电子封装中无铅焊点的界面演化和可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着欧盟RoHS指令案和我国《电子信息产品污染防治管理办法》的实施,电子产品的无铅化进程已全面展开。和传统的Sn-Pb焊料体系相比,尽管对无铅焊料合金、焊接和使用过程中焊点的界面反应及其可靠性的认识已取得较大进展,但对焊点界面的演化行为和可靠性尚缺乏系统、深入的研究,因此对无铅焊点的界面组织与焊料成分、界面耦合效应、温度循环可靠性以及低周疲劳的研究,将促进我国电子封装的无铅化进程。本文通过对Sn-Ag基、Sn-Zn基和自主研发的Sn-0.4Co-0.7Cu等多种无铅焊点的研究,取得如下成果:
     共晶Sn-3.5Ag和Sn-4.0Ag-0.5Cu与化学镀Ni(P)浸金镀层(ENIG)间的界面反应研究表明,Sn-3.5Ag焊点的界面产物为Ni_3Sn_4,Sn-4.0Ag-0.5Cu焊点中的为(Ni,Cu)_3Sn_4和(Cu,Ni)_6Sn_5两种三元金属间化合物(IMC):时效处理后Sn-3.5Ag对Ni(P)镀层的消耗较大,形成了较明显的富磷层,并可见“游离”Ni(P)层的Ni_3Sn_4 IMC颗粒,而Sn-4.0Ag-0.5Cu焊料对Ni(P)镀层的消耗较少,三元IMC和Ni(P)层结合良好。
     Sn-0.4Co-0.7Cu和ENIG镀层的回流焊界面反应与Sn-4.0Ag-0.5Cu和Sn-0.7Cu的比较研究显示,Sn-0.4Co-0.7Cu焊点的母相中生成了两种亚稳态的三元块状大颗粒的(Co,Cu)Sn_2和类似于Sn-0.7Cu焊点母相中Cu_6Sn_5的、颗粒尺寸较小的(Cu,Co)_6Sn_5 IMC;三种焊料的界面产物均为(Cu,Ni)_6Sn_5,其IMC层的厚度差别不大。
     基于Flip Chip和BGA器件焊点结构,研究了Ni/Sn-3.5Ag-3.0Bi/Cu和Ni/Sn-8.0Zn-3.0Bi/Cu三明治结构焊点的液态界面反应。在Ni/Sn-3.5Ag-3.0Bi/Cu焊点中,Ni层与焊料的界面形成了(Cu,Ni)_6Sn_5 IMC,生长速率为3.80×10~(-10)cm~2/s:在Ni/Sn-8.0Zn-3.0Bi/Cu焊点中,焊料与Ni层的界面生成了由Sn、Ni、Cu、Zn四种元素组成的、难以确定结构的IMC,其生长速率为2.93×10~(-12)cm~2/s;两种焊点中焊料和Cu层的界面产物分别为Cu_6Sn_5和Zn_5Cu_8,生长速率分别为1.44×10~(-10)cm~2/s和1.36×10~(-10)cm~2/s;240℃下液态焊点中Ni和Cu两界面间Cu原子的浓度梯度导致在焊接过程中Cu原子自Cu层向Ni层一侧扩散,Cu原子在Sn-3.5Ag-3.0Bi焊点中的扩散系数大约为1.1×10~(-5)cm~2/s。定量研究了回流焊接过程中三明治焊点的界面耦合效应对界面IMC形成的影响。
     Sn-3.8Ag-0.7Cu焊膏组装的无铅塑封BGA器件的温度循环可靠性研究表明,无铅塑封BGA器件的焊点失效机理为热机械循环导致的焊点疲劳失效,失效裂纹主要集中在器件一侧的焊点内;经历-55℃~100℃温度循环的塑封BGA焊点Weibull特征寿命为5415周;0℃~100℃温度循环下的焊点Weibull特征寿命为14094周,超过预期。界面(Cu,Ni)_6Sn_5 IMC的生长受扩散机制控制,-55℃~100℃温度循环试验中塑封BGA器件Sn-Ag-Cu焊点和印刷电路板Ni(P)镀层一侧的界面IMC的生长速率为3.43×10~(-15)cm~2/s;0℃~100℃测试条件下的生长速率为2.30×10~(-16)cm~2/s;
     研究了Sn-8.0Zn-3.0Bi焊点在位移加载条件下的等温低周疲劳行为并藉FEM分析了焊点中的应力应变状态。在±40μm位移加载条件下的Sn-8.0Zn-3.0Bi焊点的低周疲劳寿命略高于Sn-37Pb焊点,在±60μm位移加载条件下的寿命反而低于Sn-37Pb;疲劳裂纹主要在焊点与界面连接的角部起裂,失效模式其主要集中于焊点中部直径较小区域的贯穿型和沿焊点界面的扩展型裂纹。基于3D FEM的动态硬化模型,推导获得了单剪切结构Sn-8.0Zn-3.0Bi焊点的Coffin-Manson方程,N_f=0.0294(△γ)~(-2.833),模拟结果与实验结果吻合。
Two key technologies used by the electronics industry are chip technology and packaging technology. Solder plays a crucial role in both of them. During the last decade, there has been a strong worldwide environmental movement towards lead-free electronic products.
     The interfacial reaction of Sn-3.5Ag and Sn-4.0Ag-0.5Cu solders on Electroless Nickel, Immersion Gold (ENIG) metallization after high temperature storage (HTS) testing was investigated from a metallurgical point of view. It was noticed that only Ni_3Sn_4 IMCs were found in the Sn-Ag system, while two kinds of interfacial products, (Ni,Cu)_3Sn_4 and (Cu,Ni)_6Sn_5 existed in the Sn-Ag-Cu system. During soldering and aging, Ni from the electroless Ni(P) was consumed to form IMCs, P atoms were accumulated and formed the P rich Ni(P) layer. In Sn-3.5 Ag solder joint, more Ni atoms were consumed comparing with Sn-4.0Ag-0.5Cu solder joint and one dark layer between Ni_3Sn_4 and Ni(P) could be observed. The interfacial layer between the Sn-Ag-Cu solder and electroless Ni(P) coating showed better thermal stability than eutectic Sn-Ag solder since no spalling was observed.
