA and AICAR at the designated concentrations for the indicated time periods.
     5.Immunofluorescent staining and microscopy:Cells were grown on glass coverslips and treated with PA and AICAR.The coverslips were blocked with 1% BSA,incubated with the primary antibody,washed with PBS,and then incubated with Texas Red-labeled secondary antibody.The cells were incubated for 15 minutes with the DNA stain,4',6-diamidino-2-phenylindole dihydrochloride(DAPI;0.1 ug/mL).The slides were examined with a Leica DMLS epifluorescence microscope equipped with a Leica DC 100 digital camera,and the data were analyzed with Image-Pro Plus V4.5 software.
     6.Western blot analysis:Cell extracts were prepared with lysis buffer.Protein samples(15μg per lane) were subjected to SDS-polyacrylamide gel electrophoresis and transferred to PVDF membranes.The membranes were blocked,treated with primary antibody,washed,and then incubated with the secondary horseradish peroxidase-labeled antibody.Bands were visualized with Enhanced Chemiluminescence.The expression of cytokine protein was demonstrated by the ratio of integral optical density(IOD) between cytokine andβ-actin.
     7.Real-time quantitative PCR:Total RNA from treated cells was extracted with Trizol,according to the manufacturer's protocol.The mRNAs were reverse-transcripted into cDNAs using iScript cDNA synthesis kit.Real-time PCR was performed using iCycler iQ real-time PCR detection system.The mRNA levels were estimated from the value of the threshold cycle(Ct) of the real-time PCR adjusted by that ofβ-actin through the formula 2~(ΔCt)(ΔCt=β-actin Ct-gene of interest Ct).
     8.Intracellular ROS level detection:Intracellular ROS level was determined using the oxidant-sensitive fluorogenic probe CM-H_2DCFDA(5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate,acetyl ester).The slides were examined with a Leica DMLS epifluorescence microscope equipped with a Leica DC 100 digital camera and the data were analyzed with Image-Pro Plus V4.5 software.
     9.Trx Activity Assay:Trx activity was measured using the insulin disulfide reduction assay.The absorption at 412 nm was measured spectroscopically.T
     10.Chromatin immunoprecipitation assay:We used the ChIP assay kit, according to the Upstate Chromatin Immunoprecipitation Protocol.In brief,treated HAECs were first incubated with formaldehyde to cross-link DNA-protein complexes. Protein-DNA complex was immunoprecipitated with antibody-protein A-agarose slurry.(IgG served as the negative control.) The immunocomplex beads were washed, eluted and reversed the cross-link.The DNA was recovered by extraction with the phenol/chloroform/isoamyl alcohol mixture.The immunoprecipitated DNA was used as a template for PCR.The PCR products were separated by 1.5%agarose gel.
     11.Immunoprecipitation:Treated cells were lysed for 60 min in ice-cold extraction buffer.For immunoprecipitation,cleared cell lysates were incubated with the appropriate antibody precoupled to protein A/G-agarose beads at 4℃overnight. The beads were washed twice with extraction buffer and twice with extraction buffer containing 0.5 M LiCl.Proteins were eluted directly in SDS sample buffer for Western blot analysis.
     12.Kinase assays:AMPK was precipitated from cell lysate using an anti-AMPK antibody.AMPK-containing beads were incubated with recombinant FOXO 3 in kinase assay buffer supplemented with 100μM ATP for 20 minutes at 30℃.Samples were separated on a 10%SDS-PAGE and transferred to PVDF membranes. Anti-serine and anti-threonine antibodies were used to detect phosphorylated serines and threonines incorporated into the FOXO 3.
     Results
     1.AMPK reduces ROS levels induced by PA in endothelial cells:AICAR by itself had minimal effects on basal ROS levels.Palmitic acid significantly increased intracellular levels of ROS,an observation consistent with previous reports.The PA-induced increase of intracellular ROS levels was reduced by AICAR in a dose-dependent manner with up to a 60%reduction at the highest dose 500μM.This result indicates that activation of AMPK can reduce intracellular ROS levels. Additionally,suppression of AMPK by specific siRNA not only increased basal ROS levels,but also augmented PA-induced increase of ROS levels.Furthermore,AICAR induced reduction of ROS was abolished by AMPK siRNA.
     2.AMPK increases the expression of the antioxidant Trx:Activation of the AMPK pathway by AICAR,significantly up-regulated the expression of Trx in a dose-dependent manner in the absence and the presence of PA.Prolonged PA exposure decreased Trx expression.Importantly,knockdown of AMPK by its specific siRNA inhibited the basal Trx expression and the upregulation of Trx by AICAR, implicating the involvement of the AMPK pathway in Trx upregulation.
     3.Trx silencing prevents AICAR-induced ROS reduction:Trx siRNA not only increased basal ROS levels,but also amplified PA-induced increase of ROS levels.Furthermore,AMPK siRNA prevented AICAR induced reduction of ROS.
     4.AMPK regulates Trx expression at the mRNA level:Using quantitative RT-PCR,we found that AICAR significantly increased Trx mRNA in a dose-dependent manner.Knockdown of AMPK by its specific siRNA reduced basal Trx expression.Moreover,the AICAR-induced Trx mRNA was reduced in the presence of AMPK siRNA
     5.FOXO 3a is required for AMPK-induced upregulation of Trx:We identified FOXO 3a as one of these transcriptional factors that may mediate AMPKinduced Trx transcription.Silencing FOXO 3 with siRNA significantly prevented AICAR induced expression of Trx at both protein and mRNA levels.
     6.FOXO 3a binds directly to the Trx promoter:The promoter region in the Trx gene contains 6 putative FOXO 3a binding sites(tgAAAGAgtga at-1346/-1342, tgAAAGAagga at-1339/-1335,gaAAACAcaga at-1236/-1232,caAAATAccgc at -859/-855,ggAAACActga at-807/-803,and tgAAAGAacag at-613/-609).Results of the ChIP assay performed with a FOXO 3a antibody showed that FOXO 3a weakly binds sites 4 and 5,but strongly binds site 6.Importantly,the binding of FOXO 3a to site 6 was significantly increased by AICAR treatment,indicating that FOXO 3a may mediate AMPK-induced Trx transcription.
     7.AMPK increases FOXO 3a nuclear translocation:The immunostaining assay shows that AICAR significantly increased the nuclear translocation of FOXO 3a, which was prevented by AMPK siRNA.The in vitro kinase assay with purified AMPK as the kinase and recombinant FOXO 3a as the substrate showed that AMPK directly phosphorylated FOXO 3a at serine and threonine sites and that AICAR increased phosphorylation of FOXO 3a.
     8.FOXO 3a recruits p300 and forms a transcription activator complex on the Trx promoter:Using the ChIP assay,we found that AICAR treatment significantly increased p300 binding to the Trx promoter at consensus site 6.Using coimmunoprecipitation assay,we observed that FOXO 3a was associated with p300 and that the association was increased by AICAR treatment,indicating that p300 recruitment to the Trx promoter may be mediated at least in part by FOXO 3a.The double-ChIP assay showed that the Trx promoter sequence could be recovered from the immunocomplexes precipitated by FOXO 3a and p300 antibodies,indicating the simultaneous association of FOXO 3a and p300 within that region of the Trx promoter.
     Conclusions
     1.PA significantly increased intracellular ROS levels in human aortic endothelial cells(HAECs).
     2.The ativation of the AMPK pathway significantly reduced PA-induced intracellular ROS levels by increasing the expression of the antioxidant Trx.
     3.Transcriptional factor FOXO 3a mediated AMPK's effect on Trx expression.
     4.AMPK upregulated Trx transcription by increasing FOXO3a nuclear translocation and promoting its DNA binding to the Trx promoter.The activated FOXO3a may recruit p300 and form a transcription activation complex in the Trx promoter.
     5.AMPK-FOXO3a pathway has protective effects against cellular superoxide levels induced by metabolic stress and could be a therapeutic target in treating cardiovascular complications in diabetes.
引文
1. Madamanchi NR, Runge MS. Mitochondrial dysfunction in atherosclerosis. Circ Res. 2007; 100: 460-73.
    2. Bassenge E, Schneider HT, Daiber A. Oxidative stress and cardiovascular diseases. Dtsch Med Wochenschr. 2005; 130(50): 2904-2909.
    3. Heistad DD. Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol. 2005; 12: 104.
    4. Deshpande NN, Sorescu D, Seshiah P, Ushio-Fukai M, Akers M, Yin Q, Griendling KK. Mechanism of hydrogen peroxide-induced cell cycle arrest in vascular smooth muscle. Antioxid Redox Signal. 2002; 4 (5): 845-854.
