蛋白激酶D1在高血压左室重塑中的作用及其信号转导机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文Ⅰ自发性高血压大鼠心肌组织蛋白激酶D1的表达与左室重塑的关系及阿托伐他汀的干预研究
     背景
     高血压左心室重塑是心脏事件重要的独立危险因素,与心律失常、猝死、心力衰竭等密切相关。高血压病时心脏的后负荷增加,血流动力学改变伴随神经-内分泌异常,左心室肥厚、心肌纤维化以及心腔扩大,此过程即为左心室重塑。早期左室重塑是对血流动力学负荷增加的一种适应性代偿反应,能降低室壁张力,维持甚至增加心排血量。但到后期,进展到左室肥厚时则成为危险因素作为疾病进程重要机制之一,左心室重塑导致了临床症状的恶化,是心力衰竭发生、发展的基础。近年来,随着分子细胞生物学的发展,对心衰发生发展机制的研究已有了新的认识,目前认为导致心衰不断进展的基本机制是心肌重塑。心肌重塑是一个极为复杂的病理过程,其确切的机制仍不十分明确,研究发现,包括神经内分泌激活、氧化应激、细胞因子的活化等多种因素参与。其中,细胞因子的活化对心肌重塑的调控作用正日益受到重视。高血压发展过程中可出现心肌肥厚、心肌纤维化等左室重塑的变化,其发病机制以及所涉及的信号传导途径是心血管研究领域的热点问题之一。
     蛋白激酶D(protein kinase D,PKD)作为一类特殊蛋白激酶家族,从蛋白激酶C家族中独立出来,其在细胞间信息传递过程中发挥的重要作用近几年才逐渐为我们所认识。PKD家族主要包括PKD1、PKD2,PKD3等三个成员。作为Ca~+/钙调蛋白依赖性蛋白激酶,PKD1与PKD3又分别称作PKC_μ和PKC_ν。有研究发现,受生长因子、GPCR拮抗剂、佛波酯等的刺激,PKD活化,PKD1可能参与信号调节激酶ERK和JNK途径。Friederike等人对研究表明,腺病毒转染增强成年大鼠心室肌细胞PKD1表达后发现,PKD1可以使肌钙蛋白I磷酸化,同时降低肌丝Ca~+的敏感性,提示PKD1调节心室肌细胞的功能。PKD1的活化诱导PKD1的质膜转位,通过RIN1磷酸化和封锁与Ras的结合激活Ras-Raf-MEK.ERK途径,可能通过磷酸化C-Jun下调MEKK-MKK-JNK途径,进而调节细胞的增殖和分化。Fielitz等人发现PKD1敲除小鼠模型中,PKD1基因缺失使心肌肥厚明显减轻,心功能有改善。
     PKD1在自发性高血压大鼠心肌组织中的活性表达会是什么样呢?它是否在左室重塑过程中起到关键作用呢?对于PKD1在左室重塑中的作用机制还不是很明确。截止目前,在国内外文献中尚未发现对上述相关问题的研究。
     近年来,对HMG-CoA还原酶抑制剂——他汀类药物的研究表明:该类药物除了本身的降脂效应外,还具有独立于调脂以外的多种效应。本研究应用阿托伐他汀观察其在自发性高血压大鼠(SHR)动物模型中对SHR左室重塑的影响,评价阿托伐他汀在高血压心肌重塑发生发展中的作用,探讨他汀类药物与PKD1通路间的相关关系。
     目的
     1.验证自发性高血压大鼠左室肥厚、心肌纤维化的发生发展;
     2.探讨蛋白激酶D1在自发性高血压大鼠模型心肌组织中的表达;
     3.探讨自发性高血压大鼠心肌组织的蛋白激酶D1活性表达与左室肥厚、心肌纤维化的相关性。
     4.评价阿托伐他汀在高血压心肌重塑发生发展中的作用及与PKD1的关系。
     方法
     8周龄WKY大鼠28只、自发性高血压(SHR)大鼠41只。WKY大鼠随机分为四组,A组:8周龄(n=7只):B组:16周龄(n=7只);C组:24周龄(n=7只),G组:WKY安慰剂(n=7只)。SHR大鼠随机分为五组:D组:8周龄(n=7只);E组:16周龄(n=7只);F组:24周龄(n=7只);H组:SHR安慰剂(n=10只),I组:SHR阿托伐他汀(n=10只)。以标准大鼠饲料喂养及普通饮水。另外,WKY安慰剂组、SHR安慰剂组及SHR阿托伐他汀治疗组,每天以蒸馏水或阿托伐他汀(50 mg·kg~(-1)·d~(-1))分别灌胃,喂养16周。于8、16、24周处死动物,留取心肌组织标本备用。实验过程中,进行以下检测:(1)各组大鼠每隔2周测量体重及尾动脉血压一次:(2)分别于喂养前、喂养至16周、24周抽血测定空腹血脂;(3)测定各组大鼠LVM及LVMI值;(4)分别于实验开始前、实验末进行常规超声心动图检查,测定左室舒张末期内径(LVEDD)、左室收缩末期内径(LVESD)、室间隔舒张末期厚度(IVSTd)、左室后壁舒张末期厚度(LVPWTd),同时计算相对室壁厚度(RWT)=(IVSTd+LVPWTd)/LVEDD、左室射血分数(LVEF);(5)于实验末做心肌组织超微结构和病理学检查。(6)Westen blot法检测PKD1、p-PKD1744/748、p-PKD1916蛋白的表达及与心肌肥厚各项指标相关性。(7)心肌胶原定性和定量分析及与PKD1、磷酸化PKD1的相关性。
     结果:
     1.实验动物基本情况:实验过程中共有3只大鼠死亡,WKY大鼠16周龄组一只,SHR大鼠组16及24周龄组各一只。在普通喂养10~24周内死亡。SHR阿托伐他汀治疗组无死亡。共66只大鼠完成实验,其中WKY组27只,SHR组39只。
     2.各组大鼠基本指标比较
     喂养前,各组大鼠体重、尾动脉收缩压、血脂均无差异(P>0.05)。16周、24周后,与WKY对照组及8周龄SHR组比较16周SHR组、24周SHR大鼠组尾动脉收缩压升高明显,差异有显著性意义(P<0.01);SHR阿托伐他汀治疗组尾动脉收缩压较WKY对照组及8周龄SHR组明显升高,有显著性差异(P<0.01),而与16周SHR组水平无明显差异(P>0.05)。
     虽然SHR组与WKY组比较,未干预各组大鼠体重、血甘油三酯、总胆固醇及高密度脂蛋白分别有降低趋势,但各组间差异无显著性统计学意义(P>0.05)。干预各组大鼠中SHR阿托伐他汀组血清TC,TG及HDL均较WKY安慰剂、SHR安慰剂组明显降低,差异有统计学意义(P<0.05~0.01)。
     3.测定各组大鼠LVM及LVMI值
     随着周龄的增加,与同龄WKY大鼠比较,SHR大鼠LVM及LVMI值逐渐升高,表明高血压组大鼠左心室发生明显肥厚。SHR阿托伐他汀组与WKY安慰剂组相比,LVM及LVMI值无明显差异(P>0.05),而与SHR安慰剂组相比具有显著性差异(P<0.01),表明阿托伐伐他汀对SHR高血压的左室肥厚有逆转作用。
     4.超声心动图检查
     分别于喂养前和喂养至16、24周后行超声心动图检查。由专人采用美国CATEMAY超声诊断仪,测取连续3个心动周期的舒张期室间隔厚度(IVSTd)、左室后壁厚度(LVPWT)和左心室舒张未期内径(LVEDD),取其均值。测定左室射血分数(LVEF)。
     SHR大鼠16周龄组与24周龄组IVSd、PWT、LVM、LVMI均较WKY大鼠各周龄组及SHR大鼠8周龄组明显升高,有显著性差异(P<0.01)。LVEF各组没有显著性差异。阿托伐他汀组IVSd、PWT、LVM、LVMI值与SHR16周组比较无明显差异,而较SHR24周组明显减低(P<0.05)。
     5.心肌组织病理观察
     HE染色显示:WKY大鼠组心肌细胞体积较小,大小均一,饱满,排列较整齐;SHR大鼠组心肌细胞体积变大,大小不均一,形态不规则,排列紊乱;细胞壁不完全清楚,细胞相交处可见融合。随着周龄的增加,上述心肌细胞表现愈加明显。
     6.Westen blot检测各组心肌组织中PKD1及磷酸化PKD1的表达
     与同周龄WKY对照组相比,SHR8、16、24周龄组大鼠心肌组织中p-PKD1744/748、p-PKD1916表达明显升高(P<0.01);随着周龄的增加SHR组p-PKD1744/748、p-PKD1916表达水平逐渐升高(P<0.01)。同期WKY各组大鼠的p-PKD1744/748、p-PKD1916没有显著性变化。SHR阿托伐他汀组的磷酸化PKD1较SHR24周组的表达减弱,有统计学意义(P<0.01)。
     SHR各组PKD1表达无明显变化。
     相关性分析显示,SHR组p-PKD1744/748、p-PKD1916表达与IVST、LVM、LVMI呈明显的正相关(r=0.74,P<0.01)。
     7.心肌纤维化定性及定量分析
     Masson染色胶原含量的检测:WKY组心肌纤维排列整齐、紧致,小动脉周围少量胶原沉积,但很少向周围间质延伸,心肌间质内胶原多呈散在或长条索状分布;SHR组与WKY组比较,心肌细胞肿大,肌纤维排列疏松紊乱,血管周围及心肌间质胶原显著增多,且交联成网格状。阿托伐他汀组心肌细胞肿大的现象明显减少。
     定量分析心肌组织羟脯氨酸含量、心肌胶原容积分数(CVF)和心肌内血管周围胶原面积(PVCA),并对所得指标进行相关分析。检测结果为SHR大鼠D、E、F组心肌羟脯氨酸含量随着周龄的增加。与同龄WKY对照组相比,SHR16、24周龄组左室心肌组织胶原含量明显升高(P<0.01)。阿托伐他汀用药组左室心甲橹涸拷蟂HR24周龄组明显减低(P<0.05)。
     相关性分析显示:SHR组大鼠的左室心肌组织胶原含量与周龄及p-PKD1744/748表达、p-PKD1916表达、IVST、PWT、LVM、LVMI呈明显的正相关(r为0.746,P<0.01,),而与PKD1表达无明显相关性。
     结论
     1.SHR大鼠随着喂养时间延长呈增龄性心肌肥厚和心肌纤维化,为高血压左室重塑发病机制的研究提供了可靠动物模型平台。
     2.SHR大鼠心肌组织中磷酸化PKD1表达升高,且与心肌肥厚相关指标呈明显正相关,提示磷酸化PKD1参与了自发性高血压大鼠心肌肥厚的发生发展过程。
     3.自发性高血压大鼠心肌组织纤维化与p-PKD1有相关性。
     4.阿托伐他汀可以抑制自发性高血压大鼠左室重塑的发展,其作用靶点可能与PKD1有关。
     论文Ⅱ蛋白激酶D1在血管紧张素Ⅱ诱导心肌细胞肥大、心肌成纤维细胞增殖和胶原合成中的作用及其信号转导机制
     背景
     心肌重构是一系列复杂的分子及细胞学的改变引起的心肌结构及功能的重要变化,这些变化主要包括:心肌重构的结构改变,表现为心室腔的扩大,室壁增厚及心室腔几何构型的改变。当后负荷增加时,心肌在收缩期压力超负荷,心室壁张力增加,心肌细胞中肌小节数量增加成横向排列,结果细胞的直径增大导致心室壁增厚,心室腔相对变小。而前负荷增加时,心腔容量超负荷,舒张期室壁张力升高,肌小节数量增多并呈纵向排列,细胞变长,心腔呈离心性重构。Ganau等对未经治疗的高血压病患者按超声测定的左室心肌重量指数(LVMI)与相对室壁厚度(RLVT)将心室重构分为正常构型、向心性重构、向心性肥厚、离心性肥厚四种构型。后负荷增重所致左室重构主要表现为左室肥厚和心肌纤维化,在细胞水平表现为心肌细胞肥大、心肌成纤维细胞增殖和胶原合成的增加。
     AngⅡ是RAS系统的主要血管活性肽,实验证实,AngⅡ可以通过调节各种细胞因子最终导致细胞的增殖、肥大及炎症反应。在高血压的病理状态下,神经体液因子的激活比压力负荷的升高更为重要。业已证实,全身的RAS,尤其是血管和心肌组织的RAS在高血压的发生、发展中起着重要作用。而RAS的中心环节是AngⅡ识别其特异性受体,并通过一定的信号途径而发挥作用。不同的细胞类型及不同的细胞因子环境下,AngⅡ可引起不同的生长反应,增殖或肥大,这取决于细胞周期蛋白依赖激酶(CDK)表达的改变,研究表明,AngⅡ刺激心肌细胞时,CDK2活性受到抑制,使细胞周期停滞在G1期,最终导致细胞肥大。
     MAPKs通路在心肌重塑中的激活是一个三级级联反应,MAP3K激活MAP2K(MEK),而MEK激活MAPK。激活后的MAPKs转到细胞核周围靶向作用于下游的转录因子及一些肥厚基因如ANP,BNP,β—MHC和α—SKA。最后心肌细胞体积增大(直径增宽或长度增加),肌节数量增多、心肌胶原纤维含量增多,心肌发生肥厚的表型改变。
     本研究的第一部分结果显示,PKD1在心脏组织的表达升高与左室重塑相关,提示PKD1可能通过心脏组织参与了心肌肥厚的病理生理过程。最新研究表明,PKD1能通过多种途径参与肥大反应,增加多种细胞因子的表达。而MAPK后的信号通路与心肌肥厚的信号传导存在交叉作用。因此,我们设想PKD1可能通过调节心脏组织ERK5/MEF2C信号通路促进心肌肥厚,从而导致高血压左室重塑的发生。
     目的
     1.验证AngⅡ诱导心肌细胞肥大、促成纤维细胞增殖和胶原合成作用;
     2.明确AT1/PKC/PKD1/ERK5/MEF2C信号转导通路在AngⅡ诱导心肌细胞肥大中的作用机制;
     3.探讨PKD1参与AngⅡ诱导心肌成纤维细胞增殖、胶原合成的信号转导通路。
     方法
     取1-3天SD新生乳鼠,进行原代培养。体外培养心肌细胞加入不同的刺激因素,研究心肌细胞在干预后的变化,分别进行以下处理:无刺激因素孵育细胞;心肌细胞用一定浓度的AngⅡ刺激;AngⅡ刺激+AT_1拮抗剂Losartan孵育细胞;AngⅡ刺激+AT_2拮抗剂PD123319孵育细胞;AngⅡ刺激+PKC抑制剂G(o|¨)6983孵育细胞;AngⅡ刺激+PKεsiRNA孵育细胞;AngⅡ刺激+PKD1 siRNA孵育细胞;AngⅡ刺激+ERK5 siRNA孵育细胞。对不同时间段的心肌细胞进行如下检测:(1)电镜观察心肌细胞形态学改变;(2) ~3H-亮氨酸摄入率测定,评估细胞肥大的程度;(3) Western blot测定p-PKCa/β、δ、ζ、ε、PKC以及PKD1、p-PKD1、ERK1/2、p-ERK1/2、p38、p-p38、ERK5、p-ERK5、MEF2C、p-MEF2C的表达;(4)加入特异性siRNA观察通路分子的关系;(5)免疫荧光测定各分子的表达及ERK5胞浆胞核之间的转位。体外培养的新生大鼠心肌成纤维细胞,通过观察血管紧张素Ⅱ刺激后大鼠心肌成纤维细胞PKD1、p-PKD1的表达变化,观察PKDsiRNA对血管紧张素Ⅱ诱导的成纤维细胞增殖、胶原合成的影响,旨在探讨PKD1信号通路在心肌细胞肥大及心肌纤维化中的发病机制中的作用。
     结果
     1.AT1/PKC/PKD/ERK5/MEF2C信号通路参与AngⅡ诱导的心肌细胞肥大
     (1) AngⅡ刺激心肌细胞的形态学变化
     AngⅡ刺激组加血管紧张素Ⅱ(以无血清培养液溶解)使终浓度为100nM;正常对照组(control):培养液中加等量无血清培养液。处理不同时间(0min、5min、15min、30min、60min、120min)后在显微镜下观察细胞形态学变化。镜下观察可见在加用血管紧张素Ⅱ刺激后,心肌细胞较正常对照组表现明显肥大。随着时间的延长,细胞肥大明显。AngⅡ刺激心肌细胞15分钟,表面积呈剂量依赖性增加,其中10nM、100nM、1000 nM的AngⅡ组心肌细胞的表面积分别为1422.31±139.26μm~2、1931.79±142.66μm~2、2032.71±195.73μm~2,均明显高于对照组心肌细胞表面积(816.39±92.11μm~2),差异非常显著(P<0.01)。
     (2) AngⅡ刺激的心肌细胞~3H—亮氨酸掺入的测定
     将3×10~5 cells/ml的心肌细胞接种于24孔板上,24h后换成无血清培养液,48h后加处理因素。AngⅡ浓度分为5组:空白组、1nM、10nM、100nM、1000nM。用LKB液体闪烁仪测定~3H放射性强度。结果发现:AngⅡ100nM 15分钟、30分钟刺激的大鼠心肌细胞蛋白质合成速率明显增加,~3H-亮氨酸掺入较空白组、1nM组明显增高(P<0.01)。随着AngⅡ浓度的增加,心肌细胞蛋白合成速率呈剂量依赖性增加,其中10nM、100nM、1000 nM的AngⅡ组心肌细胞[3H]-亮氨酸掺入率分别为1588.71±144.52、2008.14±151.25、2177.38±165.76cpm/well,均明显高于对照组心肌细胞[3H]-亮氨酸掺入率(1141.27±134.95cpm/well),差异非常显著(P<0.01)。
     (3) Western blot测定AT_1/PKC/PKD1/ERK5/MEF2C信号通路
     ①AngⅡ通过AT1激活PKD1
     AngⅡ受体两个亚型AT1、AT2。应用AT1特异性拮抗剂缬沙坦(0.3、1.0、3.0μmol/L)及AT2特异性拮抗剂PD123319(20μmol/L)预处理心肌细胞,然后AngⅡ100nM刺激半小时,结果显示缬沙坦3μmol/L完全阻断p-PKD17441748、p-PKD1916的表达,而PD123319对p-PKD的表达没有影响。
     ②AngⅡ激活PKD1是依赖于PKC通路
     应用PKC的抑制剂G(o|¨)6983不同浓度(0.3、1、3μmol/L)预处理心肌细胞1小时,AngⅡ100nM刺激心肌细胞,结果显示随着浓度的增加,G(o|¨)6983抑制磷酸化PKD1的表达,由此证明PKC参与AngⅡ激活PKD1的过程。
     ③PKCε特异性介导AngⅡ激活PKD1
     选择PKC的多个亚型PKCα,β,δ,εandζ,观察AngⅡ刺激心肌细胞各亚型的表达。结果显示:只有PKCε的激活随着时间的变化而变化,表达呈时间依赖性变化,而PKCα/β、PKCδ、PKCζ磷酸化表达没有变化。p-PKCε与p-PKD1的表达有显著相关性(p<0.05)。
     ④AngⅡ对心肌细胞中促分裂原活化蛋白激酶(MAPKs)的激活
     AngⅡ100nM不同时间(0、5、15、30、60min)刺激心肌细胞,观察MAPKs中ERK1/2、p-38、ERK5总蛋白及磷酸化蛋白的表达,结果发现磷酸化ERK5表达呈时间依赖性变化,在5分钟时开始表达,随后表达水平开始逐渐上升,15min到30min达到表达高峰,以后则呈逐渐下降,趋势1小时表达恢复基线水平。与0、5、60min组相比均有显著性差异(p<0.01)。磷酸化ERK1/2、磷酸化p-38表达较早,5min表达达高峰,较0、15、30、60min有显著性差异(p<0.01)。ERK1/2、p-38、ERK5总蛋白表达在各时间段没有变化。
     ⑤PKCε及PKD1参与了AngⅡ介导的MEF2C的激活
