无铅电子封装微互连焊点中的热时效和电迁移及尺寸效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代电子产品向无铅化、微型化、多功能化方向发展,电子封装微互连结构的可靠性也面临更多问题。本文通过在模拟回流焊条件下制备不同尺寸的“铜丝/钎料/铜丝”三明治结构对接微互连焊点,系统地研究了无铅钎料Sn-3.0Ag-0.5Cu微互连焊点的热时效和电迁移及尺寸效应等可靠性问题。主要采用精密动态力学分析仪(DMA)对服役温度(100℃)下微焊点热时效和电迁移后的强度变化行为以及尺寸效应问题进行了研究,并运用光学显微镜、扫描电镜和能谱仪等方法分析了微焊点的显微组织变化、拉伸断口变化以及电迁移致微焊点极性效应等。
     对微焊点在服役温度下的热时效研究表明:微焊点高度变化(100~300μm)及热时效时间改变(0~96h)对焊点准静态拉伸强度有明显影响。在未经时效时,高度为100、200和300μm微焊点的平均拉伸强度分别为53.75、46.59和44.38MPa,焊点高度减小导致微焊点内部力学拘束效应增强,因而微焊点强度提高;同时,热时效时间延长致使微焊点内钎料合金显微组织明显粗化,导致微焊点强度降低,经48h和96h热时效后不同高度的微焊点拉伸强度分别降至50.12、40.87、35.26MPa和44.13、38.38、33.48MPa;此外,96h较短热时间內的时效对微焊点界面IMC厚度无明显影响。
     研究不同高度尺寸的微焊点在100℃环境温度下经施加电流密度为1×104A/cm2,通电时间为48h的直流电流作用后拉伸强度的变化结果表明,微焊点在经电迁移作用后拉伸强度明显退化,高度为100、200和300μm的微焊点其平均拉伸强度分别降至44.5、35.8和27.8MPa,相对于初始态分别下降了17.3%、23.2%和37.4%,强度退化程度随微焊点高度的减小而减弱,呈现出明显的尺寸依赖性。
     研究进一步表明,电迁移还导致微焊点产生明显的极性效应,微焊点在经历较长时间电迁移后,阳极IMC明显比阴极厚。电迁移加速了微焊点阴极IMC的分解,导致阴极出现微空洞或裂纹,弱化了微焊点的阴极界面,使微焊点最终断裂位置处于钎料与铜丝界面的阴极,断裂模式也由未经电迁移的延性断裂变为延性与脆性相结合的模式。
With the electronic products moving towards lead-free, miniaturization and multi-functions, the reliability of electronic packaging interconnects has attracted more and more attentions. In this thesis, the typical copper-wire/Sn-3.0Ag-0.5Cu/copper-wire sandwich structured butt joints with various micro-scale sizes were prepared under the modeling reflow soldering condition. The isothermal aging and electromigration behavior of the micro-scale solder joints as well as the joint size effect were studied sysmatically. The tensile strength change of the micro-scale solder joints of different sizes after undergoing isothermal aging and electromigration were studied by a Dynamic Mechanical Analyzer (DMA) at the testing temperature of 100℃. The microstructure, fractographies and the electromigration induced polarity effect in micro-scale solder joints were characterized by an optical microscope (OM) and a scanning electronic microscope (SEM) equipped with energy dispersive spectroscopy (EDS).
     The results of the influence of isothermal aging on the micro-scale solder joints show that both the joint thickness and isothermal aging time significantly affect the ultimate tensile strength of the joints under quasi-static micro-tension. Without isothermal aging, the tensile strength of the joints increases with decreasing the thickness of the joints, the average tensile strength of the solder joints with three different thicknesses of 100, 200 and 300μm are 53.75, 46.59 and 44.38MPa respectively; this is probably owing to the increase of mechanical constraint in the solder joints. It has also been shown that the tensile strength of the joint decreases with the prolongation of isothermal aging time which results in the coarsening of the microstructure in the solder joints. After aging for 48 hours, the average values of tensile strength of the above three types of joints decrease to 50.12, 40.87 and 35.26MPa repectively, and further decrease to 44.13, 38.38 and 33.48MPa after aging for 96 hours. However, the thickness of the intermetallic compounds (IMC) layer at the joint interface shows almost no change obviously even after aging for 96 hours.