    5. Taniyama Y, Griendling KK. Reactive oxygen species in t he vasculature molecular and cellular mechanisms. Hypertension. 2003; 42 (6): 1075.
    6. Vaziri ND , Wang XQ , Oveisi F , Rad B. Induction of oxidative stress by glutathione depletion cause severe hypertension in normal rats. Hypertension. 2000; 39(1): 142.
    7. Hardie D G, Hawley S A, Scott J W. AMP-activated p rotein kinase development of the energy sensor concept. J Physiol. 2006; 574 (1):7-5.
    8. Schimmack G, Defronzo R A, MusiN. AMP-activated p rotein kinase: role in metabolism and the rapeutic implications. Diabetes Obes Metab. 2006; 8 (6): 591-602.
    9. Zou MH, Hou XY, Shi CM, Nagata D, Walsh K, Cohen RA. Modulation by peroxynitrite of Akt and AMP-activated kinase-dependent Ser1179 phosphorylation of endothelial nitric oxide synthase. J Biol Chem. 2002; 277: 32552-7.
    10. Gaskin FS, Kamada K, Yusof M, Korthuis RJ. 5'-AMP-activated protein kinase activation prevents postischemic leukocyte-endothelial cell adhesive interactions. Am J Physiol Heart Circ Physiol. 2007; 292: H326-32.
    11. Ido Y, Carling D, Ruderman N. Hyperglycemia-induced apoptosis in human umbilical vein endothelial cells: inhibition by the AMP-activated protein kinase activation. Diabetes. 2002; 51: 159-67.
    12. An Z, Wang H, Song P, Zhang M, Geng X, Zou MH. Nicotine-induced activation of AMP-activated protein kinase inhibits fatty acid synthase in 3T3L1 adipocytes: a role for oxidant stress. J Biol Chem. 2007; 282: 6793-801.
    13. Blattler SM, Rencurel F, Kaufmann MR, Meyer UA. In the regulation of cytochrome P450 genes, phenobarbital targets LKB1 for necessary activation of AMP-activated protein kinase. Proc Natl Acad Sci U S A. 2007; 104:1045-50.
    14. Zhang M, Dong Y, Xu J, Xie Z, Wu Y, Song P, Guzman M, Wu J, Zou MH. Thromboxane receptor activates the AMP-activated protein kinase in vascular smooth muscle cells via hydrogen peroxide. Circ Res. 2008; 102: 328-37.
    15. Kukidome D, Nishikawa T, Sonoda K, Imoto K, Fujisawa K, Yano M, Motoshima H, Taguchi T, Matsumura T, Araki E. Activation of AMP-activated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes. 2006; 55: 120-7.
    16. Ouedraogo R, Wu X, Xu SQ, Fuchsel L, Motoshima H, Mahadev K, Hough K, Scalia R, Goldstein BJ. Adiponectin suppression of high-glucose-induced reactive oxygen species in vascular endothelial cells: evidence for involvement of a cAMP signaling pathway. Diabetes. 2006; 55: 1840-6.
    17. Ceolotto G, Gallo A, Papparella I, Franco L, Murphy E, Iori E, Pagnin E, Fadini GP, Albiero M, Semplicini A, Avogaro A. Rosiglitazone reduces glucose-induced oxidative stress mediated by NAD(P)H Oxidase via AMPK-dependent mechanism. Arterioscler Thromb Vasc Biol. 2007; 27: 2627-33.
    18. Laurent TC , Moore EC, Reichard P. Isolation and characterization of thioredoxin, the hydrogen donor from Escherichia coli B. J Biol Chem. 1964; 239: 3436-3444
    19. Powis G, Montfort W R. Properties and biological activities of thioredoxins. Annu Rev Pharmacol Toxicol. 2001; 41: 261-295.
    20. Gilbert HF. Molecular and cellular aspects of thiol-disulfide exchange. Adv Enzymo Rela Areas Mol Biol. 1990; 63: 169-172.
    21. Nakamura H, Nakamura K, Yodoi J. Redox regulation of cellular activation. Annu Rev Immunol.1997; 5: 351-369.
    22. Taniguchi Y, Taniguchi-Ueda Y, Mori K, Yodoi J. A novel promoter sequence is involved in the oxidative stress-induced expression of the adult T-cell leukemiaderived factor (ADF) /human thioredoxin (Trx) gene. Nucleic Acids Res. 1996; 24: 2746-2752.
    23. Kim YC, Masutani H, Yamaguchi Y, Itoh K, Yamamoto M, Yodoi J. Hemin-induced activation of the thioredoxin gene by Nrf2. A differential regulation of the antioxidant responsive element by a switch of its binding factors. J Biol Chem. 2001; 276: 18399-18406.
    24. Brikenkamp KU, Coffer PJ. FOXO transcription factors as regulators of immune homeostasis : molecules to die for ? The Journal of Immunology. 2003; 171 (4): 623-629.
    25. Greenberg ME, Hafen E. The Drosophila Forkhead transcription factor FOXO mediates the reduction in cell number associated with reduced insulin signaling. J Biol. 2003; 2(3): 20.
    26. Jacobs FM, van der Heide LP, Wijchers PJ, Burbach JP, Hoekman MF, Smidt MP. Fox06, a novel member of the FoxO class of transcription factors with distinct shuttling dynamics. J Biol Chem. 2003; 278 (38): 35959-35967.
    27. Kops GJ, Dansen TB, Polderman PE, Saarloos I, Wirtz KW, Coffer PJ, Huang TT, Bos JL, Medema RH, Burgering BM. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature. 2002; 419: 316-21.
    28. Tothova Z, Kollipara R, Huntly BJ, Lee BH, Castrillon DH, Cullen DE, McDowell EP, Lazo-Kallanian S, Williams IR, Sears C, Armstrong SA, Passegue E, DePinho RA, Gilliland DG. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell. 2007; 128: 325-39.
    29. Marinkovic D, Zhang X, Yalcin S, Luciano JP, Brugnara C, Huber T, Ghaffari S. Foxo3 is required for the regulation of oxidative stress in erythropoiesis. J Clin Invest. 2007; 117: 2133-44.
    30. Hattangadi SM, Lodish HF. Regulation of erythrocyte lifespan: do reactive oxygen species set the clock? J Clin Invest. 2007; 117: 2075-7.
    31.Wang J,Shen YH,Utama B,Wang J,LeMaire SA,Coselli JS,Vercellotti GM,Wang XL.HCMV infection attenuates hydrogen peroxide induced endothelial apoptosis—involvement of ERK pathway.FEBS Lett.2006;580(11):2779-87.
    32.Wang XL,Zhang L,Youker K,Zhang MX,Wang J,LeMaire SA,Coselli JS,Shen YH.Free fatty acids inhibit insulin signaling-stimulated endothelial nitric oxide synthase activation through upregulating PTEN or inhibiting Akt kinase.Diabetes.2006;55(8):2301-10.
    33.Zhang C,Zhang MX,Shen YH,Burks JK,Zhang Y,Wang J,LeMaire SA,Yoshimura K,Aoki H,Coselli JS,Wang XL.TNF-alpha suppresses prolyl-4-hydroxylase alphal expression via the ASK1-JNK-NonO pathway.Arterioscler Thromb Vase Biol.2007;27(8):1760-7.
    34.Brunet A,Bonni A,Zigmond MJ,Lin MZ,Juo P,Hu LS,Anderson MJ,Arden KC,Blenis J,Greenberg ME.Akt Promotes Cell Survival by Phosphorylating and Inhibiting a Forkhead Transcription Factor.Cell.1999;96(6):857-68.
    35.Tran H,Brunet A,Grenier JM,Datta SR,Fornace AJ Jr,DiStefano PS,Chiang LW,Greenberg ME.DNA Repair Pathway Stimulated by the Forkhead Transcription Factor FOXO3a Through the Gadd45 Protein.Science.2002;296(5567):530-4.
    36.Chen L,Shen YH,Wang X,Wang J,Gan Y,Chen N,Wang J,LeMaire SA,Coselli JS,Wang XL.Human prolyl-4-hydroxylase alpha(I) transcription is mediated by upstream stimulatory factors.J Biol Chem.2006;281(16):10849-55.
    37.Shen YH,Zhang L,Utama B,Wang J,Gan Y,Wang X,Wang J,Chen L,Vercellotti GM,Coselli JS,Mehta JL,Wang XL.Humann cytomegalovirus inhibits Akt-mediated eNOS activation through upregulating PTEN(phosphatase and tensin homolog deleted on chromosome 10).Cardiovasc Res.2006;69(2):502-11.
    38.Yamawaki H,Pan S,Lee RT,Berk BC.Fluid shear stress inhibits vascular inflammation by decreasing thioredoxininteracting protein in endothelial cells.J Clin Invest.2005;115(3):733-8.
    39.Zhang MX,Ou H,Shen YH,Wang J,Wang J,Coselli J,Wang XL.Regulation of endothelial nitric oxide synthase by small RNA.Proc Natl Acad Sci U S A.2005;102(47):16967-72.
    40. Zhang MX, Zhang C, Shen YH, Wang J, Li XN, Zhang Y, Coselli J, Wang XL.Biogenesis of short intronic repeat 27-nucleotide small RNA from endothelial nitric-oxide synthase gene. J Biol Chem. 2008; 283(21): 14685-93.
    41. Budin SB, Othman F, Louis SR, Bakar MA, Das S, Mohamed J. The effects of palm oil tocotrienol-rich fraction supplementation on biochemical parameters, oxidative stress and the vascular wall of streptozotocin-induced diabetic rats. Clinics. 2009; 64(3): 235-44.
    42. Visconti R, Grieco D. New insights on oxidative stress in cancer. Curr Opin Drug Discov Devel. 2009; 12(2): 240-5.
    43. Inagi R. Oxidative stress in cardiovascular disease: a new avenue toward future therapeutic approaches. Recent Pat Cardiovasc Drug Discov. 2006 Jun; 1(2): 151-9.
    44. Zanetti M, Barazzoni R, Bosutti A, Stocca A, Grassi G, Guarnieri GVascular sources of oxidative stress: implications for uremia-related cardiovascular disease. J Ren Nutr. 2007; 17(1): 53-6.
    45. Heitzer T, Schlinzig T, Krohn K, Meinertz T, Münzel T. Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation. 2001; 104: 2673-2678.
    46. Molavi B, Mehta JL. Oxidative stress in cardiovascular disease:Molecular basis of its deleterious effects, its detection, and therapeutic considerations. Curr Opin Cardiol. 2004; 19 (5): 488-493.