     AngⅡ100nM不同时间(0、5、15、30、60min)刺激心肌细胞,观察MEF2C的激活。结果显示:磷酸化MEF2C在5分钟时开始表达,随后表达水平开始逐渐上升,15min到30min达到表达高峰,1小时表达恢复基线水平。与0、5、60min组相比均有显著性差异(p<0.01)。磷酸化MEF2C与磷酸化PKCε、磷酸化PKD1及磷酸化ERK5表达有显著相关性(p<0.01)。
     (4)加入特异性siRNA观察通路分子的关系
     ①PKCεsiRNA
     应用PKCεsiRNA转染心肌细胞,观察下游分子PKD1、ERK5、MEF2C的表达。结果显示:PKCεsiRNA抑制p-PKD1、p-ERK5、p-MEF2C的表达,与对照组有显著性差异(P<0.01).
     ②PKD1 siRNA
     应用PKD1 siRNA转染心肌细胞,观察下游分子ERK5、MEF2C的表达。结果显示:PKD1 siRNA抑制p-ERK5、p-MEF2C的表达,与对照组有显著性差异(P<0.01)。
     ③ERK5 siRNA
     应用PKD1 siRNA转染心肌细胞,观察下游分子MEF2C的表达。结果显示:ERK5 siRNA抑制p-MEF2C的表达,与对照组有显著性差异(P<0.01)。
     (5)免疫荧光测定各分子的表达及ERK5胞浆胞核之间的转位
     用免疫荧光细胞化学染色观察AngⅡ处理心肌细胞15min的p-PKD1744/748、p-PKD1916、p-ERK5、p-MEF2C表达。刺激细胞15分钟,结果显示:p-PKD1744/748、p-PKD1916胞质表达,p-ERK5、p-MEF2C胞核表达。
     随着时间的变化,p-ERK5由胞质转移到核内,在由核内转移到胞质。2.PKD1参与心肌成纤维细胞增殖、胶原合成
     建立原代新生SD大鼠心肌成纤维细胞(CFs)培养模型,探讨AngⅡ促成纤维细胞增殖和胶原合成中的细胞信号转导过程中PKD1的参与机制。
     (1) Angll促CFs增殖和胶原合成的浓度和时间效应
     ①AngⅡ不同浓度对心肌成纤维细胞增殖和胶原合成的影响
     AngⅡ10、100、1000nM刺激CFs24小时,A490值均高于无AngⅡ刺激组及FBS组,差异有统计学意义(P<0.05~0.01);羟脯氨酸量亦均高于无AngⅡ刺激组及FBS组。随着浓度的增加,CfsA490值和羟脯氨酸量的增加更为明显,不同的AngⅡ刺激浓度组间差异有统计学意义(p<0.05)。
     ②AngⅡ对心肌成纤维细胞增殖和胶原合成影响的时间效应
     予100nM AngⅡ刺激CFs,在24h内,随着刺激时间的延长,平均吸光度值及胶原合成量逐渐增高。
     (2) AngⅡ刺激新生SD大鼠CFs PKD1表达和活性情况
     Western Blot分析显示,AngⅡ(100nM)刺激心肌成纤维细胞12小时后,即出现p-PKD1744/748、p-PKD1916表达的增高,12、24、48h蛋白质表达比对照组分别增加52%、153%、110%,高峰时间为24小时。AngⅡ刺激各实验时间点p-PKD1744/748、p-PKD1916表达与对照组比较差异有统计学意义(P<0.05~0.01)。
     (3)抑制PKD1的表达对AngⅡ刺激CFs增殖和胶原合成的影响
     应用PKD1 siRNA预处理CFs后,再用AngⅡ刺激CFs。PKD1 siRNA+AngⅡ组p-PKD1水平显著低于AngⅡ刺激组(P<0.01),而与对照组差异无统计学意义(P>0.05)。PKD1 siRNA+AngⅡ组平均吸光度值和胶原合成量均低于AngⅡ刺激组,差异有统计学意义(P<0.01),单用PKD1 siRNA预处理而未加AngⅡ刺激组平均吸光度值和胶原合成量与对照组间差异无统计学意义。
     结论
     1.进一步验证了AngⅡ具有诱导心肌细胞肥大,促成纤维细胞增殖和促胶原合成作用,这些作用均呈剂量和时间依赖性。
     2.首次证明AT1/PKC/PKD1/ERK5/MEF2C信号通路参与AngⅡ诱导的心肌细胞肥大的发生发展过程。
     3.AngⅡ可增加新生SD大鼠心肌成纤维细胞的p-PKD1蛋白表达,PKD1siRNA可显著抑制AngⅡ刺激的CFs增殖和胶原合成。PKD1在Ang Il刺激CFs增殖和胶原合成中可能发挥重要作用。
DissertationⅠ:The Relationship between Expression of Protein Kinase D1 and Left Ventricular Remodeling in Spontaneously Hypertensive Rats as well as Atorvastatin Interventive Study
     Background
     Hypertension is the most important risk factor for cardiovascular disease.The adult heart undergoes myocardial remodeling when subjected to longstanding hypertension. Hypertensive myocardial remodeling is an independent risk factor for lethal cardiovascular events,and is the key pathological manifestations during the transition of heart function from compensation to decompensation.Hearts respond to such stress stimuli by increasing cell size and extracellular matrix,reorganizing sarcomeres and activating a fetal cardiac gene program.Although these responses may initially normalize wall stress,the prolonged hypertrophy increases the risk for chamber dilation,heart failure and sudden death.Recent years,with the development of molecular biology,cardiac remodeling has been shown to be the basic mechanism of heart failure.Cardiac remodeling is a complex course,and the pathogenesis mechanism still remains unclear.It is well-known that abnormal activation of neurohumoral factors,oxidative stress and cytokines are involved in cardiac remodeling.A complex set of signal-transduction pathways and downstream transcription factors underlie hypertensive myocardial remodeling.Therefore,the researches on the pathogenesis and control of cardiac remodeling have become a worldwide hot topic.
     Protein Kinase D(PKD) is a recent addition to the calcium/calmodulin-dependent serine/threonine protein kinase.PKD family consists of 3 isoforms,these are the original PKD1 which now is also referred to as PKD, PKD2 and PKD3.Increasing evidence now points toward important roles for PKD-mediated signaling pathways in the cardiovascular system,particularly in the regulation of myocardial contraction,hypertrophy and remodeling.Lots of studies have reported that cardiac specific expression of a constitutively active PKD mutant in transgenic mice leads to cardiac hypertrophy,and a chronic increase in PKD activity is sufficient to induce adverse myocardial remodeling.Studies also show that mice lacking cardiac PKD display an impaired response to stress signals that normally lead to cardiac hypertrophy.
     As hypertension is often accompanied by dyslipidemia,the treatment frequently involves 3-hydroxy-3-methylglutaryl coenzymeA(HMG-CoA) reductase inhibitors (statins).More and moer evidences have been established that statins not only efectively reduced serum cholesterol level,but also exerted pleiotropic beneficial efects on cardiovascular disease,including improvement of endothelial function, reduction of plaque thrombogenicity,prevention of cardiac hypertrophy or remodeling. However,the exact mechanism remains unclear.
     This study was therefore designed to observe the temporal profile of the expression of PKD and analyze its relationship with hypertensive cardiac remodeling; to study the role of PKD related signal-transduction pathways and downstream factors; to investigate the effects and the mechanism of atorvastatin in the prevention and treatment of cardiac remodeling.The purpose of the study is to elucidate the cellular and molecular mechanisms of hypertensive cardiac remodeling and the interventional effects of atorvastatin on it,and to provide novel theoretical evidences and strategy for prevention and treatment of hypertensive cardiac remodeling.
     Objectives
     1.To investigate the expression of PKD and related molecular pathway at both the mRNA and protein levels in myocardium of spontaneously hypertensive rats (SHR).
     2.To investigate the involvement and the signal-transduction pathway of PKD in left ventricular remodeling in SHR.
     3.To evaluate the effects and the mechanism of atorvastatin in the prevention and treatment of cardiac remodeling.
     Methods
     Twenty-eight 8-week-old WKY、fourty-one SHRs were obtained from company. WKY rats were randomly divided into the following four groups:A Group:8 weeks (n=7);B Group:16 weeks(n=7);C Group:24 weeks(n=7);G Group:WKY placbo (n=7).SHR rats were randomly divided into the following five groups:D Group:8 weeks(n=7);E Group:16 weeks(n=7);F Group:24 weeks(n=7);H Group:SHR placbo(n=10);I Group:SHR atorvastatin((n=10).All animals were feeded by normo-fortage and water.WKY placbo、SHR placbo、SHR atorvastatin receiving distilled water or atorvastatin at 50 mg/kg/day for 16 weeks by intragastric administration.Animals were killed when they were 8 weeks,16 weeks and 24 weeks old by decapitation.The hearts were immediately harvested and weighed.The follwing parameters were measured during the study:(1) All the rats have their body weight,heart rat and tail blood pressure measured once per 2 week;(2) Blood was collected from jugular vein at 8 weeks,16 weeks and 24 weeks respectively.Plasm lipid was determined using routine method;(3) Echocardiography was used to evaluate the function of heart, LVEDd,IVSd and LVPWd were measured,RWT and LVEF were calculated;(4) Histopathological study of heart tissue,for the detection of remodeling,the ventdcular tissue was stained with H-E and Masson's trichrome staining;(5) The left ventricular mass index(LVMI) was used to estimate the degree of cardiac hypertrophy.(6) Hydroxyproline content assay,CVF and PVCA were used to estimate the cardiac fibrosis;(7) Western-blot,RT-PCR for the expression of PKD, ERK5 and MEF2C.
     Results
     1.The experimental animals
     Two rats of SHR group died in the entire experiment,one of WKY group died. A total of 66 rats finished the study,27 rats in WKY group,39 rats in SHR group.
     2.Comparisons of SBP,BW,HR and Lipids level between WKY and SHR groups.
     There were no significant differences in terms of body weight,heart rat,tail systolic blood pressure and lipids at the beginning of the experiment.SBPs in SHRs at 16 and 24 weeks are higher than those in WKY rats(P<0.01).There were no significant differences in the BW,HR and total cholesterol level among the SHR and WKY groups..In SHR group,SBP increased during the course,while the one in WKY-V group remained unchanged.After treatment with atorvastatin,SBP decreased significantly(P<0.01).
