Sn基无Pb焊料粉体的机械合金化法合成及其特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从上世纪90年代开始,随着电子工业的发展以及人们环保、健康意识的提高,无铅材料及无铅化技术的研究日益兴起并逐渐用于生产。焊料无铅化是电子产品无铅化一个重要方面。焊膏是常用的焊料类型,主要由无铅合金焊粉组成,是电子组装中重要的连接材料。机械合金化(MA)技术常用于合成二元及多元系非平衡合金粉体,其优点是不受合金元素种类及含量的影响,在常温下即可实现固态合金化,还可以有效地避免合金成分偏析,可望用于制备Sn基焊料合金微粉。
     本文采用高能球磨的机械合金化技术在室温条件下球磨制备了Sn-Ag、Sn-Cu二元和Sn-Ag-Cu三元合金粉体。采用X射线衍射仪(XRD)、透射电镜(TEM)、扫描电镜(SEM)、差示扫描量热仪(DSC)和粒度分析等手段对球磨过程中粉体的结构演变、显微组织、粉体形貌及颗粒尺寸变化等进行了研究;讨论了合金化机制;研究了合金成分变化对Sn合金焊料粉体结构的影响。同时,还研究了合金化粉体的熔点及再流焊后焊料的显微组织结构,并对该Sn基粉体的可焊性进行了初步评价。
     Sn-Ag二元合金粉体由球磨初期的大块层片状复合颗粒,逐渐碎化,最终演变为细小均匀的球状颗粒。MA 60 h合成的三种成分Sn-Ag(2-5 wt% Ag)合金粉体粒径主要分布于0.1-20μm,Ag含量的提高使得粉体塑性增强,颗粒粒径增大。MA合成的Sn-3.5Ag合金粉体颗粒是由Sn(Ag)、Ag3Sn纳米晶粒构成,熔点为224℃。在Al2O3陶瓷基底上熔化后的焊料由先结晶Sn卵状颗粒及Ag3Sn颗粒和(Ag3Sn+Sn)共晶组织构成;在Cu基底上熔化后的Sn-3.5Ag焊料还在与Cu基底的界面处生成杆状的Ag3Sn,基体中则析出针状的Ag3Sn。
     Sn-Cu二元合金粉体由球磨初期的大块层片状复合颗粒组成,逐渐细化为形状不规则的团聚体;继续球磨,团聚体解散,进一步细化成细小的球状颗粒。MA 60 h合成的三种成分Sn-Cu(0.7-10 wt% Cu)合金粉体粒径也主要分布在0.1-20μm,Cu含量的提高使得粉体脆性增强,颗粒粒径减小。MA合成的Sn-10Cu合金粉体颗粒由Sn(Cu)、Cu6Sn5纳米晶构成;MA 60 h的Sn-0.7Cu、Sn-10Cu粉体的熔点分别为231℃、228℃。在Al2O3陶瓷基底上熔化后的焊料组织由先结晶Sn卵状颗粒及Cu6Sn5和(Cu6Sn5+Sn)共晶组织构成;在Cu基底上熔化后的Sn-0.7Cu焊料还析出了六方结构的Cu6Sn5。
     Sn-Ag-Cu三元合金粉体形貌与上述二元粉体类似,最终获得微细的近球状颗粒。MA 60 h的Sn-3.5Ag-0.7Cu粉体由Sn(Ag, Cu)、Ag3Sn和Cu6Sn5纳米晶粒构成,粉体平均粒径为19.9μm,熔点为219℃。随着Ag、Cu含量的增加,粉体中Ag3Sn和Cu6Sn5的含量增加。在Al2O3基底上熔化后的焊料组织呈过共晶组织状态,由先共晶β-Sn卵状颗粒和(β-Sn + Cu6Sn5 + Ag3Sn)共晶组织组成。在Cu基底上熔化后的Sn-3.5Ag-0.7Cu合金在Cu界面前沿形成由Cu6Sn5和Cu3Sn构成的连续薄层,焊料在Cu基底上的润湿角约为20°。此外,在焊料组织内部还析出了六方结构的Cu6Sn5块,在Cu基底界面前沿析出了板条状的Ag3Sn。
With blooming electronic industry and increasing consciousness of environment-protection and health concerns, Pb-free materials and technologies have attracted more attention and gradually applied in the electronic industry since 1990s. Pb-free Sn-based alloy solders are key materials of manufacturing the Pb-free electronic products. As one type of the alloy solders, the solder pastes mainly consisting of lead-free alloy powders, are widely used in joining the electronic devices. It is known that mechanical alloying (MA), a non-equilibrium powder forming technology, is usually utilized to synthesize the binary and/or multi-element metals powders. The advantages of the MA technology are that the varieties and contents of raw materials are not restricted, and the composition segregation can be effectively avoided. It is believed that the MA technology can also be used to synthesize the Sn based alloy powders.