     The interfacial reactions between the eutectic Sn-0.4Co-0.7Cu alloy and ENIG metallization was investigated after reflow soldering. Common Sn-4.0Ag-0.5Cu and eutectic Sn-0.7Cu solders were used as references. Two types of IMCs were found in the solder matrix of the Sn-0.4Co-0.7Cu alloy, namely coarser (Co,Cu)Sn_2 and finer (Cu,Ni)_6Sn_5 particles, while only one ternary (Cu,Ni)_6Sn_5 interfacial compound was detected between the solder alloy and the ENIG coated substrate. It was noted that the type of the interfacial IMCs in all the solder joints was the same one-(Cu,Ni)_6Sn_5 and the thickness of the interfacial IMCs layer in the Sn-Co-Cu solder joint was also similar to that of Sn-Ag-Cu and Sn-Cu solder joints.
     Furthermore, the coupling effect in both Sn-3.5Ag-3.0Bi and Sn-8.0Zn-3.0Bi solder joints in sandwich structure was studied as a function of reflow time. The coupling effect between the ENIG metallization and the Cu substrate was confirmed since the type of IMCs on Ni(P) layer changed from Ni-Sn phase to Cu-Sn phase, apparently as a result of the diffusion of Cu atoms from the opposite Cu substrate. Furthermore, the growth rate constant of ternary (Cu,Ni)_6Sn_5 IMCs between Sn-Ag-Bi solder and Ni(P) substrate was 3.8×10~(-10)cm~2/s. One complex alloy Sn-Ni-Cu-Zn was formed at the Sn-Zn-Bi/Ni(P) interface; however the growth of this complex alloy on the ENIG coated substrate was suppressed and it's growth rate constant was 2.93×10~(-12)cm~2/s. The growth rate constants of interfacial Cu_6Sn_5 in Sn-3.5Ag-3.0Bi and Cu_5Zn_8 in Sn-8.0Zn-3.0Bi were 1.44×10~(-10)cm~2/s and 1.36×10~(-10)cm~2/s, separately. The diffusion coefficient of Cu atom in the molten Sn-3.5Ag-3.0Bi solder at 240℃was calculated to be about 1.1×10~(-5)cm~2/s.
     Fourth, PBGA package was assembled on the FR-4 PCB and the temperature cycling (TC) was carried out in a systematic manner for two different TC profiles in a single chamber Heraeus climate cabinet. The first TC profile ranged from-55℃to 100℃and the second one ranged between 0℃to 100℃. It was found that Ag_3Sn IMCs coarsen in the solder matrix and interfacial (Cu,Ni)_6Sn_5 IMCs layer growth during the temperature cycling. The growth rate constants of (Cu,Ni)_6Sn_5 for TC test ranging from -55℃to 100℃was 3.43×10~(-15)cm~2/s and another one ranging from 0℃to 100℃was 2.30×10~(-16)cm~2/s. The common failure mode of the solder joints analyzed in this work were cracks in the solder matrix. No fatigue cracks were found to propagate through the interfacial intermetallic layer for all the cases. The Weibull lifetime for TC test from -55℃to 100℃was 5415 cycles the second one ranged from 0℃to 100℃was 14094 cycles, both of them were qualified.
     The low cycle fatigue behavior of Sn-8Zn-3Bi solder joint, which is one promising lead-free candidate for low melting temperature soldering, was investigated using single lap shear samples. For the test loading condition using±40μm amplitude, the average lifetime of Sn-8Zn-3Bi was longer than that of Sn-37Pb, while in the±60μm displacement loading case, the average lifetime of Sn-8Zn-3Bi was shorter than that of Sn-37Pb solder joint. The fatigue cracks originated from the corner and prorogated through the solder joints in most cases. The 2D Finite element (FE) modeling work could described the strain and stress distribution in agreement with the experimental observation well, but the modeled stiffness of PCB was too low and allowed PCB to bend too much. 3D FE simulation based on the dynamic hardening model was performed and the Coffin-Manson equation was given based on results from experiment and simulation both:N_f= 0.0294 (△γ)~(-2.833)
引文
[1]田民波编著.电子封装工程[M].北京,清华大学出版社,2003:1-3
    