     3.Eehoeardiographie evaluation
     Echocardiography was taken at 8,16 and 24 weeks respectly.Interventricular septum (IVS),left ventricular posterior wall(LVPW) and left ventricular diastolic diameter (LVDd) of SHR in 16W and 24W group increased significantly(P<0.01) compared with the SHR 8W and those in WKY group,and these changes were attenuated by atorvastatin(P<0.01).
     4.HE staining
     HE staining slides under optical microscopy showed that in WKY group,cell size of cardiomyocytes was smaller,uniform,and array was regular;In SHR 16W and 24W groups,cardiomyocytes size was greater,not uniform,cell form was irregular,and cell arrange was disorder;Cell wall was not clear and cell fusion was observed at intersection of cell.Cardiomyocytes in atorvastatin group lied between WKY and SHR group.
     5.Left Ventricular Mass Index analysis
     The left ventricular mass index(LVMI) is the ratio of left ventricular weight(in milligrams) to body weight(in grams)(LVW/BW),LVMI of SHR in 16W and 24W group increased significantly(P<0.01) compared with the SHR 8W and those in WKY group,and these changes were attenuated by atorvastatin(P<0.01).
     6.Cardiac fibrosis of SHRs
     As depicted in Masson,marked deposition of collagen was detected in the cardiac interstitial and perivascular areas of the SHRs in 16W and 24W compared with the WKY rats,which was ameliorated by atorvastatin.Consistent with this, hydroxyproline content,CVF and PVCA were elevated in the left ventricle of SHRs in 16W and 24W compared with WKY rats(P<0.01),and atorvastatin significantly attenuated this elevation(P<0.05)
     7.Expression of PKD,p-PKD1 by Western-blot
     Compared to WKY group,the groups of SHRs in 16W and 24W showed a significant rise in p-PKD protein content in heart tissue(P<0.01).In SHR group,expression of p-PKD increased during the course(P<0.01),while the one in WKY-V group remained unchanged.Consistent with this,p-ERK5 and p-MEF2C in SHRs of 16W and 24W increased significantly(P<0.05),and these changes were attenuated by atorvastatin (P<0.01).
     8.Relationship among blood pressure,cardiac hypertrophy,fibrosis and expression of p-PKD1744/748、p-PKD1916
     The LVMI,IVS,LVPW,LVDd,hydroxyproline content,CVF and PVCA were all positively related to the systolic blood pressure,and reduction of blood pressure by atorvastatin contributes to the attenuation of cardiac hypertrophy and fibrosis.The LVMI was also significantly correlated with the hydroxyproline content.Cardiac hypertrophy was positively correlated with the expression of p-PKD1744/748 and p-PKD1916,p-PKD1744/748 and p-PKD1916 was positively related to the collagen content.
     Conclusions
     The aging-related myocardial hypertrophy and fibrosis occured with the development and process of hypertension in SHR model which offers reliable animal mode for the researches on the mechanism of hypertensive LV myocardial remodeling.
     2.The over-expression of PKD1 at both the mRNA and protein levels has been confirmed in the heart tissue of SHR,and which associated significantly with the myocardial hypertrophic-related parameters.The activation of PKD1 involved in the development and process of myocardial hypertrophy in SHR.
     3.There was relationship between p-PKD1 and myocardial fibrosis in SHR.
     4.Atorvastatin could partially reverse the hypertension-induced myocardial remodeling through the down-regulation of PKD activation.
     DissertationⅡ:The Role of Protein kinase D in Cardiomyocyte Hypertrophy And Cardiac Fibroblasts Proliferation Induced by AngiotensinⅡStimulation:Involvement of Signalling Pathway
     Background
     The reason of cardiac remodeling are a series of complex molecular and celluar mechanisms,which contribute to the changes of cardiac structure,function and phenotye.These changes including:myocyte hypertrophy,apoptosis,fibroblast proliferation、reexpression of fetal gene and protein.Among these changes,myocyte hypertrophy and fibroblast proliferation are the key factors of cardiac remoedling. AngiotensinⅡ(AngⅡ) is an octapeptide that exerts inotropic,hypertrophic and apoptotic effects on cardiomyocytes[Fabris et al.,2007;Mollmann et al.,2007].Thus, AngⅡis central for any process involved in control of hypertrophy and heart failure. The corresponding signal transduction pathways have been demonstrated in fetal, neonatal and adult cardiomyocytes.The renin-Ang system is an important component of the physiological and pathological responses of the cardiovascular system.Through AngⅡreceptor-1(AT_1).AngⅡcarries out its functions,including hypertrophic remodeling of cardiomyocytes,which involves various downstream signal transduction mechanisms However,the regulatory molecular mechanisms, specifically the signaling cascades,involved in AngⅡ-induced cardiomyocyte hypertrophy are not fully understood.
     Mitogen-activated protein kinases(MAPKs) are a family of serine/threonine kinases that play a central role in transducing extracellular cues into a variety of intracellular responses.Activated MAPKs phosphorylate multiple intracellular targets,including numerous transcription factors that induce the reprogramming of gene expression. More recently,some reports have showed that PKD1 is implicated in AngⅡ-induced proliferation of vascular smooth muscle cells.However,little is known about how extracellular hypertrophic stimulation angtensinⅡis perceived and converted into intracellular signals and how these signals change the transcriptional program that eventually leads to cardiac hypertrophy and fibros in vivo.
     Protein Kinase D(PKD) is a recent addition to the calcium/calmodulin-dependent serine/threonine protein kinase,increasing evidence now points toward important roles for PKD-mediated signaling pathways in the cardiovascular system,particularly in the regulation of myocardial contraction,hypertrophy and remodeling.The laboratories of Olson and McKinsey have reported that cardiac specific expression of a constitutively active PKD mutant in transgenic mice leads to cardiac hypertrophy, and a chronic increase in PKD activity is sufficient to induce adverse myocardial remodeling.Studies also show that mice lacking cardiac PKD display an impaired response to stress signals that normally lead to cardiac hypertrophy.These exciting data,together with the preliminary evidence that PKD expression may be increased in human heart failure,necessitate further investigation of the role of PKD in the development of cardiac remodeling and failure in vivo in response to clinically relevant stresses such as pressure overload and myocardial infarction.
     Objective
     1 To validate further the effect of cardiomycyte hypertrophy,fibroblast proliferation and syncesis of collagen induced by AngⅡ.
     2 To investigate the mechanism of the signal-transduction pahtway bout AT1/PKC/PKD1/ERK5/MEF2C in hypertrophic cardiomyocytes induced by AngⅡ.
     3 To probe the investigate the involvement and the signal-transduction pathway of PKD1 in fibroblast proliferation and syncesis of collagen.
     Methods
     Take 1-3days SD neonatal rats,primary culture in vitro.Study changes of cadiomyocyte after stmulation.Cardiomyocyts were divided into different groups: Control Group:no stmulation factor;AngⅡstmulation Group:different dosges AngⅡ; AngⅡstmulation +Losartan Group;AngⅡstmulation + PD123319 Group;AngⅡstmulation+ PKC inhibitor G(o|¨)6983 Group;AngⅡstmulation + PKCεsiRNA Group; AngⅡstmulation+ PKD1 siRNA Group;AngⅡstmulation+ ERK5 siRNA Group. Dtecting different time group myocyte below:(1) Observing changes of cardiomyocyte form by electron microscope;(2) ~3H-leu incorporation rate,evaluated the level of cell hypertrophy;(3) Western blot dectected expression of p-PKCα/β、δ、ζ、εand PKD、p-PKD、ERK1/2、p-ERK1/2、p38、p-p38、ERK5、p-ERK5、MEF2C、p-MEF2C;(4) Added special siRNA to study the relationship among pathway molecule;(5) Determine expression of pathway rnolecul by Immunofluorescence method and EKR5 translocation between cytoplasm and nucelus.The neonate rat CFs as a experimental model were cultured primarily by the different time.To detcet effect of AngⅡon CFs hyperplasy and collogen synthesis and expression of PKD1、p-PKD1.