     Furthermore, the effects of electromigration on tensile strength of the micro-scale solder joints were also studied. The eletromigration tests were carried out with a constant current density of 1×104A/cm2 at 100℃for 48 hours. The experimental results show that the electromigration has brought about obvious degradation of tensile strength of the joints. The average values of tensile strength of the joints with the thickness of 100, 200 and 300μm decrease to 44.5, 35.8 and 27.8MPa after electromigration, i.e., decreased by 17.3%, 23.2% and 37.4% respectively. The degradation degree of the joint strength decreases with decreasing joint thickness and exhibits a clear dependence on the solder joints’size.
     Moreover, it has been shown that the electromigration also induces obvious polarity effect in micro-scale solder joints. After undergoing a certain current loading, the IMC layer at the anode interface of the joints becomes thicker compared with that in the cathode. Clearly, the electromigration resulted in weakening of the solder/IMC interface in the joints’cathode and the decomposition of IMC at the cathode interface; subsequently the microviods and microcrack developed at the cathode interface of the joints, and finally the fracture occured at the cathode interface of the joints. Also, it has been seen that the electromigration leads to the transfer of fracture mode of the joints from the ductile to the combination of brittle and ductile.
引文
[1]张新平,尹立孟,于传宝.电子和光子封装无铅钎料的研究和应用进展[J].材料研究学报, 2008, 22(1): 1-9
    [2] Tu K. N. Recent advances on electromigration in very-large-scale-integration of interconnects[J]. Journal of Applied Physics, 2003, 94(9): 5451-5473
    [3] Chen C., Liang S. W. Electromigration issues in lead-free solder joints[J]. Journal of Materials Science: Materials in Electronics, 2007, 18(1-3): 259-268
    [4] Pierce D. G., Brusius P. G. Electromigration: A review[J]. Microelectronics Reliability, 1997, 37(7): 1053-1072
    [5]尹立孟,张新平.电子封装微互连中的电迁移[J].电子学报, 2008, 36(8): 1610-1614
    [6] Zimprich P., Betzwar-Kotas A., Khatibi G., et al. Size effect in small scaled lead-free solder joints[J]. Journal of Materials Science: Materials in Electronics, 2008, 19(4): 383-388
    [7] Huang Z. H., Conway P. P., Jung E., et al. Reliability issues in Pb-free solder joint miniaturization[J]. Journal of Electronic Materials, 2006, 35(9): 1761-1772
    [8] Islam M. N., Sharif A., Chan Y. C. Effect of volume in interfacial reaction between eutectic Sn-3.5%Ag-0.5%Cu solder and Cu metallization in microelectronic packaging[J]. Journal of Electronic Materials, 2005, 34(2): 143-149
    [9]尹立孟,杨艳,刘亮岐,张新平.电子封装微互连焊点力学行为的尺寸效应[J].金属学报, 2009, 45(4): 422-427
    [10] He M., Acoff V. L. Effect of reflow and thermal aging on the microstructure and microhardness of An-3.7Ag-xBi solder alloys[J]. Journal of Electronic Materials, 2006, 35(12): 2098-2106
    [11] Deng X., Sidhu R. S., Johnson P., et al. Influence of reflow and thermal aging on the shear strength and fracture behavior of Sn-3.5Ag solder/Cu joints[J]. Metallurgical and Materials Transactions A, 2005, 36(1): 55-64
    [12]Chen W. M., McCloskey P., O’Mathuna S. C. Isothermal aging effects on the microstructure and solder bump shear strength of eutectic Sn37Pb and Sn3.5Ag solders[J]. Microelectronics Reliability, 2006, 46(5-6): 896-904
    [13] Peng W., Monlevade E., Marques M. E. Effect of thermal aging on the interfacial structure of SnAgCu solder on Cu[J]. Microelectronics Reliability, 2007, 47(12): 2161-2168