    47. Ceconi C, Boraso A, Cargnoni A, Ferrari R. Oxidative stress in cardiovascular disease: myth or fact? Arch Biochem Biophys. 2003; 420: 217-221.
    48. Yokoyama M. Oxidative stress and atherosclerosis. Curr Opin Pharmacol. 2004; 4 (2): 110-115.
    49. Cathcart MK. Regulation of superoxide anion production by NADPH oxide in monocytes/macrophages: Contributions to atherosclerosis. Arterioscler Thromb Vasc Biol. 2004; 24 (1): 23-28.
    50. Rajagopalan S,Meng XP, Ramasamy S, et al. Reactive oxygen species p reduced by macrophage-derived foam cells regulate the activity of vascular matrixmetalloproteinases in vitro. Implications for atherosclerotic plaque stability. J Clin Invest. 1996; 98: 2572-2579.
    51. Azumi H, Inoue N, Ohashi Y, Terashima M, Mori T, Fujita H, Awano K, Kobayashi K, Maeda K, Hata K, Shinke T, Kobayashi S, Hirata K, Kawashima S, Itabe H, Hayashi Y, Imajoh-Ohmi S, Itoh H, Yokoyama M. Superoxide generation in directional coronary atherectomy specimens of patients with angina pectoris: Important role of NAD( P) H Oxidase. Arterioscler Thromb Vasc Biol. 2002; 22: 1838-1844.
    52. Channon KM. Oxidative stress and coronary plaque stability. Arterioscler Thromb Vasc Biol. 2002; 22: 1751-1752.
    53. Griendling KK, Sorescu D,Ushio-Fukai M. NAD ( P) H Oxidase: Role in cardiovascular biology and disease. Circ Res. 2000; 86: 494-501.
    54. Cheung PC, Salt IP, Davies SP, Hardie DG, Carling D. Characterization of AMPactivated protein kinase gamma - subunit isoforms and their role in AMP binding. Biochem J. 2000; 346(Pt3): 659-669.
    55. Hardie DG. The AMP-activated protein kinase pathway-new players upstream and downstream. J Cell Sci. 2004; 117: 5479 - 5487.
    56. Carling D. AMP-activated protein kinase: balancing the scales. Biochimie. 2005; 87:87-91.
    57. Lizcano JM, Goransson O, Toth R, Deak M, Morrice NA, Boudeau J, Hawley SA, Udd L, Makela TP, Hardie DQ Alessi DR. Lizcano JM, Goransson O , Toth R , et al . LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily , including MARK/ PAR21. EMBO J. 2004; 23: 833-843.
    58. Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Makela TP, Alessi DR, Hardie DG. Hawley SA , Boudeau J , Reid JL , et al . Complexes between the LKB1 tumor suppressor , STRAD alpha/ beta and MO25 alpha/ beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol. 2003; 2: 28.
    59. Raney MA, Yee AJ, Todd MK, Turcotte LP. AMPKactivation is not critical in the regulation of muscle FA uptake and oxidation during low intensity muscle contraction. Am J Physiol Endocrinol Metab. 2005; 288: E592-E598.
    60. Sakoda H, Ogihara T, Anai M, Fujishiro M, Ono H, Onishi Y, Katagiri H, Abe M, Fukushima Y, Shojima N, Inukai K, Kikuchi M, Oka Y, Asano T. Activation of AMPK is essential for AICAR-induced glucose uptake by skeletal muscle but not adipocytes. Am J Physiol Endocrinol Metab. 2002; 282:1239-1244.
    61. Jorgensen SB, Viollet B, Andreelli F, Frosig C, Birk JB, Schjerling P, Vaulont S, Richter EA, Wojtaszewski JF. Knockout of the alpha2 but not alpha1 5'-AMP-activated protein kinase isoform abolishes 5 -aminoimidazole -4-carboxamide -1-beta - 4 - ribofuranosidebut not contraction-induced glucose uptake in skeletal muscle. J Biol Chem. 2004; 279(2): 1070-1079.
    62. Fryer LQ Parbu-Patel A, Carling D. Protein kinase inhibitors block the stimulation of the AMP-activated protein kinase by 5 -amino -4 -imidazolecarboxamide riboside. FEBS Letters. 2002; 531 (2): 189-192.
    63. Nandakumar Sambandam , Gary D. AMP-activated protein kinase (AMPK) control of fatty acid and glucose metabolism in the ischemic heart. Prog Lipid Res. 2003; 42(3): 238-256.
    64. Russell RR 3rd, Li J, Coven DL, Pypaert M, Zechner C, Palmed M, Giordano FJ, Mu J, Birnbaum MJ, Young LH.AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J Clin Invest. 2004; 114(4): 495-503.
    65. Minokoshi Yasuhiko , Kim Young Bum , Peroni Odile D. Leptin stimulates fatty2acid oxidation by activating AMP-activated protein kinase. Nature. 2002; 415 (6869): 339-343.
    66. Koistinen Heikki A , Galuska Dana , Chibalin Alexander V.5-Amino-Imidazole Carboxamide Riboside increases glucose transport and cell2surface GLUT4 content in skeletal muscle from subjects with type 2 diabetes. Diabetes. 2003; 52(5): 1066-1072.
    67. Nagata D, Mogi M, Walsh K. AMP-activated protein kinase (AMPK) signaling in endothelial cells is essential for angiogenesis in response to hypoxic stress. J Biol Chem. 2003; 278: 31000-6.
    68. Guo D, Chien S, Shyy JY. Regulation of endothelial cell cycle by laminar versus oscillatory flow: distinct modes of interactions of AMP-activated protein kinase and Akt pathways. Circ Res. 2007; 100: 564-571.
    69. Depre C, Wang L, Sui X, Qiu H, Hong C, Hedhli N, Ginion A, Shah A, Pelat M, Bertrand L, Wagner T, Gaussin V, Vatner SF. H11 kinase prevents myocardial infarction by preemptive preconditioning of the heart. Circ Res. 2006; 98: 280-288.
    70. Nakamura H, De Rosa SC, Roederer M, Anderson MT, Dubs JG, Yodoi J, Holmgren A, Heisenberg LA, Herzenberg LA. Elevation of plasma thioredoxin levels in HIV-infected individuals. Int Immunol. 1996; 8: 603-611.
    71. Maurice MM, Nakamura H, Gringhuis S, Okamoto T, Yoshida S, Kullmann F, Lechner S, van der Voort EA, Leow A, Versendaal J, Muller-Ladner U, Yodoi J, Tak PP, Breedveld FC, Verweij CL. Expression of the thioredoxin-thioredoxin reductase system in the inflamed joints of patients with rheumatoid arthritis. Arthritis Rheum. 1999; 42: 2430-2439.
    72. Abdiu A, Nakamura H, Sahaf B, Yodoi J, Holmgren A, Rosen A. Thioredoxin blood level increases after severe burn injury. Antioxid Redox Signal. 2000; 2: 707-716.
    73. Nakamura H, Vaage J, Valen G, Padilla CA, Bjornstedt M, Holmgren A. Measurements of plasma glutaredoxin and thioredoxin in healthy volunteers and during openheart surgery. Free Radic Biol Med. 1998; 24:1176-1186.
    74. Kishimoto C, Shioji K, Nakamura H, Nakayama Y, Yodoi J, Sasayama S. Serum thioredoxin (Trx) levels in patientsnwith heart failure. Jpn Circ J. 2001; 65: 491-494.
    75. Shioji K, Matsuura Y, Iwase T, Kitaguchi S, Nakamura H, Yodoi J, Hashimoto T, Kawai C, Kishimoto C. Successful immunoglobulin treatment for fulminant myocarditis and serial analysis of serum thioredoxin. A case report Circ J. 2002; 66: 977-980.
    76. Pekkari K, Gurunath R, Arner ES, Holmgren A. Truncated thioredoxin is a mitogenic cytokine for resting human peripheral blood mononuclear cells and is present in human plasma. J Biol Chem. 2000; 275: 37474-37480.
    77. Takagi Y, Gon Y, Todaka T, Nozaki K, Nishiyama A, Sono H, Hashimoto N, Kikuchi H, Yodoi J. Expression of thioredoxin is enhanced in atherosclerotic plaques and during neointima formation in rat arteries. Lab Invest. 1998; 78: 957-966.
    78. Matsui M, Oshima M, Oshima H, Takaku K, Maruyama T, Yodoi J, Taketo MM. Early embryonic lethality caused by targeted disruption of the mouse thioredoxin gene. Dev Biol. 1996; 178: 179-185.
    79. Mitsui A, Hamuro J, Nakamura H, Kondo N, Hirabayashi Y, Ishizaki-Koizumi S, Hirakawa T, Inoue T, Yodoi J. Overexpression of human thioredoxin in transgenic mice controls oxidative stress and life span. Antioxid Redox Signal. 2002; 4: 693-696.
    80. Takagi Y, Mitsui A, Nishiyama A, Nozaki K, Sono H, Gon Y, Hashimoto N, Yodoi J. Overexpression of thioredoxin in transgenic mice attenuates focal ischemic brain damage. Proc Natl Acad Sci USA. 1999; 96: 4131-4136.
    81. Tanito M, Masutani H, Nakamura H, Oka S, Ohira A, Yodoi J. Attenuation of retinal photooxidative damage in thioredoxin transgenic mice. Neurosci Lett. 2002; 326: 142-146.
    82. Yoon BI, Hirabayashi Y, Kaneko T, Kodama Y, Kanno J, Yodoi J, Kim DY, Inoue T. Transgene expression of thioredoxin (Trx/ADF) protects against 2,3,7,8-tetrachlorodenzo-pdoxin (TCDD)-induced hematotoxicity. Arch Environ Contam Toxicol. 2001; 41: 232-236.
    83. Hotta M, Tashiro F, Ikegami H, Niwa H, Ogihara T, Yodoi J, Miyazaki J. Pancreatic b cell-specific expression of thioredoxin, an antioxidative and antiapoptotic protein, prevents autoimmune and streptozotocin-induced diabetes. J Exp Med. 1998; 188: 1445-1451.
    84. Tanito M, Masutani H, Nakamura H, Ohira A, Yodoi J. Cytoprotective effect of thioredoxin against retinal photic injury in mice. Invest Ophthalmol Vis Sci. 2002; 43: 1162-1167.
    85. Yagi K, Liu C, Bando T, Yokomise H, Inui K, Hitomi S, Wada H. Inhibition of reperfusion injury by human thioredoxin (adult T-cell leukemia-derived factor) in canine lung transplantation. J Thorac Cardiovasc Surg. 1994; 108: 913-921.