     Results
     1.AT1/PKC/PKD/ERK5/MEF2C signal-transduction pathway was involved in hypertrophic cardiomyocytes induced by AngⅡ.
     (1) Morphological changes of cardiomyocytes stimulated by AngⅡAngⅡgroup:the final concentration is 100nM:Control group:cardiomyocytes were incubated in serum-free medium.Morphological changes were observed by electron microscope after treatment at different times(0min、5min、15min、30min、60min、120min).Hypertrophy phenomenon of cardiomyocytes was significantly greater in AngⅡtreated cells than in controls,which was in a time-dependent way.Moreover, AngⅡtreatment increased the cell surface area in a dose-dependent way.The cell surface area of 10nM,100nM and 1000 nM groups were 1422.31±139.26μm~2、1931.79±142.661μm~2、2032.71+195.73μm~2 repectively,which were significantly higher than those of the control group(816.39±92.11μm~2)(P<0.01).
     (2) Measurement of[3H]-Leu incorporation Cardiomyocytes(3×10~5 cells/ml) which were incubated in 24 orifice plates were made quiescent by incubation in serum-free DMEM medium for 24 h.Cells were stimulated by different concentrations of AngⅡ(0,1nM,10nM,100 nM and 1000nM).[3H]-Leu incorporation were determined by using a scintillation counter. 100nM AngⅡrapidly increased[3H]-Leu incorporation with peak incorporation at 15 and 30 min.[3H]-Leu incorporation was concentration dependent,beginning at 10 nmol/1 AngⅡand with maximum effect at 1000 nmol/1 AngⅡ.[3H]-Leu incorporation of 10nM,100nM and 1000 nM groups were 1588.71±144.52、2008.14±151.25、2177.38±165.76cpm/well repectively,which were significantly higher than those of the control group(1141.27±134.95cpm/well)(P<0.01).
     (3) Western blot for AT_1/PKC/PKD1/ERK5/MEF2C signal-transduction pathway
     ●AngⅡstimulates PKD activation through a AT1-dependent pathway AngⅡreceptor has two subtypes:AT1 and AT2,cells were pretreated for 1 hr with with losartan(0.3,1.0,3.0μmol/L,a specific antagonist for AT1,or PD123319(20μmol/L),an antagonist for AT2,then stimulated with AngⅡ(100 nmol/L) for 0.5 hr. Losartan at 3.0μmol/L completely blocking PKD phosphorylation at Ser744/748 and Ser916,whereas PD123319 had no effect on AngⅡactivation of PKD.
     ●Activation of PKD by AngⅡis PKC-dependent Cells were pretreated with the general PKC inhibitor G(o|¨)6983(0.3,1,3μmol/L) for 1 hr before exposure to AngⅡ(100 nmol/L) for 1 hr.G(o|¨)6983 blocked PKD phosphorylation in a dose-dependent manner,which suggests that PKC is involved in AngⅡ-stimulated PKD phosphorylation in cardiomyocytes.
     ●PKCεspecifically mediated AngⅡ-induced PKD phosphorylation Several members of PKC isoforms,includingα,β,δ,εandζ,are expressed in cardiomyocytes,AngⅡtreatment induced marked phosphorylation of PKCεwithin 15 min but did not induce phosphorylation of PKCα/β,PKCδ,or PKCζ.Expression of p-PKCεis significantly correlated with phosphorylation of PKD(P<0.05).
     ●Activation of MAPKs by AngⅡin neonatal rat cardiomyocytes Cardiomyocytes were stimulated by AngⅡat 100nM for different times(0,5,15,30, 60min),we examined the potential role of ERK1/2,P38,ERK5.AngⅡ(100 nmol/L) induced phosphorylation of ERK5 after 5 min,with peak phosphorylation between 15 and 30 min(P<0.01),which returned to base line after 1 hr.However,the phosphorylation of ERK1/2 and p38 were earlier than that of ERK5,with peak phosphorylation at 5 min(P<0.01). Total protein level of ERK5,ERK1/2 and P38 did not change.
     ●PKCεand ERK5 are involved in AngⅡ-induced activation of MEF2C Cardiomyocytes were stimulated by AngⅡat 100nM for different times(0,5,15,30, 60min),then examined the activation of MEF2C.AngⅡsignificantly stimulated the phosphorylation of MEF2C by 5min treatment,with peak phosphorylation at 15min (P<0.01),which returned to basal levels by 60 min.Activation of MEF2C is positively related to phosphorylation of PKCε,PKD and ERK5.
     ●Further research in the signal-transduction pathway by specific siRNA PKCεsiRNA
     Cardiomyocytes were infected with PKCεsiRNA before stimulated by AngⅡat 100nM,then examined the activation of PKD,ERK5 and MEF2C.PKCεsiRNA inhibited the phosphorylation ofPKD,ERK5 and MEF2C(P<0.01).
     PKD siRNA
     Cardiomyocytes were infected with PKD siRNA before stimulated by AngⅡat 100nM,then examined the activation of ERK5 and MEF2C.PKD siRNA inhibited the phosphorylation of ERK5 and MEF2C(P<0.01).
     ERK5 siRNA
     Cardiomyocytes were infected with ERK5 siRNA before stimulated by AngⅡat 100nM,then examined the activation of MEF2C.ERK5 siRNA significantly inhibited the phosphorylation of MEF2C(P<0.01).
     (4) Immunofluorescence staining for expression of all moleculars and translocation of ERK5 The expression of p-PKD 1744/748、p-PKD 1916、p-ERK5、p-MEF2C was observed by immunofluorescence staining.After stimulation by AngⅡfor 15 min, p-PKD744/748 and p-PKD1916 were expressed in cytoplasm while p-ERK5 and p-MEF2C were in the nucleus.Before stimulation with AngⅡ,ERK5 was located primarily in the cytoplasm of cardiomyocytes;ERK5 nuclear entry was seen at 15 min after AngⅡstimulation,with a striking translocation from the cytoplasm to the nucleus.At 60 min of AngⅡtreatment,ERK5 was gradually shuttled back to the cytoplasm.
     2.PKD was involved in the proliferation of cardiac fibroblasts(CFs) and collagen synthesis
     (1) AngⅡinduced the proliferation of CFs and collagen synthesis in concentration and time dependent manner
     ●AngⅡconcentration-dependently stimulate the proliferation of CFs and collagen synthesis
     Compared with the control and FBS groups,A490 of AngⅡ10,1O0,1000nM groups were significant higher(P<0.05~0.01),Consistent with this,hydroxyproline content was also elevated(P<0.05).A490 and hydroxyproline content were concentration dependent,beginning at 10 nmol/1 AngⅡand with maximum effect at 1000 nmol/1 AngⅡ.
     ●AngⅡtime-dependently stimulate the proliferation of CFs and collagen synthesis
     CFs were stimulated by AngⅡat 100nM,absorbance value and hydroxyproline content were time-dependently elevated within 24 hr.
     (2) Activation of PKD in CFs stimulated by AngⅡCFs were stimulated by AngⅡat 100nM for different times(12,24,48 hr),we examined the phosphorylation of PKD.AngⅡ(100 nmol/L) induced phosphorylation of PKD at Ser744/748 and Ser916 after 12 hr with peak phosphorylation at 24 hr. Compared with the control group,the p-PKD content in 12,24 and 48hr increased 52%,153%and 110%respectively(P<0.05~0.01).
     (3) PKD specific siRNA inhibited the proliferation of CFs and collagen synthesis CFs were infected with PKD siRNA before stimulated by AngⅡ,then measured the absorbance value and hydroxyproline content.Compared with the AngⅡgroup, p-PKD expression in the PKD siRNA+ AngⅡgroup was significantly inhibited (P<0.01),and was similar with the control group(P>0.05).PKD siRNA decreased both the absorbance value and the hydroxyproline content.(P<0.01).
     Conclusions
     1.AngⅡinduced hypertrophy of cardiomyocytes,proliferation of cardiac fibroblasts and synthesis of collagen.
     2.AT1/PKC/PKD1/ERK5/MEF2C signal pathway was involved in hypertrophy of cardiomyocytes induced by AngⅡ.
     3.PKD1 plays an important role in AngⅡinduced proliferation of cardiac fibroblasts and synthesis of collagen.
引文
1. Nishikawa H, Miura S. Zhang B, et al. Statins induce the regression of left vent ricular mass in patients with angina. Circ J. 2004, 68: 121-125.
    