    [2] Rao R. Tummala, Eugene J. Rymaszewski, Alan G Klopfenstein. Microelectronics Packaging Handbook Part I [Ml. New York, Chapman & Hall, 1997: 4
    
    [3]彩霞.高密度电子封装可靠性研究[D].[博士论文]上海:中国科学院上海微系统与信息技术研究所,2002:33-52
    
    [4] Rao R. Tummala. Fundamentals of Microsystems Packaging[M]. USA, McGraw-Hill, 2001: 18
    
    [5]于大全.电子封装互连无铅钎料及其界面问题研究[D].[博士论文]大连,大连理工大学,2004:1-126
    
    [6]史耀武,夏志东,陈志刚,雷永平.电子组装钎料研究的新进展[J].电子工艺技术,2001,22(4):139-143
    
    [7] Mulugeta Abtew, Guna Selvaduray. Lead-free solders in microelectronics [J]. Materials Science and Engineering: R, 2000, 27(5/6): 95-141
    
    [8]吴兆华,周德俭.表面组装技术基础[M].北京,国防工业出版社,2003:1-8
    
    [9]朱奇农.电子封装中表面贴装焊点的可靠性研究[D].[博士论文]上海,中国科学院上海微系统与信息技术研究所,2000:1-66
    
    [10]菅沼克昭(日本)著,宁晓山译.无铅焊接技术[M].北京,科学出版社,2004:1-32
    
    [11]黄惠珍,魏秀琴,周浪.无铅焊料及其可靠性的研究进展[J].电子元件与材料,2003,22(4):39-42
    
    [12]顾永莲.电子焊料的无铅化及可靠性问题[J].功能材料,2005,36(4):490-494
    
    [13]夏阳华.无铅电子封装中的界面反应及焊点可靠性[D].[博士论文]上海,中国科学院上海微系统与信息技术研究所,2006:1-121
    
    [14]田民波,马鹏飞,张成.电子封装无铅化现状[J].电子工业专业设备,2003,27(6)期:65-69
    
    [15]夏志东,雷永平,史耀武.绿色高性能无铅钎料的研究与发展[J],电子工业技术,2002,23(5):185-191
    
    [16]谢恩恒.绿色封装:走向世界市场的必由之路[J].半导体技术,2004,29(2):51-53
    
    [17]李军,胡宗保.电子产品及电子器件绿色环保化[J].电子器件,2004,27(3):537-542
    
    [18]刘一波,吴懿平,吴丰顺,邬博义,张金松.无铅焊料的知识产权状况分析[J].电子元件与材料,2004,23(4):39-41
    
    [19]华商网-华商报.甘肃徽县铅锭冶炼厂致300多名儿童铅中毒[网页].http://news.sina.com.cn/c/2006-09-05/052510921089.shtml,2006年9月05日、2007年7月30日
    
    [20]京华时报.北京6岁以下儿童7%血铅超标,低楼层居住危险高[网页].http://news.xinhuanet.com/society/2007-03/25/content_5892621.htm,2007年3月25日、2007年7月30日
    
    [21] Yi Li, Kyoung-sik Moon, C. P. Wong. Electronics without lead[J]. Science, 2005, 308(5727):1419-1420
    
    [22] RoHS directive official text [S].http://eur-lex.europa.eu/LexUriServ/site/eSn/oj/2003/1_037/1_03720030213en00190023.pdf.
    
    [23] WEEE directive official text [S].??http://eur-lex.europa.eu/LexUriServ/site/en/oi/2003/l 037/1 03720030213en00240038.pdf.
    
    [24] Yuki Fukuda, Paul Casey, and Michael Pecht. Evaluation of selected Japanese lead-free consumer electronics[J]. IEEE Transactions on Electronics Packaging Manufacturing, 2003, 26(4): 305-312
    
    [25]许云霞,刘建国.无铅电子焊接的最新发展研究及其可靠性分析[J].电子工艺技术,2003,24(6):234-237
    
    [26]电子信息产品污染控制管理办法(第39号)[S].http://www.mii.gov.cn/art/2006/03/02art_521_7344.html
    
    [27] C.M.L. Wu, D.Q. Yu, C.M.T. Law, L. Wang. Properties of lead-free solder alloys with rare earth element additions[J]. Materials Science and Engineering: R, 2004,44(1): 1-44
    
    [28]戴志锋.微电子组装中Sn-Zn系无铅钎料的研究与开发[J].电子工艺技术,2004,25(1):5-8
    
    [29]黎小燕,陈国海,马莒生.Sn-Zn无铅焊料的研究与发展[J].电子工艺技术,2004,25(4):150-153
    
    [30] K.S. Kim, S.H. Huh, K. Suganuma. Effects of cooling speed on microstructure and tensileproperties of Sn-Ag-Cu alloys[J]. Materials Science and Engineering A, 2002,333(1/2): 106-114.
    