    86. Aota M, Matsuda K, Isowa N, Wada H, Yodoi J, Ban T. Protection against reperfusion-induced arrhythmias by human thioredoxin. J Cardiovasc Pharmacol. 1996; 27: 727-732.
    87. Civitarese AE, Ukropcova B, Carling S, Hulver M, DeFronzo RA, Mandarino L, Ravussin E, Smith SR. Role of adiponectin in human skeletal muscle bioenergetics. Cell Metab. 2006; 4: 75-87.
    88. Shioji K, Kishimoto C, Nakamura H, Masutani H, Yuan Z, Oka S, Yodoi J. Overexpression of thioredoxin-1 in transgenic mice attenuates adriamycin-induced cardiotoxicity. Circulation. 2002; 106: 1403-9.
    89. Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, Kawabata M, Miyazono K, Ichijo H. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. Embo J. 1998; 17: 2596-2606.
    90. Hidalgo A ,ffrench2Constant C. Control of cell number by drosophila FOXO: downstream and feedback regulation of the insulin receptor pathway. Mech Dev. 2003; 120(11):1311-1325.
    91. Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, Greenberg ME. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science. 2004; 303: 2011-2015.
    92. van der Horst A, de Vries-Smits AM, Brenkman AB, van Triest MH, van den Broek N, Colland F, Maurice MM, Burgering BM. FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nat Cell Biol. 2006; 8: 1064-1073.
    93. Almeida M, Han L, Martin-Millan M, O'Brien CA, Manolagas SC. Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting beta-catenin from T cell factor- to forkhead box O-mediated transcription. J Biol Chem. 2007; 282: 27298-27305.
    94. Owusu-Ansah E, Yavari A, Mandal S, Banerjee U. Distinct mitochondrial retrograde signals control the G1-S cell cycle checkpoint. Nat Genet. 2008; 40: 356-361.
    95. Nakamura T, Sakamoto K. Forkhead transcription factor FOXO subfamily is essential for reactive oxygen species-induced apoptosis. Mol Cell Endocrinol. 2008; 281: 47-55.
    96. Lehtinen MK, Yuan Z, Boag PR, Yang Y, Villen J, Becker EB, DiBacco S, de la Iglesia N, Gygi S, Blackwell TK, Bonni A. A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell. 2006; 125:987-1001.
    97. Geert J. P. L. Kops, Rene H. Medema, Janet Glassford, Marieke A. G. Essers, Pascale F. Dijkers, Paul J. Coffer, Eric W.F. Lam, and Boudewijn M. T. Burgering. Control of Cell Cycle Exit and Entry by Protein Kinase B-Regulated Forkhead Transcription Factors. Mol. Cell. Biol. 2002; 22: 2025-2036.
    98. Schuur ER, Loktev AV, Sharma M, Sun Z, Roth RA, Weigel RJ. Ligand-dependent interaction of estrogen receptor-alpha with members of the forkhead transcription factor family. J Biol Chem. 2001; 276 (36): 33554-33560.
    99. Zhao HH, Herrera RE, Coronado-Heinsohn E, Yang MC, Ludes-Meyers JH, Seybold-Tilson KJ, Nawaz Z, Yee D, Barr FG, Diab SG, Brown PH, Fuqua SA, Osborne CK. Forkhead homologue in rhabdomyosarcoma functions as a bifunctional nuclear receptor-interacting protein with both coactivator and corepressor functions. J Biol Chem. 2001; 276 (30): 27907-27912.
    100. Bouillet P, Metcalf D, Huang DC, Tarlinton DM, Kay TW, Kontgen F, Adams JM, Strasser A. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science. 1999; 286(5445):1735-1738.
    101. Leenders H, Whiffield S, Benoist C, Mathis D. Role of the forkhead transcription family member, FKHR , in thymocyte differentiation. Eur J Immunol. 2000; 30: 2980-2990.
    102. Arden KC. FoxOs in tumor suppression and stem cell maintenance. Cell. 2007; 128: 235-237.
    103. Zheng X, Yang Z, Yue Z, Alvarez JD, Sehgal A. FOXO and insulin signaling regulate sensitivity of the circadian clock to oxidative stress. Proc Natl Acad Sci U S A. 2007; 104: 5899-5904.
    104. Alcendor RR, Gao S, Zhai P, Zablocki D, Holle E, Yu X, Tian B, Wagner T, Vatner SF, Sadoshima J. Sirtl regulates aging and resistance to oxidative stress in the heart. Circ Res. 2007; 100: 1512-1521.
    105. Greer EL, Oskoui PR, Banko MR, Maniar JM, Gygi MP, Gygi SP, Brunet A. The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J Biol Chem. 2007; 282: 30107-30119.
    106. Greer EL, Dowlatshahi D, Banko MR, Villen J, Hoang K, Blanchard D, Gygi SP, Brunet A. An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr Biol. 2007; 17: 1646-1656.
    107. Barthel A, Schmoll D, Unterman TGFoxO proteins in insulin action and metabolism. Trends Endocrinol Metab. 2005; 16 (4): 183-189.
    108. Giannakou ME, Partridge L. The interaction between FOXO and SIRT1: tipping the balance towards survival. Trends Cell Biol. 2004;14(8): 408-412.
    109. Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W, Bultsma Y, McBurney M, Guarente L.Mammalian SIRT1 represses forkhead transcrip tion factors. Cell. 2004; 116 (4): 551-563.
    110. Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, Greenberg ME. tress-dependent regulation of FOXO transcrip tion factors by the SIRT1 deacetylase. Science. 2004; 303 (5666): 2011-2015.
    1. Ceolotto G, Gallo A, Papparella I, Franco L, Murphy E, Iori E, Pagnin E, Fadini GP, Albiero M, Semplicini A, Avogaro A. Rosiglitazone reduces glucose-induced oxidative stress mediated by NAD(P)H Oxidase via AMPK-dependent mechanism. Arterioscler Thromb Vasc Biol. 2007; 27(12): 2627-2633.
    2. Forbes JM, Coughlan MT, Cooper ME. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes. 2008; 57(6): 1446-1454.
    3. Paravicini TM, Touyz RM. NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities. Diabetes Care. 2008; 31 Suppl 2:S170-80.
    4. Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res. 2000; 87(10): 840-844.
    5. Ceriello A, Motz E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol. 2004; 24(5): 816-23.
    6. Madamanchi NR, Runge MS. Mitochondrial dysfunction in atherosclerosis. Circ Res.2007; 100: 460-473.
    7. Yamawaki H, Haendeler J, Berk BC. Thioredoxin: a key regulator of cardiovascular homeostasis, Circ. Res. 2003; 93: 1029-1033.
    8. Nordberg J, Arner ES. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic. Biol. Med. 2001; 31; 1287-1312.
    9. Taniguchi Y, Taniguchi-Ueda Y, Mori K, Yodoi J. A novel promoter sequence is involved in the oxidative stress-induced expression of the adult T-cell leukemia-derived factor (ADF)/human thioredoxin (Trx) gene. Nucleic Acids Res. 1996; 24: 2746-2752.
    10. Chen KS, DeLuca HF. Isolation and characterization of a novel cDNA from HL-60 cells treated with 1,25-dihydroxyvitamin D-3, Biochim. Biophys. Acta. 1994; 1219: 26-32.
    11. Nishiyama A, Matsui M, Iwata S, Hirota K, Masutani H, Nakamura H, Takagi Y, Sono H, Gon Y, Yodoi J. Identification of thioredoxin-binding protein-2/vitamin D(3) up-regulated protein 1 as a negative regulator of thioredoxin function and expression, J. Biol. Chem. 1999; 274: 21645-21650.
    12. Junn E, Han SH, Im JY, Yang Y, Cho EW, Urn HD, Kim DK, Lee KW, Han PL, Rhee SG, Choi I Vitamin D3 up-regulated protein 1 mediates oxidative stress via suppressing the thioredoxin function. J Immunol. 2000; 164(12): 6287-6295.
    13. Turoczi T, Chang VW, Engelman RM, Maulik N, Ho YS, Das DK. Thioredoxin redox signaling in the ischemic heart: an insight with transgenic mice overexpressing Trx 1. J. Mol. Cell. Cardiol. 2003; 35: 695-704.
    14. Wang Y, DeKeulenaer GW, Lee RT.Vitamin D(3)-up-regulated protein-1 is a stress-responsive gene that regulates cardiomyocyte viability through interaction with thioredoxin, J. Biol. Chem. 2002; 277: 26496-26500.
    15. Schulze PC, Yoshioka J, Takahashi T, He Z, King GL, Lee RT. Hyperglycemia promotes oxidative stress through inhibition of thioredoxin function by thioredoxin-interacting protein. J Biol Chem. 2004; 279(29): 30369-30374.
    16. Brikenkamp KU, Coffer PJ. FOXO transcription factors as regulators of immune homeostasis : molecules to die for ? The Journal of Immunology. 2003; 171 (4): 623-629.
    17. Greenberg ME, Hafen E. The Drosophila Forkhead transcription factor FOXO mediates the reduction in cell number associated with reduced insulin signaling. J Biol. 2003; 2(3): 20.
    18. Jacobs FM, van der Heide LP, Wijchers PJ, Burbach JP, Hoekman MF, Smidt MP. FoxO6, a novel member of the FoxO class of transcription factors with distinct shuttling dynamics. J Biol Chem. 2003; 278 (38): 35959-35967.
    19. Kops GJ, Dansen TB, Polderman PE, Saarloos I, Wirtz KW, Coffer PJ, Huang TT, Bos JL, Medema RH, Burgering BM. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature. 2002; 419: 316-21.
    20. Tothova Z, Kollipara R, Huntly BJ, Lee BH, Castrillon DH, Cullen DE, McDowell EP, Lazo-Kallanian S, Williams IR, Sears C, Armstrong SA, Passegue E,DePinho RA,Gilliland DG FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress.Cell.2007;128:325-39.