    2. Luo JD, Zhang WW. Zhang GP. et al. Simvastatin inhibits cardiac hypert rophy and angiotensin II converting enzyme activity in rats with aortic stenosis. Clin Exp Pharmacol physiol, 1999. 26: 903-908.
    
    3. Krijnen PA. Meischl C. Visser CA, et al. NAD(P)H oxidase in the failing human heart. J Am Coll Cardiol, 2003. 42: 2170-2171.
    
    4. Sorescu D. Griendling KK. Reactive Doxygen species, mitochondria, and NAD (P)H oxidases in the development and progression of heart failure. Congest Heart Fail. 2002. 8:132-140.
    
    5. Azumi H, Inoue N. Ohashi Y, et al. Superoxide genetation in directional coronary atherectomy specimens of patients with angina pectoris: important role of NAD(P)H oxidase. Arterioscler Thromb Vasc Biol. 2002. 22:1838-1844.
    
    6. Sun Y, Zhang J . Zhang JQ . et al. Local angiotensin II and transforming growth factor betal in renal fibrosis of rats. Hypertens. 2000. 35:1078-1084.
    
    7. Sun Y. Zhang JQ . Zhang J , et al. Angiotensin transforming growth factor betal and repair in the infarcted heart. Mol Cell Cardio. 1998, 30:1559-1569.
    
    8. Hein S. Arnon E. Kostin S. et al. Progression from compensated hypertrophy to failure in the pressure overloaded human heart . Structural deterioration and compensatory mechanisms. Circulation. 2003, 107: 984-991.
    
    9. Rosenkranz S. Flesch M, Amann K. et al. Alterations of β -adrenergic signaling and cardiac hypert rophy in transgenic mice overexpressing TGF β 1. Am J Physiol Heart Circ Physiol. 2002, 283:1253-1262.
    