     In the present study, the MA technology was taken to synthesize the Sn-Ag, Sn-Cu and Sn-Ag-Cu powders at room temperature. Structural evolutions, morphologies and alloying mechanism of the Sn-based alloy powders during MA, melting temperatures of the milled powders, and microstructures of the melted Sn-based alloy solders were investigated using XRD, TEM, SEM, DSC and laser particle size analyzer. Moreover, the effects of the Ag, Cu compositions on the microstructures of the Sn-based alloy powders were also discussed, and the soldering characteristics of the milled powders was preliminarily evacuated.
     The Sn-Ag binary alloy powders are of large lamellar composite particles in the initial stage of MA. As increasing the milling time, they are gradually fractured into finer lamellar particles, and finally the ultrafine spherical particles are formed. The particle sizes of the 60 h milled Sn-Ag alloy powders (2-5 wt%Ag) increased with increasing the Ag content, but all situated in the range of 0.1-20μm. The milled Sn-Ag alloy powders was composed of nanocrystalline Sn(Ag) and Ag3Sn particles. The melting point of the 60 h milled Sn-3.5Ag powders was tested to be 224°C. After the 60 h milled Sn-3.5Ag powders melted on the Al2O3 substrate, the Sn-3.5Ag alloy solder was composed of the primaryβ-Sn and Ag3Sn particles and the (Ag3Sn+β-Sn) eutectic structure. Long Ag3Sn laths are located at the Sn-3.5Ag solder/Cu substrate interface and Ag3Sn needles are embedded in the solder.
     The Sn-Cu binary alloy powders are also made up of a lamellar composite structure in the initial stage of MA. As increasing the milling time, they are gradually fractured into irregular particles. Finally the superfine Sn-Cu alloy powders are formed. The particle sizes of the 60 h milled Sn-Cu alloy powders (0.7-10 wt%Cu) decrease with increasing the Cu content, but all situated in the range of 0.1-20μm. The milled Sn-Cu alloy powders was composed of nanocrystalline Sn(Cu) and Cu6Sn5. The melting points of the 60 h milled Sn-Cu alloy powders decreased from 231 oC to 228 oC with increasing the Cu content from 0.7 wt% to 10 wt%. After the 60 h milled Sn-0.7Cu alloy powders melted on the Al2O3 substrate, the Sn-0.7Cu solder was composed of the primaryβ-Sn and Cu6Sn5 particles and the (Cu6Sn5+β-Sn) eutectic structure. Except those phases, the hexagonal coarse Cu6Sn5 particles are also detected in the Sn-0.7Cu solder, after the 60 h milled Sn-0.7Cu alloy powders melted on the Cu substrate.
     The structural evolutions and the morphologies of the Sn-3.5Ag-0.7Cu ternary alloy powders during mechanical alloying are similar to the Sn-Ag and Sn-Cu binary powders. The untrafine spherical Sn-3.5Ag-0.7Cu powders are finally obtained. The 60 h milled Sn-3.5Ag-0.7Cu powders was composed of nanocrystalline Sn(Ag, Cu), Ag3Sn, and Cu6Sn5 particles. The average particle size (D4, 3) and the melting point of the powders were tested to be 19.9μm, and 219 oC, respectively. After the 60 h milled Sn-3.5Ag-0.7Cu powders melted on the Al2O3 substrate, the solder consists of the hypereutectic structure of the primaryβ-Sn particles and the (β-Sn+Cu6Sn5+Ag3Sn) eutectic structure. Soldering of the milled Sn-3.5Ag-0.7Cu solder powders on the Cu substrate was well performed with a wetting angle around 20°, showing a good wettability. The continuous scallop-like Cu6Sn5 and Cu3Sn layers are formed along the Sn-3.5Ag-0.7Cu solders/Cu interface. Meanwhile, the Ag3Sn laths at the solder/Cu6Sn5 layer interface, the hexagonal coarse Cu6Sn5 plates in the solder are also detected.