    21.Marinkovic D,Zhang X,Yalcin S,Luciano JP,Brugnara C,Huber T,Ghaffari S.Foxo3 is required for the regulation of oxidative stress in erythropoiesis.J Clin Invest.2007;117:2133-44.
    22.Hattangadi SM,Lodish HF.Regulation of erythrocyte lifespan:do reactive oxygen species set the clock? J Clin Invest.2007;117:2075-7.
    23.Wang J,Shen YH,Utama B,Wang J,LeMaire SA,Coselli JS,Vercellotti GM,Wang XL.HCMV infection attenuates hydrogen peroxide induced endothelial apoptosis—involvement of ERK pathway.FEBS Lett.2006;580(11):2779-87.
    24.Zhang C,Zhang MX,Shen YH,Burks JK,Zhang Y,Wang J,LeMaire SA,Yoshimura K,Aoki H,Coselli JS,Wang XL.TNF-alpha suppresses prolyl-4-hydroxylase alphal expression via the ASK1-JNK-NonO pathway.Arterioscler Thromb Vase Biol.2007;27(8):1760-7.
    25.Shen YH,Zhang L,Utama B,Wang J,Gan Y,Wang X,Wang J,Chen L,Vercellotti GM,Coselli JS,Mehta JL,Wang XL.Humann cytomegalovirus inhibits Akt-mediated eNOS activation through upregulating PTEN(phosphatase and tensin homolog deleted on chromosome 10).Cardiovasc Res.2006;69(2):502-11.
    26.Chen L,Shen YH,Wang X,Wang J,Gan Y,Chen N,Wang J,LeMaire SA,Coselli JS,Wang XL.Human prolyl-4-hydroxylase alpha(I) transcription is mediated by upstream stimulatory factors.J Biol Chem.2006;281(16):10849-55.
    27.Yamawaki H,Pan S,Lee RT,Berk BC.Fluid shear stress inhibits vascular inflammation by decreasing thioredoxininteracting protein in endothelial cells.J Clin Invest.2005;115(3):733-8.
    28.Zhang MX,Ou H,Shen YH,Wang J,Wang J,Coselli J,Wang XL.Regulation of endothelial nitric oxide synthase by small RNA.Proc Natl Acad Sci U S A.2005;102(47):16967-72.
    29.Zhang MX,Zhang C,Shen YH,Wang J,Li XN,Zhang Y,Coselli J,Wang XL.Biogenesis of short intronic repeat 27-nucleotide small RNA from endothelial nitric-oxide synthase gene.J Biol Chem.2008;283(21):14685-93.
    30. Schulze PC, Yoshioka J, Takahashi T, He Z, King GL, Lee RT. Hyperglycemia promotes oxidative stress through inhibition of thioredoxin function by thioredoxin-interacting protein. J Biol Chem. 2004; 279(29): 30369-30374.
    31. He X, Kan H, Cai L, Ma Q. Nrf2 is critical in defense against high glucose-induced oxidative damage in cardiomyocytes J Mol Cell Cardiol. 2009 ;46(1):47-58.
    32. Stoltzman CA, Peterson CW, Breen KT, Muoio DM, Billin AN, Ayer DE. Glucose sensing by MondoA:Mlx complexes: a role for hexokinases and direct regulation of thioredoxin-interacting protein expression. Proc Natl Acad Sci U S A. 2008; 105(19): 6912-6917.
    33. Griendling KK, Sorescu D, Lassegue B, Ushio-Fukai M. Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol. 2000; 20(10): 2175-2183.
    34. AsnatBD, Nava B. Proposed mechanisms for the induction of insulin resistance by oxidative stress. Antioxid Redox Signal. 2005; 7 (11 /12): 1553-1567.
    35. Chinta SJ, Rane A, Yadava N, Andersen JK, Nicholls DQ Polster BM. Reactive oxygen species regulation by AIF- and complex I-depleted brain mitochondria. Free Radic Biol Med. 2009; 46(7): 939-947.
    36. Zheng Z, Chen H, Ke G, Fan Y, Zou H, Sun X, Gu Q, Xu X, Ho PC. Protective effect of perindopril on diabetic retinopathy is associated with decreased vascular endothelial growth factor-to-pigment epithelium-derived factor ratio: involvement of a mitochondria-reactive oxygen species pathway. Diabetes. 2009; 58(4): 954-964.
    37. Forbes JM, Coughlan MT, Cooper ME. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes. 2008; 57(6): 1446-1454.
    38. Kumashiro N, Tamura Y, Uchida T, Ogihara T, Fujitani Y, Hirose T, Mochizuki H, Kawamori R, Watada H. Impact of oxidative stress and peroxisome proliferator-activated receptor gamma coactivator-1 alpha in hepatic insulin resistance. Diabetes. 2008; 57(8): 2083-2091.
    39. Busik JV, Mohr S, Grant MB. Hyperglycemia-induced reactive oxygen species toxicity to endothelial cells is dependent on paracrine mediators. Diabetes. 2008; 57(7): 1952-1965.
    40. Fardoun RZ. The use of vitamin E in type 2 diabetes mellitus. Clin Exp Hypertens. 2007; 29(3): 135-148.
    41. Guzik TJ, Mussa S, Gastaldi D, Sadowski J, Ratnatunga C, Pillai R, Channon KM. Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H Oxidase and endothelial nitric oxide synthase. Circulation. 2002; 105(14): 1656-1662.
    42. O'Donnell RW, Johnson DK, Ziegler LM, DiMattina AJ, Stone RI, Holland JA. Endothelial NADPH Oxidase: mechanism of activation by low-density lipoprotein. Endothelium. 2003; 10(6): 291-297.
    43. Neri S, Signorelli SS, Torrisi B, Pulvirenti D, Mauceri B, Abate G, Ignaccolo L, Bordonaro F, Cilio D, Calvagno S, Leotta C. Effects of antioxidant supp lementation on postp randial oxidative stress and endothelial dysfunction: a single-blind, 15-day clinical trial in patients with untreated type 2 diabetes, subjectswith impaired glucose tolerance, and healthy controls. Clin Ther. 2005; 27 (11): 1764-1731.
    44. Inoguchi T, Sonta T, Tsubouchi H, Etoh T, Kakimoto M, Sonoda N, Sato N, Sekiguchi N, Kobayashi K, Sumimoto H, Utsumi H, Nawata H. Protein kinase C-dependent increase in reactive oxygen species (ROS) production in vascular tissues of diabetes: role of vascular NAD(P)H Oxidase. J Am Soc Nephrol. 2003; 14(8 Suppl 3): S227-232.
    45. Srinivasan S, Yeh M, Danziger EC, Hatley ME, Riggan AE, Leitinger N, Berliner JA, Hedrick CC. Glucose regulates monocyte adhesion through endothelial p roduction of interleukin-8. Circ Res. 2003; 92 (4): 371-377.
    46. Uemura S, Matsushita H, Li W, Glassford AJ, Asagami T, Lee KH, Harrison DG, Tsao PS. Diabetes mellitus enhances vascular matrix metalloproteinase activity: role of oxidative stress.Circ Res. 2001; 88(12): 1291-1298.
    47. Coughlan MT, Thorburn DR, Penfold SA, Laskowski A, Harcourt BE, Sourris KC, Tan AL, Fukami K, Thallas-Bonke V, Nawroth PP, Brownlee M, Bierhaus A, Cooper ME, Forbes JM. RAGE-induced Cytosolic ROS promote mitochondrial superoxide generation in diabetes. J Am Soc Nephrol. 2009; 20(4): 742-752.
    48. Leloup C, Tourrel-Cuzin C, Magnan C, Karaca M, Castel J, Carneiro L, Colombani AL, Ktorza A, Casteilla L, Penicaud L. Mitochondrial reactive oxygen species are obligatory signals for glucose-induced insulin secretion. Diabetes. 2009; 58(3): 673-681.
    49. Yuan Z, Feng W, Hong J, Zheng Q, Shuai J, Ge Y. p38MAPK and ERK promote nitric oxide production in cultured human retinal pigmented epithelial cells induced by high concentration glucose. Nitric Oxide. 2009; 20(1): 9-15.
    50. Aguiari P, Leo S, Zavan B, Vindigni V, Rimessi A, Bianchi K, Franzin C, Cortivo R, Rossato M, Vettor R, Abatangelo G, Pozzan T, Pinton P, Rizzuto R. High glucose induces adipogenic differentiation of muscle-derived stem cells. Proc Natl Acad Sci U S A. 2008; 105(4): 1226-1231.
    51. Guo S, Bragina O, Xu Y, Cao Z, Chen H, Zhou B, Morgan M, Lin Y, Jiang BH, Liu KJ, Shi H. Glucose up-regulates HIF-1 alpha expression in primary cortical neurons in response to hypoxia through maintaining cellular redox status. J Neurochem. 2008; 105(5): 1849-1860.
    52. Esper RJ, Vilarino JO, Machado RA, Paragano A. Endothelial dysfunction in normal and abnormal glucose metabolism. Adv Cardiol. 2008; 45: 17-43.
    53. Patwari P, Higgins LJ, Chutkow WA, Yoshioka J, Lee RT. The interaction of thioredoxin with txnip evidene for formation of a mixed disulfide by disulfide exchange. J Biolo Chem. 2006 ; 281(31): 21884-21891.
    54. Liu Y, Min W. Thioredoxin promotes ASK1 ubiquitination and degradation to inhibit ASK1 - mediated apoptosis in a redox activity- independent manner. Circ Res. 2002; 90: 1259-1266.
    55. Minn AH, Hafele X, Shalev A. Thioredoxin-interacting protein is stimulated by glucose through a carbohydrate response element and induces-cell apoptosis. Endocrinology. 2005; 146: 2379-2405.
    56. Nishiyama A, Matsui M, Iwata S, Hirota K, Masutani H, Nakamura H, Takagi Y, Sono H, Gon Y, Yodoi J. Identification of Thioredoxin-binding Protein-2/Vitamin D3 Up-regulated Protein 1 as a Negative Regulator of Thioredoxin Function and Expression. J Biol Chem. 1999; 274 (31): 21645-21650.
    57. Noh DY, Ahn SJ, Lee RA, Kim SW, Park IA, Chae HZ. Overexpression of peroxiredoxin in human breast cancer. Anticancer Res. 2001; 21 (3B): 2085-2090.
    58. Matsuoka S, Tsuchiya H, Sakabe T, Watanabe Y, Hoshikawa Y, Kurimasa A, Itamochi H, Harada T, Terakawa N, Masutani H, Yodoi J, Shiota G. Involvement of thioredoxin-binding protein 2 in the antitumor activity of CD437. Cancer Sci. 2008; 99(12): 2485-2490.