    10. Tomasek J.L Gabbiani G, Hinz B. et al. Myofibroblasts and mechano-regulation of connective tissue remodeling. Nat Rev Mol Cell Biol. 2002. 3: 349-363.
    
    11. Simko F, Simko J. The potential role of nitric oxide in the hypertrophic growth of the left ventricle. Physiol Res. 2000:49(1):37-46.
    
    12. Zhang GX, Kimura S. Nishiyama A. et al. Cardiac oxidative stress in acute and chronic isoproterenol-infused rats.Cardiovasc Res, 2005. 65: 230-238.
    13. Baily CC , Baily OT. Production of diabetes mellitus in rabbits with alloxan. A preliminary report. Am Med Ass, 2001,122:1165-1166.
    
    14. Lazartigues E, Feng Y, Lavoie JL.1. The two fACEs of the tissue renin-angiotensin systems: implication in cardiovascular diseases. Curr Pharm Des. 2007;13(12):1231-45.
    
    15. Zhang CL, McKinsey TA, Chang S, et al. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell, 2002,110:479-488.
    
    16. Kim Y, Phan D, van Rooij E, et al. The MEF2D transcription factor mediates stress-dependent cardiac remodeling. J Clin Invest, 2008,118:124-132.
    
    17. Backs J, Olson EN. Control of cardiac growth by histone acetylation/deacetylation. Circ Res, 2006, 98:15-24.
    
    18. Verdin E, Dequiedt F, Kasler HG Class II histone deacetylases: Versatile regulators.Trends Genet, 2003,19:286-293.
    
    19. McKinsey TA, Zhang CL, Lu J, et al. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature, 2000,408:106-111.
    
    20. McKinsey TA, Zhang CL, Olson EN. Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5. Proc Natl Acad Sci USA, 2000,97:14400-14405.
    
    21. Sakai K, Miyazaki J. Atransgenic mouse line that retains cre recombinase activity in mature oocytes irrespective of the cre transgene transmission. Biochem Biophys Res Commun, 1997,237:318-324.
    
    22. Agah R, Frenkel PA, French BA, et al. Gene recombination in postmitotic cells.Targeted expression of cre recombinase provokes cardiac-restricted, site-specific rearrangement in adult ventricular muscle in vivo. J Clin Invest, 1997,100:169-179.
    
    23. Tan M, Xu X, Ohba M, et al. Angiotensin II-induced protein kinase d activation is regulated by protein kinase cdelta and mediated via the angiotensin II type 1 receptor in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol, 2004,24:2271-2276.
    24. Collins AR, Schnee J, Wang Wei, et al. Osteopontin modulates angiotensin II-induced fibrosis in the intact murine heart. J Am Coll Cardiol, 2004,43:1698-1705.
    
    25. Hurd C, Waldron RT, Rozengurt E. Protein kinase D complexes with C-Jun N-terminal kinase via activation loop phosphorylation and phosphorylates the C-Jun N-terminus. Oncogene, 2002,21: 2154-2160.
    
    26. Rozengurt E, Rey O, Waldron RT. Protein kinase D signaling. J Biol Chem, 2005,280:13205-13208.
    
    27. Harrison BC, Kim MS, van Rooij E, et al. Regulation of cardiac stress signaling by protein kinase D1. Mol Cell Biol, 2006,26: 3875-3888.
    
    28 Johannessen M, Delghandi MP, Rykx A, et al. Protein kinase D induces transcription through direct phosphorylation of the cAMP-response element-binding protein. J Biol Chem, 2007,282:14777-14787.
    
    29. Storz P, Doppler H, Toker A. Protein kinase D mediates mitochondrionto-nucleus signaling and detoxification from mitochondrial reactive oxygen species. Mol Cell Biol, 2005,25: 8520-8530.
    
    30. Fielitz J, Kim MS, Shelton JM, et al. Requirement of protein kinase D1 for pathological cardiac remodeling. PNAS, 2008,105: 3059-3063..
    
    31. Olson EN, Backs J, McKinsey TA.Control of cardiac hypertrophy and heart failure by histone acetylation/deacetylation. Novartis Found Symp. 2006;274:3-12;discussion 13-9,152-5,272-6. Review.
    
    32. Cuello F, Bardswell SC, Haworth RS, et al. Protein kinase d selectively targets cardiac troponin I and regulates myofilament ca~(2+) sensitivity in ventricular myocytes. Circ Res, 2007,100:864-873
    
    33 Wong C, Jin ZG Protein kinase C-dependent protein kinase D activation modulates ERK signal pathway and endothelial cell proliferation by vascular endothelial growth factor. J Biol Chem, 2005,280: 33262-33269
    
    34. Avkiran M, Rowland AJ, Cuello F, et al. Protein kinase d in the cardiovascular system: emerging roles in health and disease.Circ Res, 2008,102: 157-163.
    
    35. Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol, 2006,7: 589-600.
    
    36. Sun Y, Weber KT. RAS and connective tissue in the heart.Int J Biochem Cell Biol. 2003 Jun;35(6):919-31. Review.
    
    37. Mehta PK, Griendling KK. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system, Am J Physiol Cell Physiol, 2007,292: C82-C97.
    
    38. Martin J, Denver R, Bailey M, et al. In vitro inhibitory effects of atorvastatin on cardiac fibroblasts: implications for ventricular remodelling. Clin Exp Pharmacol Physiol. 2005 Sep;32(9):697-701.
    
    39. Hayashi M, Kim SW, Imanaka-Yoshida K, et al. Targeted deletion of BMK1/ERK5 in adult mice perturbs vascular integrity and leads to endothelial failure. J Clin Invest, 2004,113:1138-1148.
    
    40. Raviv Z, Kalie E, Seger R. MEK5 and ERK5 are localized in the nuclei of resting as well as stimulated cells, while MEKK2 translocates from the cytosol to the nucleus upon stimulation. J Cell Sci, 2004,117: 1773-1784.
    
    41. Fedorov VN, Sal'nikov EV, Sidorov AV, et al. Survival of rats with experimental chronic heart failure depending on pharmacodynamic and pharmacokinetic parameters of angiotensin-converting enzyme inhibitors and beta-adrenoceptor blockers. Bull Exp Biol Med. 2006 Jan;141(1):40-3.
    
    42. Katovich MJ, Grobe JL, Raizada MK. Angiotensin-(1-7) as an antihypertensive,antifibrotic target. Curr Hypertens Rep. 2008 Jun;10(3):227-32. Review.
    
    43. Okada T, Nagai M, Taniguchi I, et al. Combined treatment with valsartan and spironolactone prevents cardiovascular remodeling in renovascular hypertensive rats. Int Heart J. 2006 Sep;47(5):783-93.
    
    44. Lifton RP, Gharavi AC, Geller DS. Molecular mechanisms of human hypertension.Cell, 2001,104:545-556
    
    45. Amann K, Miltenberger-Miltenyi G, et al.Simonoviciene A,. Remodeling of resistance arteries in renal failure: effect of endothelin receptor blockade. J Am Soc Nephrol. 2001 Oct;12(10):2040-50
    
    46. Hausser A, Storz P, Martens S, et al. Protein kinase D regulates vesicular transport by phosphorylating and activating phosphatidylinositol-4 kinase Ⅲbeta at the Golgi complex.Nat Cell Biol,2005,7:880-886.
    47.Wissler JH,Wissler JE,Logemann E.et al.Extracellular functional noncoding nucleic acid bioaptamers and angiotropin RNP ribokines in vascularization and self-tolerance.Ann N Y Acad Sci.2008 Aug;1137:316-42.
    48.McEneaney V,Harvey BJ,Thomas W.Aldosterone rapidly activates protein kinase d via a mineralocorticoid receptor/egfr trans-activation pathway in the m1kidney ccd cell line.J Steroid Biochem Mol Biol,2007,107:180-190.
    49.Romero DG,Welsh BL,Gomez-Sanchez EP,et al.Angiotensin Ⅱ-mediated protein kinase d activation stimulates aldosterone and cortisol secretion in h295r human adrenocortical cells.Endocrinology,2006,147:6046-6055.
    50.Stafford MJ,Watson SP,Pears CJ.PKD:a new protein kinase C-dependent pathway in platelets.Blood,2003,101:1392-1399.
    51.Rey O,Papazyan R,Waldron RT,et al.Lippincott-Schwartz J,Jacamo R,Rozengurt E.The nuclear import of protein kinase D3 requires its catalytic activity.J Biol Chem,2006,281:5149-5157.
    52.Tsybouleva N,Zhang L,Chen S,et al.Aldosterone,through novel signaling proteins,is a fundamental molecular bridge between the genetic defect and the cardiac phenotype of hypertrophic cardiomyopathy.Circulation,2004,109:1284-1291.
    53.Iwata M,Maturana A,Hoshijima M,et al.PKC-PKD1 signaling complex at Z-discs plays a pivotal role in the cardiac hypertrophy induced by G-proteincoupling receptor agonists.Biochem Biophys Res Commun,2005,327:1105-1113.
    54.Roberts NA,Haworth RS,Avkiran M.Effects of bisindolylmaleimide PKC inhibitors on p90RSK activity in vitro and in adult ventricular myocytes.Brit J Pharmacol,2005,145:477-489.
    55 Funakoshi Y,Ichiki T,Takeda K,et al.Critical role of cAMP-response element-binding protein for angiotensin Ⅱ-induced hypertrophy of vascular smooth muscle cells.J Biol Chem,2002,277:18710-18717.
    56.Patel R,Nagueh SF,Tsybouleva N,et al.Simvastatin induces regression of cardiac hypertrophy and fibrosis and improves cardiac function in a transgenic rabbit model of human hypertrophic cardiomyopathy.Circulation.2001 Jul 17;104(3):317-24.
    57.Squizzato A,Romualdi E,Ageno W.Why should statins prevent venous thromboembolism? A systematic literature search and a call for action.J Thromb Haemost.2006 Sep;4(9):1925-7.
    58.Dequiedt F,Van Lint J,Lecomte E,et al.Phosphorylation of histone deacetylase 7by protein kinase D mediates T cell receptor-induced Nur77expression and apoptosis.J Exp Med,2005,201:793-804.
    59.Reddy R,Chahoud G,Mehta JL.Modulation of cardiovascular remodeling with statins:fact or fiction?Curr Vase Pharmacol.2005 Jan;3(1):69-79.
    60.Simko F.Statins:a perspective for left ventricular hypertrophy treatment.Eur J Clin Invest.2007 Sep;37(9):681-91.
    61.Takahashi K,Fukushima S,Yamahara K,et al.Modulated inflammation by injection of high-mobility group box 1 recovers post-infarction chronically failing heart.Circulation.2008 Sep 30;118(14 Suppl):S106-14.
    1. Touyz R, Schiffrin EL. Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol Rev, 2000, 52:639-672.
    