    [14]田民波.电子封装工程[M].北京:清华大学出版社, 2003
    [15] Seraphim D. P., Lasky R. C., Li C. Y. Principles of Electronic Packaging[M]. New York: McGraw-Hill, 1989
    [16]查尔斯A.哈珀(主编),沈卓身,贾松良(主译).电子封装材料与工艺[M].北京:化学工业出版社, 2006: 15-16
    [17] Tummala R. R.著,黄庆安,唐洁影译.微系统封装基础[M].南京:东南大学出版社, 2005
    [18]金玉丰,王志平,陈兢.微系统封装技术概论[M].北京:科学出版社, 2006
    [19] Michelson A. R., Basavanhally N. R., Lee Y.-C. Optoelectronic Packaging[M]. New York: Wiley-Interscience, 1997
    [20]吴懿平,丁汉等.电子制造技术基础[M].北京:机械工业出版社, 2006: 249-308
    [21] Kim J. H., Jeong S. W., Lee H. M. A thermodynamic study of phase equilibria in the Au-Sb-Sn solder system[J]. Journal of Electronic Materials, 2002, 31(6): 557-563
    [22] Lau J. H., Wong C. P., Le N. C., Lee S. W. R.电子制造技术-利用无铅、无卤素和导电胶材料[M].姜岩峰,张常年译.北京:化学工业出版社, 2005
    [23] Rettenmayr M., Lambracht P., Kempf B., et al. High melting Pb-free solder alloys for die-attach applications[J]. Advanced Engineering Materials, 2005, 7(10): 965-969
    [24] Zhang X. P., Yu C. B., Shrestha S., et al. Creep and fatigue behaviors of the Lead-free Sn-Ag-Cu-Bi and Sn60Pb40 solder interconnections at elevated temperatures[J]. Journal of Materials Science: Materials in Electronics, 2007, 18(6): 665-670
    [25] Zhang X. P., Yin L. M., Yu C. B. Thermal creep and fracture behaviors of the Lead-free Sn-Ag-Cu-Bi solder interconnections under different stress levels[J]. Journal of Materials Science: Materials in Electronics, 2008, 19(4): 393-398
    [26] Wiese S., Wolter K. J. Microstructure and creep behavior of eutectic SnAg and SnAgCu solders. Microelectronics Reliability[J], 2004, 44(12): 1923-1931
    [27] Suraski D., Seelig K. The current status of lead-free solder alloys[J]. IEEE Transaction on Electronics Packaging Manufacturing, 2001, 24(4): 244-248
    [28]张文典.实用表面组装技术[M].北京:电子工业出版社, 2006
    [29]王伟科,赵麦群,邬涛,焊膏用免清洗助焊剂的制备与研究[J].电子工艺技术, 2006, 27(1): 8-13
    [30] Lee N. C. Flux technology for lead-free alloys and its impact on cleaning[A]. 27th Annual IEEE/CPMT/SEMI International Electronics Manufacturing Technology Symposium [C]. San Jose, CA USA, IEMT, 2002: 316-322
    [31]郭福.无铅钎焊技术与应用[M].北京:科学出版社, 2006
    [32]马鑫,何鹏.电子组装中的无铅软钎焊技术[M].黑龙江:哈尔滨工业大学出版社, 2006
    [33] Laurila T., Vuorinen V., Kivilahti J. K. Interfacial reactions between lead-free solders and common base materials[J]. Materials Science and Engineering-Reports, 2005, 49: 1
    [34] Vianco, P. T.; Rejent, J. A.; Hlava, P. F., Solid-state intermetallic compound layer growth between copper and 95.5Sn-3.9Ag-0.6Cu solder[J]. Journal of Electronic Materials, 2004, 33 (9), 991-1004
    [35] Takenaka T., Kano S., Kajihara M., et al. Growth behavior of compound layers in Sn/Cu/Sn diffusion couples during annealing at 433-473K[J]. Materials Science and Engineering A, 2005, 396:115-123
    [36] Deng, X., Piotrowski, G., Williams J. J., et al. Influence of initial morphology and thickness of Cu6Sn5 and Cu3Sn intermetallics on growth and evolution during thermal aging of Sn-Ag solder/Cu joints[J]. Journal of Electronic Materials, 2003, 32 (12), 1403-1413
    [37] Lee B. J., Hwang N. M., Lee H. M. Prediction of interface reaction products between Cu and various solder alloys by thermodynamic calculation[J]. Acta Materialia, 1997, 45 (5), 1867-1874
    [38] Choi W. K., Lee H. M. Prediction of primary intermetallic compound formation during interfacial reaction between Sn-based solder and Ni substrate[J]. Scripta Materialia, 2002, 46 (11): 777-781