引文
[1] P.A. Meyer, M.J. Brown, H. Falk. Global approach to reducing lead exposure and poisoning[J]. Mutation Research/Reviews in Mutation Research, 2008, 659(1-2): 166-175.
    [2] R.J. Jackson, S.K. Cummins, N.M. Tips, et al. Preventing childhood lead poisoning: The challenge of change[J]. American Journal of Preventive Medicine, 1998, 14(3): 84-86.
    [3] M. Abtew, G. Selvaduary. Lead-free solders in microelectronics[J]. Materials Science and Engineering R, 2000, 27(5-6): 95-141.
    [4] E.P. Wood, K.L. Nimmo. In search of new lead-free electronic solders[J]. Journal of Electronic Materials, 1994, 23(8): 709-713.
    [5] M. Pecht, Y. Fukuda, S. Rajagopal. The impact of lead-free legislation exemptions on the electronics industry[J]. IEEE Transactions on Electronics Packaging Manufacturing, 2004, 27(4): 221-232.
    [6] H.H. Manko. Lead-free solder - a status report[J]. Electronic Packaging and Production, 1995, 35(2): 70-72.
    [7] K.K. Sung. Recent progress in Pb-free solders and soldering technologies[J]. Journal of the Minerals Metals and Materials Society, 2001, 53(6): 16-16.
    [8] M. Schaefer, R.A. Foumelle, J. Liang. Theory for intermetallic phase growth between Cu and liquid Sn-Pb solder based on grain boundary diffiusion control[J]. Journal of Electornic Mateirals, 1998, 27(11): 1167-1176.
    [9] Z.H. Huang, C.Q Liu, P Conway, et al. Characterization of intermetallics and mechanical behavior in the reaction between SnAgCu and Sn-Pb solder alloys[C]. Proceeding of the Sixth IEEE CPMT conference on high density microsystem design and packaging and component failure analysis, 2004: 52-59.
    [10] S. Choi, T.R. Bieler, J.P. Lucas, et al. Characterization of the growth of intermetallic interfacial layers of Sn-Ag and Sn-Pb eutectic solders and their composite solders on Cu substrate during isothermal long-term aging[J]. Journal of Electronic Materials, 1999, 28(11): 1209-1215.
    [11] D.A. Porter. K.E. Easerling. Phase transformations in metals and alloys[M]. NewYork; Van Nostrand Reinhold Company, 1981.
    [12] International centre for diffraction data. PDF-2 database[DB].PA USA:JCPDS-ICDD, 1999.
    [13] J.S. Ma. Lead-free solder materials for sustainable development of green electronics in China[C]. Proceeding of 6th international conference onelectronics packaging technology, 2005: 45-51.
    [14]叶吉林,电子材料无Pb化的进程[J].混合微电子技术,2004,15(2):1-5.
    [15]沈骏,刘永长,张培珍等.无Pb焊料研究现状与发展展望[J].功能材料,2004,35(4):403-406.
    [16]史耀武,夏志东,陈志刚等.电子组装钎料研究的新进展[J].电子工艺技术,2001,22(4):139-143.
    [17]孟桂萍. Sn-Ag和Sn-Zn及Sn-Bi系无Pb焊料[J].电子工艺技术,2002,23(2):75-76.
    [18] U.R. Kattner. Phase diagrams for lead-free solder alloys[J]. Journal of the Minerals Metals and Materials Society, 2002, 54(12): 45-51.
    [19] M. Mccormack, S. Jin. Improved mechanical properties in new Pb-free alloy[J]. Journal of Electronic Materials, 1994, 23(8): 715-719.
    [20] K.N. Subramanian, J.G. Lee. Physical metallurgy in lead-free electronic solder development[J]. Journal of the Minerals Metals and Materials Society, 2003, 55(5): 26-32.