    59. Billiet L, Furman C, Cuaz-Perolin C, Paumelle R, Raymondjean M, Simmet T, Rouis M. Thioredoxin-1 and its natural inhibitor, vitamin D3 up-regulated protein 1, are differentially regulated by PPARalpha in human macrophages. J Mol Biol. 2008; 384(3): 564-576.
    60. Okuyama H, Son A, Ahsan MK, Masutani H, Nakamura H, Yodoi J. Thioredoxin and thioredoxin binding protein 2 in the liver. IUBMB Life. 2008; 60(10): 656-660.
    61. Kim SY, Suh HW, Chung JW, Yoon SR, Choi I. Diverse functions of VDUP1 in cell proliferation, differentiation, and diseases. Cell Mol Immunol. 2007; 4(5): 345-351.
    62. Kaimul AM, Nakamura H, Masutani H, Yodoi J. Thioredoxin and thioredoxin-binding protein-2 in cancer and metabolic syndrome. Free Radic Biol Med. 2007; 43(6): 861-868.
    63. Turturro F, Friday E, Welbourne T. Hyperglycemia regulates thioredoxin-ROS activity through induction of thioredoxin-interacting protein (TXNIP) in metastatic breast cancer-derived cells MDA-MB-231. BMC Cancer. 2007; 7: 96.
    64. Yoshida T, Nakamura H, Masutani H, Yodoi J. The involvement of thioredoxin and thioredoxin binding protein-2 on cellular proliferation and aging process. Ann N Y Acad Sci. 2005; 1055: 1-12.
    65. Yamawaki H, Pan S, Lee RT, Berk BC. Fluid shear stress inhibits vascular inflammation by decreasing thioredoxin-interacting protein in endothelial cells. J Clin Invest. 2005; 115(3): 733-738.
    66. Cheng GC, Schulze PC, Lee RT, Sylvan J, Zetter BR, Huang H. Oxidative stress and thioredoxin-interacting protein promote intravasation of melanoma cells. Exp Cell Res. 2004; 300(2): 297-307.
    67. Schulze PC, De Keulenaer GW, Yoshioka J, Kassik KA, Lee RT. Vitamin D3-upregulated protein-1 (VDUP-1) regulates redox-dependent vascular smooth muscle cell proliferation through interaction with thioredoxin. Circ Res. 2002; 91(8): 689-695.
    68. Bodnar JS, Chatterjee A, Castellani LW, Ross DA, Ohmen J, Cavalcoli J, Wu C, Dains KM, Catanese J, Chu M, Sheth SS, Charugundla K, Demant P, West DB, de Jong P, Lusis AJ. Positional cloning of the combined hyperlipidemia gene Hyplipl. Nat Genet. 2002; 30: 110-116.
    69. Schulze PC, Yoshioka J, Takahashi T, He Z, King GL, Lee RT. Hyperglycemia promotes oxidative stress through inhibition of thioredoxin function by thioredoxin-interacting protein. J Biol Chem. 2004; 279(29): 30369-30374.
    70. M. Kobayashi-Miura, K. Shioji, Y. Hoshino, H. Masutani, H. Nakamura, J. Yodoi, Oxygen sensing and redox signaling: the role of thioredoxin in embryonic development and cardiac diseases, Am. J. Physiol., Heart Circ. Physiol. 2007; 292: H2040-H2050.
    71. Maulik N, Das DK. Emerging potential of thioredoxin and thioredoxin interacting proteins in various disease conditions. Biochim Biophys Acta. 2008; 1780(11): 1368-1382.
    72. Wang XS, Diener K, Manthey CL, Wang S, Rosenzweig B, Bray J, Delaney J, Cole CN, Chan-Hui PY, Mantlo N, Lichenstein HS, Zukowski M, Yao Z. Molecular cloning and characterization of a novel p38 mitogen-activated protein kinase. J Biol Chem. 1997; 272(38): 23668-23674.
    73. Enslen H, Brancho DM, Davis RJ. Molecular determinants that mediate selective activation of p38 MAP kinase isoforms. EMBO J. 2000; 19(6): 1301-1311.
    74. Mikkelsen SS, Jensen SB, Chiliveru S, Melchjorsen J, Julkunen I, Gaestel M, Arthur JS, Flavell RA, Ghosh S, Paludan SR. RIG-I-mediated activation of P38 MAPK is essential for viral induction of IFN and activation of dendritic cells: Dependence on TRAF2 and TAK1. J Biol Chem. 2009 Feb 18.
    75. Kwon CH, Park JY, Kim TH, Woo JS, Kim YK. Ciglitazone induces apoptosis via activation of p38 MAPK and AIF nuclear translocation mediated by reactive oxygen species and Ca(2+) in opossum kidney cells. Toxicology. 2009; 257(1-2): 1-9.
    76. Khiem D, Cyster JG, Schwarz JJ, Black BL. A p38 MAPK-MEF2C pathway regulates B-cell proliferation. Proc Natl Acad Sci U S A. 2008; 105(44): 17067-17072.
    77. Scott MJ, Billiar TR. Beta2-integrin-induced p38 MAPK activation is a key mediator in the CD14/TLR4/MD2-dependent uptake of lipopolysaccharide by hepatocytes. J Biol Chem. 2008; 283(43): 29433-29446.
    78. Iwai T, Murai J, Yoshikawa H, Tsumaki N. Smad7 Inhibits chondrocyte differentiation at multiple steps during endochondral bone formation and down-regulates p38 MAPK pathways. J Biol Chem. 2008; 283(40): 27154-27164.
    79. Sanchez Y, Amran D, Fernandez C, de Blas E, Aller P. Genistein selectively potentiates arsenic trioxide-induced apoptosis in human leukemia cells via reactive oxygen species generation and activation of reactive oxygen species-inducible protein kinases (p38-MAPK, AMPK). Int J Cancer. 2008; 123(5): 1205-1214.
    80. Thornton TM, Pedraza-Alva G, Deng B, Wood CD, Aronshtam A, Clements JL, Sabio G, Davis RJ, Matthews DE, Doble B, Rincon M. Phosphorylation by p38 MAPK as an alternative pathway for GSK3beta inactivation. Science. 2008; 320(5876): 667-670.
    81. Tsiani E , Lekas P , Whiteside C. High glucose-enhanced activation of mesangial cell p38 MAPK by ET21, ANG-2, and platelet-derived growth factor. Am J Phisiol Endocrinol Metab. 2002; 282: E161.
    82. WilmerW, Casio FG. DNA binding of AP-1 is increased human mesangial cells cultured in high glucose concentrations. Kidney Int. 1998; 53 (5): 1172-1181.
    83. Wilmer WA, Dixon CL, Hebert C. Chronic exposure of human mesangial cells to high glucose environments activates the p38 MAPK pathway. Kidney Int. 2001; 60(3): 858-871.
    84. Cheung WD, Hart GW. AMP-activated protein kinase and p38 MAPK activate O-GlcNAcylation of neuronal proteins during glucose deprivation. J Biol Chem. 2008; 283(19): 13009-13020.
    85. Bassi R, Heads R, Marber MS, Clark JE. Targeting p38-MAPK in the ischaemic heart: kill or cure? Curr Opin Pharmacol. 2008; 8(2):141-146.
    86. Chen CL, Lin CF, Chang WT, Huang WC, Teng CF, Lin YS. Ceramide induces p38 MAPK and JNK activation through a mechanism involving a thioredoxin-interacting protein-mediated pathway. Blood. 2008; 111(8): 4365-4374.
    87. Noguchi T, Ishii K, Fukutomi H, Naguro I, Matsuzawa A, Takeda K, Ichijo H. Requirement of reactive oxygen species-dependent activation of ASK1-p38 MAPK pathway for extracellular ATP-induced apoptosis in macrophage. J Biol Chem. 2008; 283(12): 7657-7665.
    88. Tao L, Gao E, Bryan NS, Qu Y, Liu HR, Hu A, Christopher TA, Lopez BL, Yodoi J, Koch WJ, Feelisch M, Ma XL. Cardioprotective effects of thioredoxin in myocardial ischemia and reperfusion: role of S-nitrosation. Proc Natl Acad Sci U SA. 2004; 101(31): 11471-11476.
    89. Hsieh CC, Papaconstantinou J. Thioredoxin-ASK1 complex levels regulate ROS-mediated p38 MAPK pathway activity in livers of aged and long-lived Snell dwarf mice. FASEB J. 2006; 20(2): 259-268.
    90. Kurata S. Selective activation of p38 MAPK cascade and mitotic arrest caused by low level oxidative stress. J Biol Chem. 2000; 275(31): 23413-23416.
    91. Hattangadi SM, Lodish HF. Regulation of erythrocyte lifespan: do reactive oxygen species set the clock? : J Clin Invest. 2007; 117(8): 2075-2077.
    92. Arden KC. FoxOs in tumor suppression and stem cell maintenance. Cell. 2007; 128:235-237.
    93. Zheng X, Yang Z, Yue Z, Alvarez JD, Sehgal A. FOXO and insulin signaling regulate sensitivity of the circadian clock to oxidative stress. Proc Natl Acad Sci U S A.2007; 104: 15899-15904.
    94. Tothova Z, Kollipara R, Huntly BJ, Lee BH, Castrillon DH, Cullen DE, McDowell EP, Lazo-Kallanian S, Williams IR, Sears C, Armstrong SA, Passegue E, DePinho RA, Gilliland DG. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell. 2007; 128: 325-339.
    95. Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, Greenberg ME. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science. 2004; 303: 2011-2015.
    96. Lehtinen MK, Yuan Z, Boag PR, Yang Y, Villen J, Becker EB, DiBacco S, de la Iglesia N, Gygi S, Blackwell TK, Bonni A. A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell. 2006; 125:987-1001.
    97. Nakamura T, Sakamoto K. Forkhead transcription factor FOXO subfamily is essential for reactive oxygen species-induced apoptosis. Mol Cell Endocrinol. 2008; 281 :47-55.
    98. van der Horst A, Burgering BM. Stressing the role of FoxO proteins in lifespan and disease. Nat Rev Mol Cell Biol. 2007; 8(6): 440-450.
    99. de Candia P, Blekhman R, Chabot AE, Oshlack A, Gilad Y. A combination of genomic approaches reveals the role of FOXO1a in regulating an oxidative stress response pathway. PLoS ONE. 2008; 3(2): e1670.
    100. Chan HM, La Thangue NB. p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J. Cell Sci. 2001; 114: 2363-2373.