    [39] Chiu T. C., Zeng K., Stierman R., et al. Effect of thermal aging on board level drop reliability for Pb-free BGA packages[A]. Electronic Components and Technology Conference, 2004 . Proceedings. 54th [C]. las vegas, USA, 2004: 1256-1262
    [40] Zeng K., Tu K.N. Six cases of reliability study of Pb-free solder joints in electronic packing technology[J]. Materials Science and Engineering R: Reports, 2002, 38(2): 55-105
    [41] Lin Y. H., Hu Y. C., Tsai C. M., et al. New electromigration failure mode in flip chip solder joints[A]. Proceedings of the 2003 SMTA International Conference[C]. Chicago, USA, 2003: 312
    [42] Black J. R. Electromigration-a brief survey and some recent results[J]. IEEE Trans. Electron Devices, 1969, 16: 338-347
    [43] Choi J. Y., Lee S. S., Paik J. M., et al. Electromigration behavior of eutectic SnPbsolder[A]. Proceedings of 3rd International Symposium on Electronic Material and Packaging[C]. Jeju Island, 2001: 417-420
    [44] Brandenburg S., Yeh S. Electromigration studies of flip chip bump solder joints[A]. Proceedings of the Mount International Conference and Exposition[C]. San Jose, USA, 1998: 337-344
    [45] Hsu Y. C., Chou C. K., Liu P. C., et al. Electromigration in Pb-free SnAg3.8Cu0.7 Solder stripes[J]. Journal of Applied Physics, 2005: 98, 033523,1-6
    [46] Qu S. Q., Tu K. N. A Study of electromigration in Sn3.5Ag and Sn3.8Ag0.7Cu solder lines[A]. 2005 Electronic Components and Technology Conference[C]. Lake Buena Vista, FL, USA: IEEE, 2005: 1445-1450
    [47] Shao T. L., Chen Y. H., Chiu S. H., et al. Electromiration failure mechanisms for SnAg3.5 solder bumps on Ti/Cr-Cu/Cu and Ni(P)/Au metallization pads[J]. Journal of applied physics, 2004, 96(8): 4518-4524
    [48] Rinne G. A. Electromigration in SnPb and Pb-Free Solder Bumps[A]. Proceedings of the 54th Electric Components and Technology Conference[C]. Las Vegas, USA, 2004: 974-978
    [49] Wang H., Li Z. H., Sun J. Effects of stress and temperature gradients on the evolution of void in metal interconnects driven by electric current and mechanical stress[J]. Materials Science and Engineering, 2006, 14:607-615
    [50] Lee T. Y., Tu K. N., Kuo S. M., et al. Electromigration of eutectic SnPb solder interconnects for flip chip technology[J]. Journal of Applied Physics, 2001, 89(6): 3189-3194
    [51] Zhang X. F., Guo J. D., Shang J. K. Abnormal polarity effect of electromigration on intermetallic compound formation in Sn-9Zn solder interconnect[J]. Scripta Materialia, 2007, 57: 513-516
    [52] Chao B., Chae S. H., Zhang X. F., et al. Electromigration enhanced intermetallic growth and void formation in Pb-free solder joints[J]. Journal Applied Physics, 2006, 100: 084909, 1-10
    [53] Arzt E., Kraft O., Nix W. D., et al. Electromigration failure by shape change of voids in bamboo lines[J] Journal of Applied Physics, 1994, 76(3):1563-1571
    [54] David D., Kirsten W. Z. Three-Demensional voids simulation in chip metallization structures: a contribution to reliability evaluation[J]. Microelectronics reliability, 2001, 41: 1625-1630
    [55] David D., Kirsten W. Z., Yves D. Simulation of time depending void formation in copperaluminum and tungsten plunged via structures[J]. Microelectronics reliability, 2003, 43: 1821-1826
    [56] Kirsten W. Z., David D., Yu X. Y. Static and dynamic analysis of failure locations and void formation in interconnects due to various migration mechanisms[J]. Materials Science in Semiconductor Processing, 2003, 6(1-3): 85-92