    [21] I. Ohnuma, M. Miyashita, K. Anzai, et al. Phase equilibria and the related properties of Sn-Ag-Cu based Pb-free solder alloys[J]. Journal of Electronic Materials, 2000, 29(10): 1137-1140.
    [22] P.G. Harris, M.A. Whitmore. Alternative solders for electronics assemblies. Part 1. Materials selection[J]. Circuit World, 1993, 19(2): 25-27.
    [23]郑玉军,张启运. Sn-In-Zn三元系相图和无Pb焊料成分的探讨[J].物理化学学报,1998,14(12):1098-1103.
    [24] F.W. Gayle, G. Becka, A. Syed, et al. High temperature lead-free solder for microelectronics[J]. Journal of the Minerals, Metals and Materials Society, 2001, 53(6): 17-21.
    [25]黄明亮,于大全,王来等. Sn-6Bi-2Ag(Cu,Sb)无Pb焊料合金微观组织分析[J].中国有色金属学报,2002,12(3):486-490.
    [26] A.A. Eldaly, Y. Swilem, M.H. Makled, et al. Thermal and mechanical properties of Sn–Zn–Bi lead-free solder alloys[J]. Journal of Alloys and Compounds, 2009, 484(1-2): 134-142.
    [27]王国勇,刘晓波. Sn-Zn系电子无Pb软焊料湿润性能的研究[J].四川大学学报,2001,33(5):66-68.
    [28] X.P. Zhang, H.W. Wang, Y.W.Shi. Influence of mninute amount of elements Bi, Ag and In on surface tension and soldering process performance of tin-lead based solders[J]. Journal of Materials Science: Materials in Electronics, 2004, 15(8): 511-517.
    [29] A. sharif, Y.C. Chan. Effect of indium addition in Sn-rich solder on the dissoltuion of Cu metallization[J]. Journal of Alloys and Comopunds, 2005, 390(1-2): 67-73.
    [30] R.K. Shiue, L.W. Tsay, C.L. Lin, et al. A study of Sn-Bi-Ag-(In) lead-free solders[J]. Journal of Materials science, 2003, 38(6): 1269-1279.
    [31] J. Glazer. Metallurgy of low temperature Pb-free solders for electronic assembly[J]. International Materials Reviews, 1995, 40(2): 65-93.
    [32] M.L. Huang, C.M.L. Wu, J.K.L. Lai. Lead free solder alloys Sn-Zn and Sn-Sb prepared by mechanical alloying[J]. Journal of Mateirals Science: Mateirals in Electronics, 2000, 11(1): 57-65.
    [33] J. Zhou, Y.S. Sun, F. Xue. Properties of low melting point Sn-Zn-Bi Solders[J]. Jonrual of Alloys and Compounds, 2005, 397(1-2): 260-264.
    [34] K.L. Lin, T.P. Liu. The electrochemical corrosion behaviour of Pb-free Al-Zn-Sn Solder in NaCl Solution[J]. Mateirals Chemistry and Physics, 1998, 56(2): 171-176.
    [35] C.W. Huang, K.L. Lin. Microstructures and mechanical properties of Sn-8.55Zn-0.45Al-XAg solders[J]. Journal of Materials Research, 2003, 18(7): 1528-1534.
    [36] G.D. Li, Y.W. Shi, H. Hao. Effect of phosphorus element on the comprehensive properties of Sn–Cu lead-free solder[J]. Journal of Alloys and Compounds, 2010, 491, (1-2): 382-385.
    [37] S.K. Seo, S.K. Kang, D.Y. Shih, et al. An investigation of microstructure and microhardness of Sn-Cu and Sn-Ag solders as functions of alloy composition and cooling rate[J]. Journal of Electronic Materials, 2009, 38(2): 257-265.
    [38] J. Shen, Y.C. Liu, H.X. Gao. Abnormal growth of Ag3Sn intermetallic compounds in Sn-Ag lead-free solder[J]. Chinese Science Bulletin, 2006, 51(14): 1766-1770.
    [39] D. Shanqquan, A. Achari. Evoluation of lead-free eutectic Sn-Ag solder for automotive electronics packaging applications[C]. Proceedings of the IEEE/CPMT International Electronics Manufacturing Technology (IEMT) Symposium, 1994: 25-37.