    [31] Dongkai Shangguan, Achyuta Achari, Wells Green. Application of Lead-Free Eutectic Sn-AgSolder in No-Clean Thick Film Electronic Modules[J]. IEEE Transactions on Components,Packaging and Manufacturing Technology-Part B, 1994,17(4): 603-611
    
    [32] Dongkai Shangguan. Lead-Free Solder Interconnect Reliability[M]. USA, ASM International,2005: 1-27
    
    [33] Yoshiharu Kariya, Colin Gagg, William J. Plumbridge. Tin pest in lead-free solders[J].Soldering & Surface Mount Technology, 2000,13(1): 39-40
    
    [34] K.Zeng, K.N.Tu. Six cases of reliability study of Pb-free solder joints in electronic packagingtechnology [J]. Materials Science and Engineering R, 2002,38(2): 55-105
    
    [35]陈柳,张群,王国忠,谢晓明,程兆年.倒装焊SnPb焊点热循环失效和底充胶的影响[J].半导体学报,2001,22(1):107-112
    
    [36]彩霞,陈柳,张群,徐步陆,黄卫东,谢晓明,程兆年.倒扣芯片连接焊点的热疲劳失效[J].半导体学报,2002,23(6):660-666
    
    [37] K.N. Tu, A.M. Gusak, M. Li. Physics and materials challenges for lead-free solders[J]. Journal of Applied Physics, 2003, 93(3): 1335-1353
    
    [38] K.N.Tu, K.Zeng. Tin-lead (SnPb) solder reaction in flip chip technology[J]. Materials Science and Engineering: R, 2001,34(1): 1-58
    
    [39]肖克来提.无铅焊料表面贴装焊点的高温可靠性研究[D].[博士论文]上海,中国科学院上海微系统与信息技术研究所,2001:1-98
    
    [40]黄萍.焊点的失效模式与分析[J].电子工艺技术,2006,27(4):205-211
    
    [41] JESD22-A104C. JEDEC Standard on Temperature Cycling[S] http://www.iedec.org/download/search/22al04c.pdf
    
    [42]江国宁.电子构装与计算力学[网页].http://csml9.pme.nthu.edu.tw:8080/KNC/homepage/EP_TO_CNEW/EP_TO_C_NEWS.HTML,1998、2007年7月30日
    
    [43]余天庆,吴玉树译.固体材料力学[M].北京,国防工业出版社,1997:78
    
    [44] W.W. Lee, L.T. Nguyen, GS. Selvaduray. Solder joint fatigue models: review and applicability to chip scale packages[J], Microelectronics Reliability, 2000,40(2): 231-244
    
    [45]王谦,Shi-Wei Ricky Lee,汪刚强,耿志挺,黄乐,唐祥云,马莒生.电子封装中的焊点及其可靠性[J].电子元件与材料,2000,19(2):24-26
    
    [46] John H. Lau. Solder joint reliability - theory and application[M]. New York, Van NostrandReinhold, 1991:333-454
    
    [47] John H. Lau, Donald W. Rice, Phil A. Avery. Elastoplastic anaylsis of surface-mount solderjoints[J]. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1987,10(3): 346-357
    
    [48] Harvey D. Solomon. Fatigue of 60/40 solder[J]. IEEE Transactions on Components, Hybrids,and Manufacturing Technology, 1986,9(4): 423-432
    
    [49] Liu Chen, Qun Zhang, Guozhong Wang, Xiaoming Xie, Zhaonian Cheng. The Effects ofUnderfill and Its Material Models on Thermomechanical Behaviors of a Flip Chip Package[J].IEEE Transactions on Advanced Packaging, 2001, 24(1): 17-24
    
    [50] Cai Xia, Chen Liu, Zhang Qun, Xu Bulu, Huang Weidong, Xie Xiaoming, Cheng Zhaonian.Quantitative mechanism of significant benefits of underfill in flip-chip assemblies [J]. Journal ofElectronic Packaging, 2003,125(1): 84-92
    
    [51] T.Laurila, V.Vuorinen, J.K.Kivilahti. Interfacial reactions between lead-free solders andcommon base materials[J]. Materials Science and Engineering: R, 2005,49(1/2): 1-60
    
    [52] Calculated Phase Diagram of Ag-Cu-Sn System [网页].http://www.metallurgy.nist.gov/phase/solder/agcusn.html. 13 February, 2003 、 2007 年 7 月 30
    
    [53] K.N.Tu, T.Y.Lee, J.W.Jang, D.R.Frear, K.Zeng, J.K.Kivilahti. Wetting reaction versus solidstate aging of eutectic SnPb on Cu[J]. Journal of Applied Physics, 2001,89(9): 4843-4849
    
    [54] H.K.Kim, H.K.Liou, K.N.Tu. Three-dimensional morphology of a very rough interfaceformed in the soldering reaction between eutectic SnPb and Cu[J]. Applied Physics Letter, 1995,66(18): 2337-2339
    
    [55] K.N.Tu. Cu/Sn interfacial reactions: thin-flim case versus bulk case[J]. Materials Chemistryand Physics, 1996,46(2/3): 217-223
    
    [56] H.K.Kim, K.N.Tu. Kinetic analysis of the soldering reaction between eutectic SnPb alloy andCu accompanied by ripening[J]. Physical Review B, 1996, 53(23): 16027-16034
    
    [57] Calculated Phase Diagram of Cu-Sn System [网页].http://www.metallurgy.nist.gov/phase/solder/cusn.html. 13 February, 2003、 2007 年 7 月 30
    
    [58] Ronald E. Pratt, Eric I. Stromswold, David J. Quesnel. Effect of solid-state intermetallicgrowth on the fracture toughness of Cu/63Sn-37Pb solder joints[J]. IEEE Transactions onComponents, Packaging, and Manufacturing Technology-Part A, 1996,19(1): 134-141
    
    [59] Alex C.K.So, Yan C. Chan. Reliability studies of surface mount solder joints-effect of Cu-Snintermetallic compounds[J]. IEEE Transactions on Components, Packaging, and ManufacturingTechnology-Part B, 1996,19(3): 661-668
    