    2. Owens GK, Schwartz SM. Alterations in vascular smooth muscle mass in the spontaneously hypertensive rat. Role of cellular hypertrophy, hyperploidy, and hyperplasia. Circ Res, 1982, 51:280-289.
    
    3. Mazzolai L, Korber M, Bouzourene K,et al. Severe hyperlipidemia causes impaired renin-angiotensin system function in apolipoprotein E deficient mice.Atherosclerosis, 2006 May;186(1):86-91.
    
    4. Eguchi S, Numaguchi K, Iwasaki H, et al. Calcium-dependent epidermal growth factor receptor transactivation mediates the angiotensin Il-induced mitogen-activated protein kinase activation in vascular smooth muscle cells. J Biol Chem, 1998,273:8890-8896.
    
    5. Schmitz U, Ishida T, Ishida M, et al. Angiotensin II stimulates p21-activated kinase in vascular smooth muscle cells: role in activation of JNK. Circ Res, 1998,82:1272-1278.
    
    6. Funakoshi Y, Ichiki T, Takeda K, et al. Critical role of cAMP-response element-binding protein for Angiotensin Il-induced hypertrophy of vascular smooth muscle cells. J Biol Chem, 2002,277:18710-18717.
    
    7. Pulver RA, Rose-Curtis P, Roe MW, et al. Store-operated Ca~(2+) entry activates the CREB transcription factor in vascular smooth muscle. Circ Res, 2004,94:1351-1358.
    
    8. Xiao Q, Kenessey A, Ojamaa K. Role of USF1 phosphorylation on cardiac alpha-myosin heavy chain promoter activity. Am J Physiol Heart Circ Physiol.2002 Jul;283(1):H213-9.
    
    9. van der Meer P, Lipsic E, Henning RH, et al. Erythropoietin induces neovascularization and improves cardiac function in rats with heart failure after myocardial infarction.J Am Coll Cardiol. 2005 Jul 5;46(1):125-33.
    
    10. Yamamoto K, Ohishi M, Katsuya T, et al. Deletion of angiotensin-converting enzyme 2 accelerates pressure overload-induced cardiac dysfunction by increasing local angiotensin Ⅱ.Hypertension.2006,47(4):718-26.
    11.He LP,Hewavitharana T,Soboloff J,et al.A functional link between store-operated and TRPC channels revealed by the 3,5-bis(trifluoromethyl)pyrazole derivative,BTP2.J Biol Chem,2005,280:10997-11006.
    12.Nakamura K,Koibuchi N,Nishimatsu H,et al.Candesartan ameliorates cardiac dysfunction observed in angiotensin-converting enzyme 2-deficient mice.Hypertens Res.2008 Oct;31(10):1953-61.
    13.Parekh AB,Putney Jr JW.Store-operated calcium channels.Physiol Rev,2005,85:757-810.
    14.Chen J,Barritt GJ.Evidence that TRPC1(transient receptor potential canonical 1)forms a Ca~(2+)-permeable channel linked to the regulation of cell volume in liver cells obtained using small interfering RNA targeted against TRPC1.Biochem J,2003,15:327-336.
    15.Crackower MA,Sarao R,Oudit GY,et al.Angiotensin-converting enzyme 2 is an essential regulator of heart function.Nature.2002,20;417(6891):822-8.
    16.Murakami M,Ohba T,Xu F,et al.Genomic organization and functional analysis of mudne PKD2L1.J Biol Chem,2005,280:5626-5635.
    17.Haworth RS,Goss MW,Rozengurt E,et al.Expression and activity of protein kinase D/protein kinase C in myocardium:evidence for -1-adrenergie receptorand protein kinase C-mediated regulation.J Mol Cell Cardiol,2000,32:1013-1023.
    18.Sturany S,Van Lint J,Mu¨ller F,et al.Molecular cloning and characterization of the human protein kinase D2.J Biol Chem,2001,276:3310-3318.
    19.Rey O,Papazyan R,Waldron RT,et al.The nuclear import of protein kinase D3requires its catalytic activity.J Biol Chem,2006,281:5149-5157.
    20.Tsybouleva N,Zhang L,Chen S,et al.Aldosterone,through novel signaling proteins,is a fundamental molecular bridge between the genetic defect and the cardiac phenotype of hypertrophic cardiomyopathy.Circulation,2004,109:1284-1291.
    21. Iwata M, Maturana A, Hoshijima M, et al. PKC-PKD1 signaling complex at Z-discs plays a pivotal role in the cardiac hypertrophy induced by G-protein coupling receptor agonists. Biochem Biophys Res Commun, 2005, 327:1105-1113.
    
    22. Roberts NA, Haworth RS, Avkiran M. Effects of bisindolylmaleimide PKC inhibitors on p90RSK activity in vitro and in adult ventricular myocytes. Brit J Pharmacol, 2005,145:477- 489.
    
    23. Haworth RS, Roberts NA, Cuello F, et al. Regulation of protein kinase D activity in adult myocardium: novel counter-regulatory roles for protein kinase C_ and protein kinase A. J Mol Cell Cardiol, 2007,43:686-695.
    
    24. Bossuyt J, Wu X, Avkiran M, et al. CaMKII and PKD overexpression seen in heart failure maintains the HDAC5 redistribution from the nucleus to the cytosol.Circulation, 2006,114:11-54.
    
    25. von Blume J, Knippschild U, Dequiedt F, et al. Phosphorylation at Ser244 by CK1 determines nuclear localization and substrate targeting of PKD2. EMBO J, 2007,26:4619-4633.
    
    26. Wang QJ. PKD at the crossroads of DAG and PKC signaling. Trends Pharmacol Sci, 2006,27:317-323.
    
    27. Hausser A, Storz P, Martens S, et al. Protein kinase D regulates vesicular transport by phosphorylating and activating phosphatidylinositol-4 kinase IIIbeta at the Golgi complex. Nat Cell Biol,2005, 7:880-886.
    
    28. Olson EN, Backs J, McKinsey TA. Control of cardiac hypertrophy and heart failure by histone acetylation/deacetylation. Novartis Found Symp. 2006;274:3-12;discussion 13-9,152-5,272-6.
    
    29. Woods AJ, White DP, Caswell PT, et al. PKD1/PKCmu promotes alphavbeta3 integrin recycling and delivery to nascent focal adhesions. EMBO J, 2004,23:2531-2543.
    
    30. Johannessen M, Delghandi MP, Rykx A, et al. Protein kinase D induces transcription through direct phosphorylation of the cAMP-response element-binding protein. J Biol Chem, 2007,282:14777-14787.
    31. Haworth RS, Sinnett-Smith J, Rozengurt E, et al. Protein kinase D inhibits plasma membrane Na_/H_ exchanger activity. Am J Physiol Cell Physiol, 1999,277:C1202-C1209.
    
    32. Nishikawa K, Toker A, Johannes F-J, et al. Determination of the specific substrate sequence motifs of protein kinase C isozymes. J Biol Chem, 1997,272:952-960.
    
    33. Hutti JE, Jarrell ET, Chang JD, et al. A rapid method for determining protein kinase phosphorylation specificity. Nat Methods, 2004,1:27-29.
    
    34. Do'ppler H, Storz P, Li J, et al. A phosphorylation statespecific antibody recognizes Hsp27, a novel substrate of protein kinase D. J Biol Chem, 2005,280:15013-15019.
    
    35. Gschwendt M, Dieterich S, Rennecke J, et al. Inhibition of protein kinase C mu by various inhibitors:differentiation from protein kinase C isoenzymes. FEBS Lett,1996, 392:77-80.
    
    36. Vega RB, Harrison BC, Meadows E, et al. Protein kinase C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol Cell Biol, 2004,24:8374-8385.
    
    37. Li Z, Iwai M, Wu L, et al. Fluvastatin enhances the inhibitory effects of a selective AT1 receptor blocker, valsartan, on atherosclerosis. Hypertension, 2004,44:758-763.
    
    38. Kato M, Sada T, Mizuno M, et al. Effect of combined treatment with an angiotensin II receptor antagonist and an HMGCoA reductase inhibitor on atherosclerosis in genetically hyperlipidemic rabbits. J Cardiovasc Pharmacol,2005,46:556-562.
    
    39. Grothusen C, Bley S, Selle T, et al. Combined effects of HMG-CoA-reductase inhibition and renin-angiotensin system blockade on experimental atherosclerosis.Atherosclerosis, 2005,182:57-69.
    