    [40] H.T. Lee, H.S. Lin, C.S. Lee, et al. Reliability of Sn-Ag-Sb lead-free solder joints[J]. Mateirals Science and Engineering A, 2005, 407(1-2): 36-44.
    [41] M L. Huang, L.Wang. Effects of Cu, Bi and In on microstructure and tensile properties of Sn-Ag-X(Cu, Bi, In) solders[J]. Meatllurgical and Mateirais Transactions A, 2005, 36(6): 1439-1446.
    [42] W.K. Choi, J.H. Kim, S.W. Jeong, et al. Interfacial microstructrue and joint strength of Sn-3.5Ag-X (X=Cu, In, Ni) solder joint[J]. Journal of Materials Research, 2002, 17(1): 43-51.
    [43] L. Ylijoki, H. Steen, A. Forsten. Development and validation of a lead-free alloy for solder paste applications[J]. IEEE Transactions on Components, Packaging & Manufacturing Technology, Part C (Manufacturing), 1997, 20(2): 194-198.
    [44]张富文,刘静,杨福宝等. Sn-Ag-Cu无铅焊料的发展现状与展望[J].稀有金属,2005,29(5):619-624.
    [45] I.E. Anderson, B.A. Cook, J.L. Harringa, et al. Sn-Ag-Cu solders and solder joints alloy development[J]. Microstructure and Properties, 2000, 29(10): 214-221.
    [46] N.C. Lee. Thorough look at lead-free solder alternatives[J]. Circuits Assembly, 1998, 9(4): 64-71.
    [47] C. Michael, G.V. Gupta,V. Bissessur, et al. Challenges in converting to lead-free electronics[C]. Electronic Packaging Technology Conference, 2000: 6-9.
    [48] B. Salam, N.N. Ekere, D. Rajkumar. Study of the interface microstructure of Sn-Ag-Cu lead-free solders and the effect of solder volume on intennetallic layer formation[C]. Electronic Components and Technology Confeernce, 2001: 471-477.
    [49] J.S. Benjamin. Mechanical alloying[J]. Scientific American, 1970, 234(5): 40-48.
    [50] L. Lu, M.O. Lai. Formation of new materials in the solid state by mechanical alloying[J]. Materials & Design, 1995, 16(1): 33-39.
    [51] J. Rawers, D. Govier, D. Cook. bct-Fe formation during mechanical processing of bcc-Fe powder [J]. Scripta Metallurgica Materialia, 1995, 32(9): 13-19.
    [52] H.G. Tang, X.F. Ma, W. Zhao, et al. Synthesis structure and reactive mechanism of intermetallic W3Mg[J]. Intermetallics, 2003, 11(9): 893-896.
    [53] B.L. Huang, E.J. Lavernia. Materials synthesis by mechanical alloying[J]. Journal of Materials Synthesis and Processing, 1995, 3(1): 1-10.
    [54] J.S. Benjamin. Dispersion strengthened superalloys by mechanical alloying[J]. Metallurgical Transaction, 1970, 12(1): 2943-2951.
    [55] B.S. Murty, S. Ranganathan, Novel materials synthesis by mechanical alloying/milling[J]. International Materials Reviews, 1998, 43(3): 101-141.
    [56] C.C. Koch, O.B. Cavin, C.G. Mckamey, et al. Preparation of“amoorphous”Ni60Nb40 by mechanical alloying[J]. Applied Physics Letters, 1983, 43(11): 1017-1019.
    [57] C. Suryanarayana, E. Lvanov, V.V. Boldyerev. The science and technology of mechanical alloying[J]. Materials Science and Engineering A, 2001, 304-306(1-2): 151-158.
    [58] P.Y. Lee, C.C. Koch, Microstructural evolution of Ni40Zr60 alloy during early stage of mechanical alloying of intermetallic compounds NiZr2 and Ni11Zr9[J]. Materials Chemistry and Physics, 1994, 38(2): 199-202.
    [59] R.M. Davis, C.C. Koch. Mechanical alloying of brittle components: silicon and germanium[J]. Scripta Metall., 1987, 21(3): 305-310.
    [60] J.R. Harris, J.A.D. Wattis, J. V. Wood. A comparison of different models for mechanical alloying[J]. Acta Materialia, 2001, 49(19): 3991-4003.