    [60] P.L.Tu, Yan C.Chan, J.K.L.Lai. Effect of intermetallic compounds on the thermal fatigue ofsurface mount solder joints[J]. IEEE Transactions on Components, Packaging, and ManufacturingTechnology-Part B, 1997, 20(1): 87-93
    
    [61] Alex C.K.So, Yan C.Chan, J.K.L.Lai. Aging studies of Cu-Sn intermetallic compounds inannealed surface mount solder joints[J]. IEEE Transactions on Components, Packaging, andManufacturing Technology-Part B, 1997,20(2): 161-166
    
    [62]李晓延,严永长,史耀武.金属间化合物对SnAgCu/Cu界面破坏行为的影响[J].机械强度,2005,27(5):666-671
    
    [63] Zequn Mei, Mudasir Ahmad, Mason Hu, Gnyaneshwar Ramakrishna. Kirkendall voids atCu/solder interface and their effects on solder joint reliability[C]. Proceeding of the 55~(th) ElectronicComponents and Technology Conference, 2005:415-420
    
    [64] Kejun Zeng, Roger Stierman, Tz-Cheng Chiu, Darvin Edwards. Kirkendall void formation ineutectic SnPb solder joints on bare Cu and its effect on joint reliability[J]. Journal of AppliedPhysics, 2005,97(2): 024508-1-8
    
    [65] Luhua Xu, John H.L. Pang. Effect of intermetallic and Kirkendall voids growth on boardlevel drop reliability for SnAgCu lead-free BGA solder joint[C]. Proceeding of the 56~(th) ElectronicComponents and Technology Conference, 2006: 275-282
    
    [66] Tz-Cheng Chiu, Kejun Zeng, Roger Stierman, Darvin Edwards, Kazuaki Ano. Effect ofthermal aging on board level drop reliability for Pb-free BGA packages[C]. Proceeding of the 54~(th)Electronic Components and Technology Conference, 2004:1256-1262
    
    [67] Ming Li, K.Y. Lee, D.R. Olsen, William T. Chen, Ben Tin Chong Tan, Subodh Mhaisalkar.Micorstructure, joint strength and failure mechanisms of SnPb and Pb-free solder in BGApackages[J]. IEEE Transactions on Electronics Packaging, 2002,25(3): 185-192
    
    [68]常俊玲.功率器件无铅焊料焊接层可靠性研究[D].[博士论文]上海,中国科学院上海微系统与信息技术研究所,2005:1-111
    
    [69] Shelgon Yee. Ternary Intermetallic Compound - A Real Threat to BGA Solder Joint Reliability[J]. SMTA, 2004,17(2): 1-6
    
    [70] Gray H.GChan, "Failure analysis techniques for Cu-Ni-Sn solder joint separations on mounted PBGA devices", Proceedings of 12~(th) IPFA, 2005, pp.217-221
    
    [71]王勖成,劭敏编著.有限单元基本原理和数值方法[M].北京,清华大学出版社,1997:1-258
    
    [72]徐步陆,电子封装可靠性研究[D].[博士论文]上海,中国科学院上海微系统与信息技术研究所,2002:1-118
    
    [73] JESD22-A103C. JEDEC Standard on High Temperature Storage Life[S]http://www.jedec.org/download/search/22a 103c.pdf
    
    [74] John H.L. Pang, B.S. Xiong, T.H. Low. Low cycle fatigue study of lead free 99.3Sn-0.7Cusolder alloy[J]. Journal of Fatigue, 2004, 26(8): 865-872
    
    [75] X.Q. Shi, H.L.J. Pang, W. Zhou and Z.P. Wang. Low cycle fatigue analysis of temperatureand frequency effects in eutectic solder alloy[J]. Journal of Fatigue, 2000,22(3): 217-228
    
    [76]曾秋莲,王中光,洗爱平,尚建库.无铅焊料Sn-3.8Ag-0.7Cu的低周疲劳行为[J].材料研究学报,2004,18(1):11-17
    
    [77] C.Andersson, Z.Lai, J.Liu, H.Jiang, Y.Yu. Comparison of isothermal mechanical fatigue properties of lead-free solder joints and bulk solders[J]. Materials Science and Engineering A, 2005,394(l/2):20-27
    
    [78]曾信杰.电子构装用无铅焊锡之低周疲劳行为研究[D].[硕士论文]台湾:国立中央大学,2003: 1-90
    
    [79] Ahmed Sharif, Y.C.Chan. Comparative Study of Interfacial Reactions of Sn-Ag-Cu and Sn-Ag Solders on Cu Pads during Reflow Soldering[J]. Journal of Electronic Materials, 2005, 34(1): 46-52
    
    [80]肖克来提,杜黎光,孙志国,盛玫,罗乐.SnAgCu表面贴装焊点在时效和热循环过程中的组织及剪切强度变化[J],金属学报,2001,37(4):439-444
    
    [81] C.E.Ho, Y.M.Chen, C.R.Kao. Reaction Kinetics of Solder-Balls with Pads in BGA Packages??during Reflow Soldering[J]. Journal of Electronic Materials, ,28(11): 1231-1237
    
    [82] Jong-Hyun Lee, Jong-Hwan Park, Dong-Hyuk Shin, Yong-Ho Lee, Yong-Seog Kim. Kineticsof Au-containing Ternary Intermetallic Redeposition at Solder/UBM Interface[J]. Journal ofElectronic Materials, 2001,30(9): 1138-1144
    