    [57] Liang S.W., Chang Y. W., Chen C., et al. Effect of migration and condensation of pre-existing voids on increase in bump resisitance of flip chops on flexible substrates during electromigration[J]. Journal of Electronic materials, 2008, 37(7): 962-967
    [58] Ren F., Nah J.W., Suh J.O., et al. Effect of electromigration on mechanical behavior of solder joints[A]. Proceedings of 10th International Symposium on Advanced Packaging Materials: Process, Properties and Interfaces[C]. Irvine, California, 2005: 66-69
    [59] Ding M. Effect of contact metallization on electromigration reliability of Pb-free solder joints[J]. Journal of Applied Physics, 2006, 99: 1-6
    [60] Zhang J. S., Chan Y. C., Wu Y. P., et al. Electromigration of Pb-free solder under a low level of current density[J]. Journal of Alloys and Compounds, 2008, 458(1-2): 492-499
    [61] Kuo S. M., Lin K. L. Electromigration-induced void formation at the Cu5Zn8/solder interface in a Cu/Sn-9Zn/Cu sandwich[J]. Journal of Electronic Materials, 2008, 37(10): 1611-1617
    [62] Yin L. M., Zhang X. P., Lu C. Size and volume effects on the strength of microscale lead-free solder joints[J]. Journal of Electronic Material, 2009, 38(10): 2179-2183
    [63]田艳红,杨世华,王青春等. Sn3.0Ag0.5Cu/Cu无铅焊点剪切断裂行为的体积效应[J].金属学报, 2010, 46(3): 366-371
    [64] Sharif A., Chan Y. C., Islam R. A. Effect of volume in interfacial reaction between eutectic Sn-Pb solder and Cu metallization in microelectronic packaging[J]. Materials Science and Engineering B, 2004, 106(2): 120-125
    [65] Wiese S., Roellig M., Mueller M., et al. The size effect on the creep properties of SnAgCu-solder alloys[A]. Proceedings of the 57th Electronic Components and Technology Conference[C]. Reno, Nevada, 2007: 548-557
    [66]尹立孟,张新平.电迁移致无铅钎料微互连焊点的脆性蠕变断裂行为[J].电子学报, 2009, 37(2): 253-257
    [67]杨艳,尹立孟,张新平.热时效和焊点尺寸对SnAgCu微焊点强度的影响[J].电子元件与材料, 2009, 28(10): 54-56
    [68]尹立孟.电子封装微互连焊点力学性能的尺寸效应与电迁移研究[D].华南理工大学博士学位论文, 2009
    [69] Abtew M., Selvaduray G. Lead free solders in microelectronics[J]. Materials Science & Engineering R: Reports, 2000, 27(5-6): 95-141
    [70]王丽风,孙风英,梁英等.无铅钎料/Cu焊盘接头的界面反应[J].焊接学报, 2005, 26(6): 9-12
    [71] Arzt E. Size effects in materials due to microstructural and dimensional constraints: a comparative review[J]. Acta Materialia, 1998, 46(16): 5611-5626
    [72] Ren F., Nah J. W., Xiong B. S., et al. Electromigration induced ductile-to-brittle transition in lead-free solder joint[J]. Applied Physics Letters, 2006, 89(14): 141914, 1-3
    [73] Nah J. W., Ren F., Paik K. W., et al. Effect of electromigration on mechanical shear behavior of flip chip solder joints[J]. Journal of Materials Research, 2006, 21(3): 698-702
    [74] Zhang L., Wang Z. G., Shang J. K. Current-induced weakening of Sn3.5Ag0.7Cu Pb-free solder joints[J]. Scripta Materialia, 2007, 56(5): 381-384
    [75] Lee J. H., Lim G. T., Park Y. B., et al. Size effect on electromigration reliability of pb-free flip chip solder bump[A]. Electronic Components and Technology Conference[C]. Florida, 2008: 2030-2034
    [76] Eaton D. H., Rowatt J. D., Dauksher W. J. Geometry effects on the electromigration of eutectic Sn-Pb flip chip solder joints[A]. IEEE 44th International Reliability Physics Symposium Proceedings[C]. San Jose, 2006: 243-249

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700