    [61] R.M. Davis, B. McDermott, C.C. Koch. Mechanical alloying of brittle materials[J]. Metallurgical Transactions, 1988, 19(12): 2867-2874.
    [62]庄健,刘勇兵,曹占义等.磨球直径对机械合金化合成TiC反应过程的影响[J].吉林大学学报(工学版),2009,39(1):61-65.
    [63] K. Wolski, F. Thévenot, J.L. Coze. Effect of nanometric oxide dispersion on creep resistance of ODS-FeAl prepared by mechanical alloying[J]. Intermetallics, 1996, 4(4): 299-307.
    [64] S. Ochi, N. Kuroishi, Y. Doi. Y2O3 dispersion strengthened nickel alloy made by mechanical alloying[J]. Progress in Powder Metallurgy, 1986, 4(41): 439-454.
    [65] J.S.C. Jang, C.C. Koch. Amorphization and disordering of the Ni3Al ordered in termetallic by mechanical milling[J]. Journal of Materials Research, 1990, 5(3): 498-510.
    [66] J.H. Wang. Mechanical alloying of amorphous Al–SiO2 powders[J]. Journal of Alloys and Compounds, 2008, 456(1-2): 139-142.
    [67] L. Shaw, H. Luo, J. Villegas, et al. Thermal stability of nanostructured Al93Fe3Cr2Ti2 alloys prepared via mechanical alloying[J]. Acta Materialia, 2003, 51(9): 2663-2674.
    [68] A.R. Yavari, A. Reza. Mechanically prepared nanocrystalline[J]. Materials Transactions, JIM, 1995, 36(2): 228-239.
    [69] C.C. Koch. Intermetallic matrix composites prepared by mechanical alloying-a review[J]. Materials Science and Engineering A , 1998, 244(1): 39-48.
    [70]T. Mousavi, F. Karimzadeh, M.H. Abbasi. Synthesis and characterization of nanocrystalline NiTi intermetallic by mechanical alloying[J]. MaterialsScience and Engineering A, 2008, 487(1-2): 46-51.
    [71] X.R. Liu, Y.B. Liu, X. Ran, et al. Fabrication of the supersaturated solid solution of carbon in copper by mechanical alloying[J]. Materials Characterization, 2007, 58(6): 504-508.
    [72] S. Sheibani, S.H. Manesh, A. Ataie. Structural investigation on nano-crystalline Cu–Cr supersaturated solid solution prepared by mechanical alloying[J]. Journal of Alloys and Compounds, 2010, 495(1): 59-62.
    [73] C. Suryanarayana. Mechanical alloying and milling[J]. Progress in Materials Science, 2001, 46(1-2): 1-184.
    [74] L. Li, M.O. Lai. Formation of new materials in the solid state by mechanical alloying[J]. Materials & Design, 1995, 16(1): 33-39.
    [75] E.Y. Ivanov, T.F. Grigorieva. Reaction of nanocrystalline mechanically alloyed Cu-Sn alloy with Ga-In-Sn eutectic[J]. Solid State Ionics, 1997, 101-103(1): 235-241.
    [76] C.M.L. Wu, M.L. Huang. J.K.L. Lai, et al. Developing a lead-free solder alloy Sn- Bi-Ag-Cu by mechanical alloying[J]. Journal of Electronic Mateirals, 2000, 8(29): 1015-1020.
    [77] M.L. Huang, C.M.L. Wu, J.K.L. Lai, et al. Microstuctural evolution of a lead-free solder alloy Sn-Bi-Ag-Cu prepared by mechanical alloying during thermal shock and aging[J]. Journal of Electronic Materials, 2000, 10(7): 1021-1026
    [78] H.L. Lai, J.G. Duh. Lead-Free Sn-Ag and Sn-Ag-Bi solder powders prepared by mechanical alloying[J]. Journal of Electronic Mateirals, 2003, 4(32): 215-220.
    [79] S.T. Kao, J.G. Duh. Effect of Cu concentration on morphology of Sn-Ag-Cu solders by mechanical alloying[J]. Journal of Electronic Mateirals, 2004, 12(33): 1445-1451.
    [80]王友山,史耀武,雷永平等.无Pb焊膏用松香型助焊剂活化点的研究[J].电子工艺技术,2005,26(6):311-318.