    101. Iyer NG, Ozdag H, Caldas C. p300/CBP and cancer. Oncogene. 2004; 23: 4225-4231.
    102. Sharma N, Nyborg JK. The coactivators CBP/p300 and the histone chaperone NAP1 promote transcription-independent nucleosome eviction at the HTLV-1 promoter. Proc Natl Acad Sci U S A. 2008; 105(23): 7959-7963.
    103. Asada S, Daitoku H, Matsuzaki H, Saito T, Sudo T, Mukai H, Iwashita S, Kako K,Kishi T,Kasuya Y,Fukamizu A.Mitogen-activated protein kinases,Erk and p38,phosphorylate and regulate Foxol.Cell Signal.2007;19(3):519-527.
    104.Kino T,De Martino MU,Charmandari E,Ichijo T,Outas T,Chrousos GP.HIV-1accessory protein Vpr inhibits the effect of insulin on the Foxo subfamily of forkhead transcription factors by interfering with their binding to 14-3-3 proteins:potential clinical implications regarding the insulin resistance of HIV-1-infected patients.Diabetes.2005;54(1):23-31.
    105.Yang H,Zhao R,Yang HY,Lee MH.Constitutively active FOXO4 inhibits Akt activity,regulates p27 Kip1 stability,and suppresses HER2-mediated tumorigenicity.Oncogene.2005;24(11):1924-1935.
    1. Madamanchi NR, Runge MS. Mitochondrial dysfunction in atherosclerosis. Circ Res. 2007;100:460-73.
    2. Zou MH, Hou XY, Shi CM, Nagata D, Walsh K, Cohen RA. Modulation by peroxynitrite of Akt- and AMP-activated kinase-dependent Ser1179 phosphorylation of endothelial nitric oxide synthase. J Biol Chem. 2002;277: 32552-7.
    3. Gaskin FS, Kamada K, Yusof M, Korthuis RJ. 5'-AMP-activated protein kinase activation prevents postischemic leukocyte-endothelial cell adhesive interactions. Am J Physiol Heart Circ Physiol. 2007;292:H326-32.
    4. Ido Y, Carling D, Ruderman N. Hyperglycemia-induced apoptosis in human umbilical vein endothelial cells: inhibition by the AMP-activated protein kinase activation. Diabetes. 2002;51:159-67.
    5. An Z, Wang H, Song P, Zhang M, Geng X, Zou MH. Nicotine-induced activation of AMP-activated protein kinase inhibits fatty acid synthase in 3T3L1 adipocytes: a role for oxidant stress. J Biol Chem. 2007;282:26793-801.
    6. Blattler SM, Rencurel F, Kaufmann MR, Meyer UA. In the regulation of cytochrome P450 genes, phenobarbital targets LKB1 for necessary activation of AMP-activated protein kinase. Proc Natl Acad Sci U S A. 2007; 104:1045-50.
    7. Zhang M, Dong Y, Xu J, Xie Z, Wu Y, Song P, Guzman M, Wu J, Zou MH. Thromboxane receptor activates the AMP-activated protein kinase in vascular smooth muscle cells via hydrogen peroxide. Circ Res. 2008; 102:328-37.
    8. Kukidome D, Nishikawa T, Sonoda K, Imoto K, Fujisawa K, Yano M, Motoshima H, Taguchi T, Matsumura T, Araki E. Activation of AMP-activated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes. 2006;55:120-7.
    9. Ouedraogo R, Wu X, Xu SQ, Fuchsel L, Motoshima H, Mahadev K, Hough K, Scalia R, Goldstein BJ. Adiponectin suppression of high-glucose-induced reactive oxygen species in vascular endothelial cells: evidence for involvement of a cAMP signaling pathway. Diabetes. 2006;55:1840-6.
    10. Ceolotto G, Gallo A, Papparella I, Franco L, Murphy E, Iori E, Pagnin E, Fadini GP, Albiero M, Semplicini A, Avogaro A. Rosiglitazone reduces glucose-induced oxidative stress mediated by NAD(P)H Oxidase via AMPK-dependent mechanism. Arterioscler Thromb Vasc Biol. 2007;27:2627-33.
    11. Shen YH, Godlewski J, Zhu J, Sathyanarayana P, Leaner V, Birrer MJ, Rana A, Tzivion G. Cross-talk between JNK/SAPK and ERK/MAPK pathways: sustained activation of JNK blocks ERK activation by mitogenic factors. J Biol Chem. 2003;278:26715-21.
    12. Shen YH, Zhang L, Gan Y, Wang X, Wang J, Lemaire SA, Coselli JS, Wang XL. Up-regulation of PTEN (Phosphatase and Tensin Homolog Deleted on Chromosome Ten) Mediates p38 MAPK Stress Signal-induced Inhibition of Insulin Signaling: A CROSS-TALK BETWEEN STRESS SIGNALING AND INSULIN SIGNALING IN RESISTIN-TREATED HUMAN ENDOTHELIAL CELLS. J Biol Chem. 2006;281:7727-36.
    13. Koshkin V, Wang X, Scherer PE, Chan CB, Wheeler MB. Mitochondrial functional state in clonal pancreatic beta-cells exposed to free fatty acids. J Biol Chem. 2003;278:19709-15.
    14. Yamawaki H, Haendeler J, Berk BC. Thioredoxin: a key regulator of cardiovascular homeostasis. Circ Res. 2003;93:1029-33.
    15. Nagata D, Mogi M, Walsh K. AMP-activated protein kinase (AMPK) signaling in endothelial cells is essential for angiogenesis in response to hypoxic stress. J Biol Chem. 2003;278:31000-6.
    16. Guo D, Chien S, Shyy JY. Regulation of endothelial cell cycle by laminar versus oscillatory flow: distinct modes of interactions of AMP-activated protein kinase and Akt pathways. CircRes. 2007;100:564-71.
    17. Depre C, Wang L, Sui X, Qiu H, Hong C, Hedhli N, Ginion A, Shah A, Pelat M, Bertrand L, Wagner T, Gaussin V, Vatner SF. H11 kinase prevents myocardial infarction by preemptive preconditioning of the heart. Circ Res. 2006;98:280-8.
    18. Civitarese AE, Ukropcova B, Carling S, Hulver M, DeFronzo RA, Mandarino L, Ravussin E, Smith SR. Role of adiponectin in human skeletal muscle bioenergetics. Cell Metab. 2006;4:75-87.
    19. Shioji K, Kishimoto C, Nakamura H, Masutani H, Yuan Z, Oka S, Yodoi J. Overexpression of thioredoxin-1 in transgenic mice attenuates adriamycin-induced cardiotoxicity. Circulation. 2002; 106:1403-9.
    20. Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, Kawabata M, Miyazono K, Ichijo H. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1.Embo J. 1998; 17:2596-606.
    21. Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, Greenberg ME. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science. 2004;303:2011-5.
    22. van der Horst A, de Vries-Smits AM, Brenkman AB, van Triest MH, van den Broek N, Colland F, Maurice MM, Burgering BM. FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nat Cell Biol. 2006;8:1064-73.
    23. Almeida M, Han L, Martin-Millan M, O'Brien CA, Manolagas SC. Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting beta-catenin from T cell factor- to forkhead box O-mediated transcription. J Biol Chem. 2007;282:27298-305.
    24. Owusu-Ansah E, Yavari A, Mandal S, Banerjee U. Distinct mitochondrial retrograde signals control the G1-S cell cycle checkpoint. Nat Genet. 2008;40:356-61.
    25. Nakamura T, Sakamoto K. Forkhead transcription factor FOXO subfamily is essential for reactive oxygen species-induced apoptosis. Mol Cell Endocrinol. 2008;281:47-55.
    26. Lehtinen MK, Yuan Z, Boag PR, Yang Y, Villen J, Becker EB, DiBacco S, de la Iglesia N, Gygi S, Blackwell TK, Bonni A. A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell.2006;125:987-1001.
    27. Kops GJ, Dansen TB, Polderman PE, Saarloos I, Wirtz KW, Coffer PJ, Huang TT, Bos JL, Medema RH, Burgering BM. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature. 2002;419:316-21.
    28. Tothova Z, Kollipara R, Huntly BJ, Lee BH, Castrillon DH, Cullen DE, McDowell EP, Lazo-Kallanian S, Williams IR, Sears C, Armstrong SA, Passegue E, DePinho RA, Gilliland DG. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell. 2007;128:325-39.
    29. Marinkovic D, Zhang X, Yalcin S, Luciano JP, Brugnara C, Huber T, Ghaffari S. Foxo3 is required for the regulation of oxidative stress in erythropoiesis. J Clin Invest. 2007; 117:2133-44.
    30. Hattangadi SM, Lodish HF. Regulation of erythrocyte lifespan: do reactive oxygen species set the clock? J Clin Invest. 2007;117:2075-7.
    31. Arden KC. FoxOs in tumor suppression and stem cell maintenance. Cell. 2007;128:235-7.
    32. Zheng X, Yang Z, Yue Z, Alvarez JD, Sehgal A. FOXO and insulin signaling regulate sensitivity of the circadian clock to oxidative stress. Proc Natl Acad Sci U S A. 2007;104:15899-904.
    33. Alcendor RR, Gao S, Zhai P, Zablocki D, Holle E, Yu X, Tian B, Wagner T, Vatner SF, Sadoshima J. Sirtl regulates aging and resistance to oxidative stress in the heart. Circ Res. 2007; 100:1512-21.
    34. Greer EL, Oskoui PR, Banko MR, Maniar JM, Gygi MP, Gygi SP, Brunet A. The energy sensor AMP-activated protein kinase directly regulates the mammalian F0X03 transcription factor. J Biol Chem. 2007;282:30107-19.
    35. Greer EL, Dowlatshahi D, Banko MR, Villen J, Hoang K, Blanchard D, Gygi SP, Brunet A. An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr Biol. 2007; 17:1646-56.
    [1] Ceolotto G, Gallo A, Papparella I, Franco L, Murphy E, Iori E, Pagnin E, Fadini GP, Albiero M, Semplicini A, Avogaro A. Rosiglitazone reduces glucose-induced oxidative stress mediated by NAD(P)H Oxidase via AMPK-dependent mechanism. Arterioscler Thromb Vasc Biol. 2007 Dec;27(12):2627-33.
    