    40. Hussein O, Shneider J, Rosenblat M, et al. Valsartan therapy has additive anti-oxidative effect to that of fluvastatin therapy against low-density lipoprotein oxidation: studies in hypercholesterolemic and hypertensive patients. J Cardiovasc Pharmacol, 2002,40:28-34.
    41. Rossomando AJ, Dent P, Sturgill TW, et al. Mitogenactivated protein kinase kinase 1 (MKK1) is negatively regulated by threonine phosphorylation. Mol Cell Biol, 1994,14:1594-1602.
    
    42. Alessi DR, Saito Y, Campbell DG, et al. Identification of the sites in MAP kinase kinase-1 phosphorylated by p74raf-1. EMBO J, 1994,13:1610-1619.
    
    43. Zheng C-F, Guan K. Activation of MEK family kinases requires phosphorylation of two conserved Ser/Thr residues. EMBO J, 1994,13:1123-1131.
    
    44. Ferrell Jr JE, Machleder EM. The biochemical basis of an.all-or-none cell fate switch in Xenopus oocytes. Science, 1998,280:895-898.
    
    45. Rhodes N, Connell L, Errede B. STE11 is a protein kinase required for cell-type-specific transcription and signal transduction in yeast. Genes Dev, 1990,4:1862-1874.
    
    46. Ramer SW, Davis RW. A dominant truncation allele identifies a gene, STE20, that encodes a putative protein necessary for mating in Saccharomyces cerevisiae. Proc Natl Acad Sci USA, 1993,90:452-456.
    
    47. Leberer E, Dignard D, Harcus D, et al. The protein kinase homologue Ste20p is required to link the yeast pheromone response G-protein bg subunits to downstream signaling components. EMBO J, 1992, 11:4815-4824.
    
    48. Waskiewicz AJ, Flynn A, Proud CG, et al. Mitogenactivated protein kinases activate the serine-threonine kinase Mnk1 and Mnk2. EMBO J, 1997,16:1909-1920.
    
    49. Fukunaga R, Hunter T. MNK1, a new MAP kinase-activated protein kinase,isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J, 1997,16:1921-1933.
    
    50. Choi K-Y, Satterberg B, Lyons DM, et al. Ste5 tethers multiple protein kinases in the MAP kinase cascade required for mating in S. cerevisiae. Cell, 1994, 78:499-512.
    
    51. Marcus S, Polverino A, Barr M, et al. Complexes between STE5 and components of the pheromone-responsive MAPKmodule. Proc Natl Acad Sci USA, 1994,91:7762-7766.
    52. Yasuda J, Whitmarsh AJ, Cavanagh J, et al. The JIP group of mitogen-activated protein kinase scaffold proteins. Mol Cell Biol, 1999,19:7245-7254.
    
    53. Mansour SJ, Resing KA, Candia JM, et al. Mitogenactivated protein (MAP) kinase phosphorylation of MAP kinase: determination of phosphorylation sites by mass spectrometry and site-directed mutagenesis. J Biochem, 1994,116:304-314.
    
    54. Porter GA Jr, Makuck RF, Rivkees SA. Intracellular calcium plays an essential role in cardiac development. Dev Dyn. 2003 Jun;227(2):280-90.
    
    55. Olson EN. Undermining the endothelium by ablation of MAPK-MEF2 signaling. J Clin Invest. 2004 Apr;113(8): 1110-2.
    
    56. English JD, Sweatt JD. Activation of p42 mitogen-activated protein kinase in hippocampal long term potentiation. J Biol Chem, 1996,271:24329-24332
    
    57. Atkins CM, Selcher JC, Petraitis JJ, et al. The MAPK cascade is required for mammalian associative learning. Nat Neurosci, 1998,1:602-609.
    
    58. Rossi-Arnaud C, Grant SG, Chapman PF, et al. A role for the Ras signalling pathway in synaptic transmission and long-term memory. Nature, 1997,390:281-286.
    
    59. Gonzalez FA, Raden DL, Rigby MR, et al. Heterogeneous expression of four MAP kinase isoforms in human tissues. FEBS Lett, 1992,304:170-178.
    
    60. Yung Y, Yao Z, Hanoch T, et al. ERK1b: a 46 kD ERK isoform which is differentially regulated by MEK. J Biol Chem, 2000,275:15799-15808.
    
    61 Mody N, Campbell DG, Morrice N, et al. An analysis of the phosphorylation and activation of extracellular-signal-regulated protein kinase 5 (ERK5) by mitogen-activated protein kinase kinase 5 (MKK5) in vitro. Biochem J, 2003, 372:567-575.
    
    62. Mody N, Leitch J, Armstrong C, et al. Effects of MAP kinase cascade inhibitors on the MKK5/ERK5 pathway. FEBS Lett, 2001, 502: 21-24.
    
    63. Wautier MP, Chappey O, Corda S, et al. Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am J Physiol Endocrinol Metab, 2001,280:E685-E694.
    
    64 Touyz RM, Chen X, Tabet F, et al. Expression of a functionally active gp91phox-containing neutrophil-type NAD(P)H oxidase in smooth muscle cells from human resistance arteries:regulation by angiotensin Ⅱ.Circ Res,2002,90:1205-1213.
    65.Zhang H,Schmeisser A,Garlichs CD,et al.Angiotensin Ⅱinduced superoxide anion generation in human vascular endothelial cells:role of membrane-bound NADH-/NADPH-oxidases.Cardiovasc Res,1999,44:215-222.
    66.Vecchione C,Brandes RP.Withdrawal of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors elicits oxidative stress and induces endothelial dysfunction in mice.Circ Res,2002,91:173-179.
    67.Fu MX,Wells-Knecht KJ,Blackledge JA,et al.Glycation,glycoxidation,and cross-linking of collagen by glucose.Kinetics,mechanisms,and inhibition of late stages of the Maillard reaction.Diabetes,1994,43:676-683.
    68.Mazzucchelli C,Vantaggiato C,Ciamei A,et al.Knockout of ERK1 MAP kinase enhances synaptic plasticity in the stfiatum and facilitates striatal-mediated learning and memory.Neuron,2002,34:807-820.
    69.Zhao SM,Shen LH,Li HW,et al.Down-regulation of the expression of angiotensin Ⅱ type 1 receptor in neonatal rat cardiac fibroblast by activation of PPARgamma signal pathway.Chin J Physiol.2008 Dec 31;51(6):357-62.
    70.Kuruvilla L,Kartha CC.Treatment with TNF-alpha or bacterial lipopolysaccharide attenuates endocardial endothelial cell-mediated stimulation of cardiac fibroblasts.J Biomed Sci.2009 Feb 17;16:21.
    71.Mulloy R,Salinas S,Philips A,et al.Activation of cyclin D1 expression by the ERK5 cascade.Oncogene,2003,22:5387-5398.
    72.Nakamura K,Johnson GL.PB1 domains of MEKK2 and MEKK3 interact with the MEK5 PB1 domain for activation of the ERK5 pathway.J Biol Chem,2003,278:36989-36992.
    73.Nakamura K,Uhlik MT,Johnson NL,et al.PB1 domaindependent signaling complex is required for extracellular signal-regulated kinase 5 activation.Mol Cell Biol,2006,26:2065-2079.
    74.Nishida E,Gotoh Y.The MAP kinase cascade is essential for diverse signal transduction pathways.Trends Biochem Sci,1993,18:128-131.
    75.Nishimoto S,Kusakabe M,Nishida E.Requirement of the MEK5-ERK5 pathway for neural differentiation in Xenopus embryonic development.EMBO Rep,2005,6:1064-1069.
    76.Baker KM,Chemin MI,Schreiber T,et al.Evidence of a novel intracrine mechanism in angiotensin Ⅱ-induced cardiac hypertrophy.Regulatory Peptides,2004,120:5-13.
    77.Barry SP,Townsend PA,Latchman DS,et al.Role of the JAK-STAT pathway in myocardial injury.Trends in Molecular Medicine,2007,13:82-89.
    78.Booz G.W,Day JN,Baker KM,et al.Interplay between the cardiac renin angiotensin system and JAK-STAT signaling:role in cardiac hypertrophy,ischemia/reperfusion dysfunction,and heart failure.Journal of Molecular and Cellular Cardiology,2002,11:1443-1453.
    79.Bristow MR,Long CS.Cardiotrophin-1 in heart failure.Circulation,2002,106:1430-1432.
    80.Dechend R,Fiebeler A,Park JK,et al.Amelioration of angiotensin Ⅱ-induced cardiac injury by a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor.Circulation,2001,104:576-581.
    81.Fukuzawa J,Booz G.W,Hunt RA,et al.Cardiotrophin-1 increases angiotensinogen mRNA in rat cardiac myocytes through STAT3:an autocrine loop for hypertrophy.Hypertension,2000,35:1191-1196.
    82.Guinamard R,Bois P.Involvement of transient receptor potential proteins in cardiac hypertrophy.Biochimica et Biophysica Acta.Molecular Basis of Disease,2007,1172:885-894.
    83.Kaneta S,Satoh K,Kano Set al.All hydrophobic HMG-CoA reductase inhibitors induce apoptotic death in rat pulmonary vein endothelial cells.Atherosclerosis,2003,170:237-243.
    84.Laufs U,Marra D,Node K,et al.3-Hydroxy-3-methylglutaryl-CoA reductase inhibitors attenuate vascular smooth muscle proliferation by preventing rho GTPase-induced down-regulation of p27(Kip1).Journal of Biological Chemistry, 1999,274:21926-21931.
    85.Luo JD,Zhang WW,Zhang GP,et al.Simvastatin inhibits cardiac hypertrophy and angiotensin-converting enzyme activity in rats with aortic stenosis.Clinical and Experimental Pharmacology and Physiology,1999,26:903-908.
    86.Luo JD,Xie F,Zhang WW,et al.Simvastatin inhibits noradrenaline-induced hypertrophy of cultured neonatal rat cardiomyocytes.British Journal of Pharmacology,2001,132:159-164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700