    [81]黄迎红,华林.电子组装用焊Sn粉雾化制备技术现状与发展[J].电子工艺技术,2007,28(2):63-70.
    [82]孙维民,廉舒,徐菁华等.直流电弧等离子体法制备纳米粒子实验装置研究[J].大学物理实验,2009,22(2):42-45.
    [83]赵麦群,赵高扬,于喜良等.无铅焊锡合金粉末超音速雾化技术的研究[J].粉末冶金技术,2003,21(2):96-98.
    [84] J.S. Benjamin, T.E. Volin. Mechanism of mechanical alloying[J]. Metallurgicaland Materials Transactions B, 1974, 5(8): 1929-1934.
    [85]刘昕,雷永平,夏志东等.无Pb焊料Sn-0.7Cu机械合金化研究[J].电子工艺技术,2004,25(6):239-242.
    [86]范雄.金属X射线学[M].机械工业出版社,1996.
    [87]周贵恩.聚合物X射线衍射[M].中国科技大学出版社,1989
    [88] M. Abdellaoui, E. Gaffet. The Physics of mechanical alloying in a planetary ball mill, Mathematical treatment[J]. Acta Metallurgica, l995, 43(3): 1087-1098.
    [89] B.D. Cullity. Elements of X-Ray Diffraction[M]. Addison-Wesley Pub Co, Reading, MA, 1976.
    [90]谈育煦.金属电子显微分析[M].机械工业出版社,1989.
    [91] C. Aguilar, S. Ordóňez, J. Marín, et al. Study and methods of analysis of mechanically alloyed Cu-Mo powders[J]. Materials Science and Engineering A, 2007, 464(1-2): 288-294.
    [92] W.F. Gale, T.C. Totemeier. Smithells metal reference book[M]. 8th ed. MA, USA: Elseiver Butterworth-Heinemann, 2004.
    [93]朱敏.纳米结构合金的机械合金化制备[J].华南理工大学学报(自然科学版),2002,30(11):89-94.
    [94] T. Laurila, V. Vuorinen, J.K. Kivilahti. Interfacial reactions between lead-free solders and common base materials[J]. Materials Science and Engineering R, 2005, 49(1-2): 1-60.
    [95] W.M. Tang, A.H. He, Q. Liu, et al. Solid state interfacial reactions in electrodeposited Cu/Sn couples[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(1): 90-96.
    [96] S. Nakahara, R.J. Mccoy, L. Buene, et al. Rom-temperature-diffusion studies of Au-Sn thin-film couple[J]. Thin Solid Films, 1981, 84(2): 185-196.
    [97] H. Flandorfer, H. Saeed, C. Luef, et al. Interfaces in lead-free solder alloys: Enthalpy of formation of binary Ag-Sn, Cu-Sn and Ni-Sn intermetallic compounds[J]. Thermochimica Acta, 2007, 459(1-2): 34-39.
    [98] A.K. Bandyopadhyay, S.K. Sen. A study of intermetallic compond formation in a copper-tin bimetallic couple[J]. Journal of Applied Physics, 1990, 67(8): 3681-3688.
    [99] J.O. Suh, K.N. Tu, N.J. Tamura. Preferred orientation relationship between Cu6Sn5 scallop-type grains and Cu substrate in reactions between molten Sn-based solders and Cu[J]. Journal of Applied Physics, 2007, 102(6): 063511-063511-7.
    [100] A.C.K. So, Y.C. Chan, J.K.L Lai. Aging studies of Cu-Sn intermetallic compounds in annealed surface mount solder joints[J]. IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part B: Advanced Packaging, 1997, 20(2): 161-166.
    [101] W.M. Tang, A.Q. He, Q. Liu, et al. Room temperature interfacial reactions in electrodeposited Au/Sn couples[J]. Acta Materialia, 2008, 56(19): 5818-5827.
    [102] J.H. Lau. Filp Chip Technologies[M]. McGraw-Hill, NewYork, 1996.
    [103] B. Chao, S.H. Chae, X.F. Zhang, et al. Electromigration enhanced intermetallic growth and void formation in Pb-free solder joints[J]. Journal of Applied Physics, 2006, 100(8): 084909-084909-10.