    [83] C.E.Ho, R.Zheng, GL.Luo, A.H.Lin, C.R.Kao. Formation and Resettlement of(AuxNil-x)Sn4 in Solder Joints of Ball-Grid-Array Packages with the Au/Ni Surface Finish[J].Journal of Electronic Materials, 2000,29(10): 1175-1181
    
    [84] C.E.Ho, W.T.Chen, C.R.Kao. Interactions Between Solder and Metallization DuringLong-Term Aging of Advanced Microelectronic Packages[J]. Journal of Electronic Materials,2001,30(4): 379-387
    
    [85] Jong-Hyun Lee, Jong-Hwan Park, Dong-Hyuk Shin, Yong-Seog Kim. Kinetics of theAu-Ni-Sn Ternary Intermetallic Layer Redeposition at the Solder/Under-Bump MetallurgyInterface during Aging Treatment[J]. Journal of Electronic Materials, 2004,33(1): 28-33
    
    [86] H.GSong, J.P.Ahn, A.M.Minor, J.W.Morris. Au-Ni-Sn Intermetallic Phase Relationships inEutectic Pb-Sn Solder Formed on Ni/Au Metallization[J]. Journal of Electronic Materials, 2001,30(4): 409-414
    
    [87] M.D.Cheng, S.Y.Chang, S.F.Yen, T.H.Chuang. Intermetallic Compounds Formed during theReflow and Aging of Sn-3.8Ag-0.7Cu and Sn-20In-2Ag-0.5Cu Solder Ball Grid ArrayPackages[J]. Journal of Electronic Materials, 2004,33(3): 171-180
    
    [88]邬博义,吴懿平,张乐福,徐聪.新一代绿色电子封装材料[J].微电子学,2002,32(5):357-361
    
    [89]薛松柏,王旭艳,禹胜林.SnAgCu/Cu和SnAgCu/Au/Ni/Cu表面贴装元件焊点高温存贮试验分析[J].焊接学报,2005,26(12):62-64
    
    [90] C.M.Liu, C.E.Ho, W.T.Chen, C.R.Kao. Reflow Soldering and Isothermal Solid-State Agingof Sn-Ag Eutectic Solder on Au/Ni Surface Finish[J]. Journal of Electronic Materials, 2001,30(9):1152-1156
    
    [91] Y.L.Lin, W.C.Luo, Y.H.Lin, C.E.Ho, C.R.Kao. Effect of the Gold Thickness of the SurfaceFinish on the Interfacial Reactions in Flip-Chip Solder Joints[J]. Journal of Electronic Materials,2004,33(10): 1092-1097
    
    [92] Won Kyoung Choi, Hyuck Mo Lee. Prediction of primary intermetallic compound formationduring interfacial reaction between Sn-based solder and Ni substrate[J]. Scripta Materialia, 2002,46(11): 777-781
    
    [93] K.C.Hung, Y.C.Chan. Study of Ni3P growth due to solder reaction-assisted crystallization ofelectroless Ni-P metallization[J]. Journal of Materials Science Letters, 2000,19(19): 1755-1757
    
    [94]唐兴勇,王珺,谷博,俞宏坤,肖斐.老化对Sn-Ag-Cu焊料/Ni-P镀层界面结构和剪切强度的影响[J].金属学报,2006,42(2):205-210
    
    [95] C.E.Ho, Y.L.Lin, C.R.Kao. Strong Effect of Cu Concentration on the Reaction betweenLead-Free Microelectronic Solders and Ni[J]. Chemistry of Materials, 2002,14(3): 949-951
    
    [96] C.E.Ho, R.Y.Tsai, Y.L.Lin, C.R.Kao. Effect of Cu Concentration on the Reactions betweenSn-Ag-Cu Solders and Ni[J]. Journal of Electronic Materials, 2002,31(6): 584-590
    
    [97] Szu-Tsung Kao, Jeng-Gong Duh. Interfacial Reactions and Compound Formation ofSn-Ag-Cu Solders by Mechanical Alloying on Electroless Ni-P/Cu Under Bump Metallization[J].Journal of Electronic Materials, 2005,34(8): 1129-1134
    
    [98] Young-Doo Jeon, Sabine Nieland, Andreas Ostmann, Herbert Reichl, Kyung-Wook Paik. A??Study on Interfacial Reactions between Electroless Ni-P Under Bump Metallization and 95.5Sn-4.0Ag-0.5Cu Alloy[J]. Journal of Electronic Materials, 2003,32(6): 548-557
    
    [99] S.J.Wang, C.Y.Liu. Study of Interaction between Cu-Sn and Ni-Sn Interfacial Reactions by Ni-Sn3.5Ag-Cu Sandwich Structure[J]. Journal of Electronic Materials, 2003,32(11): 1303-1309
    
    [100] Kejun Zeng, Vesa Vuorinen, Jorma K.Kivilahti. Interfacial Reactions Between Lead-Free SnAgCu Solder and Ni(P) Surface Finish on Printed Circuit Boards[J]. IEEE Transactions on Electronics Packaging Manufacturing, 2002,25(3): 162-167
    