    [2] Paravicini TM, Touyz RM. NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities. Diabetes Care. 2008 Feb;31 Suppl 2:S170-80.
    
    [3] Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res. 2000 Nov 10;87(10):840-4
    
    [4] H. Yamawaki, J. Haendeler, B.C. Berk, Thioredoxin: a key regulator of cardiovascular homeostasis, Circ. Res. 93 (2003) 1029-1033.
    
    [5] J. Nordberg, E.S. Arner, Reactive oxygen species, antioxidants, and the mammalian thioredoxin system, Free Radic. Biol. Med. 31 (2001) 1287-1312.
    
    [6] K.S. Chen, H.F. DeLuca, Isolation and characterization of a novel cDNA from HL-60 cells treated with 1,25-dihydroxyvitamin D-3, Biochim. Biophys. Acta 1219 (1994)26-32.
    
    [7] A. Nishiyama,M. Matsui, S. Iwata, K. Hirota, H. Masutani, H. Nakamura, Y. Takagi, H. Sono,Y. Gon, J.Yodoi, Identification of thioredoxin-binding protein- 2/ vitamin D (3) up-regulated protein 1 as a negative regulator of thioredoxin function and expression, J. Biol. Chem. 274 (1999) 21645-21650.
    
    [8] Junn E, Han SH, Im JY, Yang Y, Cho EW, Urn HD, Kim DK, Lee KW, Han PL, hee SG, Choi I Vitamin D3 up-regulated protein 1 mediates oxidative stress via suppressing the thioredoxin function. J Immunol. 2000 Jun 15; 164( 12):6287-95.
    
    [9] T. Turoczi, V.W. Chang, R.M. Engelman, N. Maulik, Y.S. Ho, D.K. Das, Thioredoxin redox signaling in the ischemic heart: an insight with transgenic mice overexpressing Trx1, J. Mol. Cell. Cardiol. 35 (2003) 695-704.
    
    [10] Y.Wang,G.W.DeKeulenaer, R.T. Lee,Vitamin D(3)-up-regulated protein-1 is a stress-responsive gene that regulates cardiomyocyte viability through interaction with thioredoxin, J. Biol. Chem. 277 (2002) 26496-26500.
    
    [11] Schulze PC, Yoshioka J, Takahashi T, He Z, King GL, Lee RT. Hyperglycemia promotes oxidative stress through inhibition of thioredoxin function by thioredoxin- interacting protein. J Biol Chem. 2004 Jul 16;279(29):30369-74. Epub 2004 May 5.
    
    [12] Holmgren A, Bjornstedt M. Thioredoxin and thioredoxin reductase. Methods Enzymol. 1995;252:199-208.
    
    [13] Papadia S, Soriano FX, Leveille F, Martel MA, Dakin KA, Hansen HH, Kaindl A, Sifringer M, Fowler J, Stefovska V, McKenzie G, Craigon M, Corriveau R, Ghazal P, Horsburgh K, Yankner BA, Wyllie DJ, Ikonomidou C, Hardingham GE. Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses. Nat Neurosci. 2008 Apr;11(4):476-87.
    
    [14] Hink U, Li H, Mollnau H, Oelze M, Matheis E, Hartmann M, Skatchkov M, Thaiss F, Stahl RAK, Warnholtz A, Meinertz T, Griendling KK, Harrison DG, Forstermann U, Munzel T: Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res 88: el4-e22, 2001
    
    [15] Kim YK, Lee MS, Son SM, Kim IJ, Lee WS, Rhim BY, Hong KW, Kim CD: Vascular NADH Oxidase is involved in impaired endothelium-dependent vasodilation in OLETF rats, a model of type 2 diabetes. Diabetes 51: 522-527, 2002
    
    [16] Griendling KK, Sorescu D, Lassegue B, Ushio-Fukai M. Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol. 2000 Oct; 20(10):2175-83
    
    [17] Tao L, Gao E, Bryan NS, Qu Y, Liu HR, Hu A, Christopher TA, Lopez BL, Yodoi J, Koch WJ, Feelisch M, Ma XL. Cardioprotective effects of thioredoxin in myocardial ischemia and reperfusion: role of S-nitrosation. Proc Natl Acad Sci U S A. 2004Aug3;101(31):11471-6. Epub 2004 Jul 26.
    
    [18] Hsieh CC, Papaconstantinou J. Thioredoxin-ASK1 complex levels regulate ROS-mediated p38 MAPK pathway activity in livers of aged and long-lived Snell dwarf mice. FASEB J. 2006 Feb;20(2):259-68.
    
    [19] Srinivasan S, Bolick DT, Hatley ME, Natarajan R, Reilly KB, Yeh M, Chrestensen C, Sturgill TW, Hedrick CC. Glucose regulates interleukin-8 production in aortic endothelial cells through activation of the p38 mitogen-activated protein kinase pathway in diabetes. J Biol Chem. 2004 Jul 23;279(30):31930-6. Epub 2004 May 15.
    
    [20] Hattangadi SM, Lodish HF. Regulation of erythrocyte lifespan: do reactive oxygen species set the clock? : J Clin Invest. 2007 Aug;117(8):2075-7
    
    [21] Arden KC. FoxOs in tumor suppression and stem cell maintenance. Cell. 2007; 128:235-7.
    
    [22] Zheng X, Yang Z, Yue Z, Alvarez JD, Sehgal A. FOXO and insulin signaling regulate sensitivity of the circadian clock to oxidative stress. Proc Natl Acad Sci U S A.2007; 104:15899-904.
    
    [23] Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, Greenberg ME. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science. 2004;303:2011-5.
    
    [24] Lehtinen MK, Yuan Z, Boag PR, Yang Y, Villen J, Becker EB, DiBacco S, de la Iglesia N, Gygi S, Blackwell TK, Bonni A. A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell. 2006; 125: 987-1001.
    
    [25] van der Horst A, Burgering BM. Stressing the role of FoxO proteins in lifespan and disease. Nat Rev Mol Cell Biol. 2007 Jun;8(6):440-50.
    
    [26] Nakamura T, Sakamoto K. Forkhead transcription factor FOXO subfamily is essential for reactive oxygen species-induced apoptosis. Mol Cell Endocrinol. 2008; 281:47-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700