    [104] D.Y. Ying, D.L. Zhang. Processing of Cu-Al2O3 metal matrix nanocomposite materials by using high energy ball milling[J]. Materials Science and Engineering A, 2000, 286(1): 152-156.
    [105] J.M. Wu, Z.Z. Li. Nanostructured composite obtained by mechanically driven reduction reaction of CuO and Al powder mixture[J]. Journal of Alloys and Compounds, 2000, 299(1-2): 9-16.
    [106] G.Q. Shi, J. Wang, P.D. Ding. Present research situation of ceramic substrate material[J]. Journal of Functional Materials, 1993, 24(2): 176-180.
    [107] R.E. Cote. Ceramic multichip module and high-density thick film interconnect technology[J]. Electronic Packaging & Production, 1998, 38(4): 43-48.
    [108]张强,孙东立,武高辉.电子封装基片材料研究进展[J].材料科学与工艺,2000,8(4):66-72.
    [109] K.W. Monn, W.J. Boettinger, U.R. Kattner, et al. Experimental and thermodynamic assessment of Sn-Ag-Cu solder alloy[J]. Journal of Electronic Materials, 2000, 29(10): 1122-1236.
    [110] D.W. Henderson, T. Gosselin, A. Sarkhel, et al. Ag3Sn plate formation in the solidification of near ternary eutectic Sn-Ag-Cu alloys[J]. Journal of Materials Research, 2002, 17(11): 2775-2778.
    [111] S.W. Chen, C.C. Lin, C.M. Chen. Determination of the melting and solidification characteristics of solders using differential scanning calorimetry[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1998, 29(7): 1965-1972.
    [112]程阜民.混合微电子技术用关键材料的新进展[J].电子工艺技术,1995,16(4):21-25.
    [113] W.Q. Peng, E. Monlevade, M.E. Marques. Effect of thermal aging on the interfacial structure of SnAgCu solder joints on Cu[J]. Microelectronics Reliability 2007, 47(12): 2161-2168.
    [114] J.W. Yoon, Y.H. Lee, D.G. Kim, et al. Intermetallic compound layer growth at the interface between Sn-Cu-Ni solder and Cu substrate[J]. Journal of Alloys and Compounds, 2004, 381(1-2): 151-157.
    [115]李凤辉,李晓延,严永长. SnAgCu无铅焊料对接接头时效过程中金属间化合物的生长[J].上海交通大学学报,2007,41(S2):66-70.
    [116] G.Y. Li, B.L. Chen. Formation and growth kinetics of interfacial intermetallics in Pb-free solder joint[J]. IEEE Transaction. on Components and Packaging Technologies, 2003, 26(3): 651-658.
    [117] M.E. Erinc, P.J.G. Schreurs, G.Q. Zhang, et al. Characterization and fatigue damage simulation in SAC solder joints[J]. Microelectronics Reliability, 2004, 44(9-11): 1287-1292.
    [118] A. Hayashi, C.R. Kao, Y.A. Chang. Reactions of solid copper with pure liquid tin and liquid tin saturated with copper[J]. Scripta Materialia, 1997, 37(4): 393-398.
    [119] K.S. Kim, S.H. Huh, K. Suganuma. Effects of intermetallic compounds on properties of Sn-Ag-Cu lead-free soldered joints[J]. Journal of Alloys and Compounds, 2003, 352(1-2): 226-236.
    [120] J.W. Yoon, B.I. Noh, B.K. Kim. Wettability and interfacial reactions of Sn-Ag-Cu/Cu and Sn-Ag-Ni/Cu solder joints[J]. Journal of Alloys and Compounds, 2009, 486(1-2): 142-147.
    [121] H.T. Lee, M.H. Chen, H.M. Jao. Influence of interfacial intermetallic compound on fracture behavior of solder joints[J]. Materials and Engineering A, 2003, 358(1-2): 134-141.
    [122]王烨,黄继华,张建纲等. Sn-3.5Ag-0.5Cu/Cu界面的显微结构[J].中国有色金属学报,2006,16(3):495-499.
    [123] K.S. Kim, S.H. Huh, K. Suganuma. Effects of cooling speed on microstructure and tensile properties of Sn-Ag-Cu alloys[J]. Materials Science and Engineering A, 2002, 333(1-2): 106-114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700