    [101]肖克来提,杜黎光,盛玫,罗乐.时效对无铅焊料Ni-P/Cu焊点的影响[J].材料研究学报,2001,15(2):193-200
    
    [102] Shawkret Ahat, Liguang Du, Mei Sheng, Le Luo, Wolfgang Kempe, Juergen Freytag. Effect of aging on the microstructure and shear strength of SnPbAg/Ni-P/Cu and SnAg/Ni-P/Cu solder joints[J]. Journal of Electronic Materials, 2000,29(9): 1105-1109
    
    [103]和平,彭瑶玮,乌健波,孟宣华,何国伟.vf-BGA封装焊球热疲劳可靠性的研究[J],半导体学报,2004,25(7):874-878
    
    [104]华彤,王珺,俞宏坤,肖斐.BGA封装中含Bi,Ni的无铅焊球剪切强度研究[J].复旦学报(自然科学版),2006, 45(4):489-494
    
    [105] S.K.Kang, W.K.Choi, D.Y.Shih, P.Lauro, D.W.Henderson, T.Gosselin, D.N.Leonard.Interfacial reactions, microstructure and mechanical properties of Pb-free solder joints in PBGAlaminates[C], Proceeding of 52nd Electronic Components and Technology Conference, 2002:146-153
    
    [106] Libin Liu, Cristina Andersson, Johan Liu. Thermodynamic Assessment of the Sn-CoLead-Free Solder System[J]. Journal of Electronic Materials, 2004,33(9): 935-939
    
    [107] Ahmed Sharif, Y.C. Chan, Rashed Adnan Islam. Effect of volume in interfacial reactionbetween eutectic Sn-Pb solder and Cu metallization in microelectronic packaging[J]. MaterialsScience and Engineering B, 2004,106(2): 120-125
    
    [108] Ahmed Sharif, Y.C. Chan. Dissolution kinetics of BGA Sn-Pb and Sn-Ag solders with Cusubstrates during reflow[J]. Materials Science and Engineering B, 2004,106(2): 126-131
    
    [109] S.C.Hsu, SJ.Wang, C.Y.Liu. Effect of Cu Content on Interfacial Reactions between Sn(Cu)Alloys and Ni/Ti Thin-Film Metallization[J]. Journal of Electronic Materials, 2003, 32(11):1214-1221
    
    [110] I.E.Anderson, J.C.Foley, B.A.Cook, J.Harringa, R.L.Terpstra, O.Unal. Alloying Effects inNear-Eutectic Sn-Ag-Cu Solder Alloys for Improved Microstructural Stability[J]. Journal ofElectronic Materials, 2001,30(9): 1050-1059
    
    [111] Yanghua Xia, Xiaoming Xie, Chuanyan Lu, Junling Chang. Coupling effects atCu(Ni)-SnAgCu-Cu(Ni) sandwich solder joint during isothermal aging[J]. Journal of Alloys andCompounds, 2006,417(1): 143-149
    
    [112] K.S.Kim, S.H.Huh, K.Suganuma. Effects of intermetallic compounds on properties ofSn-Ag-Cu lead-free soldered joints[J]. Journal of Alloys and Compounds, 2003,352(1/2): 226-236
    
    [113]沈骏,刘永长,高后秀.无铅焊料Sn-Ag中金属间化合物Ag3Sn的异常长大[J].科学通报,2006,51(10):1225-1228
    
    [114]李宇君,杨道国,秦连城,罗海萍.Sn-Ag-Cu焊料中金属间化合物对焊接性能的影响[J].电子元件与材料,2006,25(5):7-12
    
    [115] Matt Schaefer, Raymond A.Fournelle, Jin Liang. Theory for Intermetallic Phase Growth Between Cu and Liquid Sn-Pb Based on Grain Boundary Diffusion Control[J]. Journal of??Electronic Materials, 1998,27(11): 1167-1176
    
    [116] Luhua Xu, John H.L.Pang, F.X.Che. Intermetallic Growth and Failure Study forSn-Ag-Cu/ENIG PBGA Solder Joints Subject to Thermal Cycling[C]. Proceedings of 55~(th)Electronic Components and Technology Conference, 2005: 682-686
    
    [117] Kyung Seob Kim, Jun Mo Yang, Chong Hee Yu, In Ok Jung, Heon Hee Kim. Analysis oninterfacial reactions between Sn-Zn solders and the Au/Ni/electrolytic-plated Cu pad[J]. Journal ofAlloys and Compounds, 2004,379(1/2): 314-318
    
    [118] K.S.Kim, K.W.Ryu, C.H.Yu, L.M.Kim. The formation and growth of intermetalliccompounds and shear strength at Sn-Zn solder/Au-Ni-Cu interfaces [J]. MicroelectronicsReliability, 2005,45(3/4): 647-655
    
    [119] Seung Wook Yoon, Won Kyoung Choi, Hyuck Mo Lee. Interfacial reaction betweenSn-lBi-5In-9Zn solder and Cu substrate[J]. Scripta Materialia, 1999,40(3): 327-332
    
    [120] L.L. Duan, D.Q. Yu, S.Q. Han, H.T. Ma, L. Wang. Microstructural evolution of Sn-9Zn-3Bisolder/Cu joint during long-term aging at 170°C[J]. Journal of Alloys and Compounds, 2004,381(1/2): 202-207
    
    [121]中国电子学会生产技术学分会丛书编委会.微电子封装技术[M].合肥,中国科学技术大学出版社,2003:121-156
    
    [122]黄春跃,吴兆华,周德俭.热冲击条件下1.27mm引脚间距塑封球栅阵列器件焊点可靠性测试与分析[J].焊接学报,2005,26(9):31-34
    
    [123]张礼季,王莉,高霞,谢晓明.塑料封装球栅阵列器件焊点的可靠性[J].中国有色金属学报,2002,12(1):227-231
    
    [124]黄春跃,周德俭,吴兆华.基于正交试验设计的塑封球栅阵列器件焊点工艺参数与可靠性关系研究[J].电子学报,2005,33(5):788-792
    
    [125]薛松柏,胡永芳,禹胜林.CBGA焊点热循环条件下的可靠性[J].焊接学报,2005,26(10): 81-83
    
    [126]王薇,王中光,洗爱平,尚建库.CBGA结构热循环条件下无铅焊点的显微组织和断裂[J].金属学报,2006,42(6):647-652
    
    [127] John Lau, Dongkai Shangguan, Todd Castello, Rob Horsley, Joe Smetana, Nick Hoo, Walter Dauksher, Dave Love, Irv Menis, Bob Sullivan. Failure analysis of lead-free solder joints for high-density packages[J]. Soldering & Surface Mount Technology, 2004,16(2): 69-76
    
    [128]叶润清,罗乐.Sn62Pb36Ag2焊料的微结构粗化[J].功能材料与器件学报,1999,5(4):327-331
    
    [129] Sung K. Kang, Won Kyoung Choi, Da-Yuan Shih, Donald W. Henderson, Timothy Cosselin,Amit Sarkhel, Charles Goldsmith, Karl J. Puttlitz. Ag_3Sn Plate Formation in the Solidification ofNear-Ternary Eutectic Sn-Ag-Cu[J]. JOM, 2003,55(6): 61-65
    
    [130] Li-Lei Ye, Zonghe Lai, Johan Liu, Anders Tholen. Microstructrual coarsening of lead freesolder joints during thermal cycling[C]. Proceedings of 50~(th) Electronic Components andTechnology Conference, 2000: 134-137
    
    [131] M. McCormack, S. Jin, GW. Kammlott, H.S. Chen. New Pb-free solder alloy with superiormechanical properties[J]. Applied Physics Letter, 1993,63(1): 15-17
    
    [132] Paul T. Vianco, John J. Stephens, Jerome A. Rejent. Intermetallic Compound LayerDevelopment During the Solid State Thermal Aging of 63 Sn-37Pb Solder/Au-Pt-Pd Thick FlimCouples[J]. IEEE Transactions on CPMT-PartA, 1997,20(4): 478-490
    
    [133]段莉蕾.无铅钎料接头界面化合物层生长及元素扩散行为[D].[硕士论文]大连,大连理??工大学,2004:1-79
    
    [134] Luhua Xu, John H.L.Pang, Kithva H. Prakash and T.H.Low. Isothermal and Thermal Cycling Aging on IMC Growth Rate in Lead-Free and Lead-Based Solder Interface[J]. IEEE Transactions on on Components and Packaging Technologies, 2005,28(3): 408-414
    
    [135]陈国海,马莒生.热循环过程中焊点残余应变的研究[J].电子元件与材料,2004,23(11):37-39
    
    [136] Po-Jen Zheng, J.Z.Lee, K.H.Liu, J.D.Wu, S.C.Hung. Solder joint reliability of TFBGAassemblies with fresh and reworked solder balls[J]. Microelectronics Reliability, 2003, 43(6):925-934
    
    [137] Waloddi Weibull-Wikipedia, the free encyclopedia,http://en.wikipedia.org/wiki/Waloddi Weibull
    
    [138] Weibull Distribution-from Wolfram MathWorld,http://mathworld.wolfram.com/WeibullDistribution.html
    
    [139] Fukuda, Y., Pecht, M.G, Fukuda, K., Fukuda, S.. Lead-free soldering in the Japaneseelectronics industry[J]. IEEE Transactions on Components and Packaging Technologies, 2003,26(3): 616-624
    
    [140] Masayuki Kitajima, Tadaaki Shono. Reliability study of new SnZnAl lead-free solders usedin CSP packages[J]. Microelectronics Reliability, 2005,45(7/8): 1208-1214
    
    [141]N.E.弗罗斯特,K.J.马什,L.P.普克著,汪一麟,邵本逑译.金属疲劳[M].北京:冶金工业出版社,1984:7-48
    
    [142]王栓全 编著.金属疲劳[M].福州:福建科学技术出版社,1985:45-176
    
    [143]J.Lemaitre,J.L.Chaboche著,余天庆,吴玉树译.固体材料力学[M].北京:国防工业出版社,1997:159-240
    
    [144]周益春编著.材料固体力学[M].北京:科学出版社,2005:215-291
    
    [145]叶晓谦.覆晶晶粒尺寸构装之热应力分析[D].[硕士论文]台湾:国立中山大学,2001:1-66
    
    [146]郭昱纶.覆晶球栅阵列电子封装体在温度循环下的热应力与热应变分析[D].[硕士论文]台湾:国立中山大学,2003:1-106
    
    [147]周俊,郝伟娜,柴国钟.微电子封装中焊点疲劳模型的现状与发展[J].机械设计与制造,2007,28(1):76-78

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700