纳米钯/铁双金属体系对氯代有机物催化还原脱氯研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氯代有机物作为重要的化工原料、中间体和有机溶剂,被广泛应用于诸多工业,如化工、医药、制革、电子、农药等行业,它们通过多种途径进入环境,严重污染了大气、土壤、特别是地下水和地表水,以直接或间接的方式对人类的健康造成危害。以零价铁促进氯代有机物还原脱氯成为一个非常活跃的研究领域。相比其它的脱氯方法,零价铁脱氯材料廉价易得,无毒无害,对氯代有机物的脱氯反应在常温常压下即可进行,反应所需工艺设备简单,因而具有更多的优势。在零价铁表面加入催化剂钯可以极大地促进还原脱氯的速率。纳米级零价铁或钯/铁双金属颗粒具有高比表面积和表面反应活性,比普通金属铁脱氯速率快。
     本文采用液相还原法制备纳米铁颗粒,分别使用氯钯酸钾的水溶液和醋酸钯的乙醇溶液为钯化液对纳米铁颗粒进行钯化,经抽真空加热干燥处理制备出干燥状态下的纳米钯/铁双金属颗粒,并通过比表面积测定(BET–N2)、扫描电镜(SEM)、透射电镜(TEM)、X射线衍射光谱(XRD)、X射线荧光光谱(XRF)和能谱分析(EDS)等分析检测手段,表征了纳米钯/铁双金属颗粒的比表面积、表面形貌、颗粒形状和粒径、晶体结构、钯化率和钯负载均匀度。结果表明采用醋酸钯的乙醇溶液为钯化液制备的纳米钯/铁双金属颗粒不易团聚,粒径较均匀,颗粒纯度高,比表面积约为51.4 m2/g,颗粒直径为20?50 nm,纳米铁主要以体心立方的α-Fe0形式存在。
     采用纳米钯/铁双金属颗粒对氯代甲烷(包括四氯化碳、氯仿和二氯甲烷)进行催化还原脱氯,比较不同单质铁还原体系(包括纳米钯/铁双金属颗粒、纳米铁颗粒和普通微米级还原铁粉)对氯代甲烷的脱氯效果。考察了纳米钯/铁双金属颗粒钯化率、颗粒投加量、反应体系初始pH值和目标污染物初始浓度对氯代甲烷脱氯率的影响。结果表明纳米钯/铁双金属颗粒对氯代甲烷的脱氯率高于纳米铁颗粒和普通铁粉。氯代甲烷的脱氯率随颗粒投加量的增加而提高,纳米钯/铁双金属颗粒钯化率为0.20 wt%、溶液初始pH值为7的反应条件下,氯代甲烷的脱氯效果最佳。
     考察了纳米钯/铁双金属颗粒钯化率、颗粒投加量、反应体系初始pH值等因素对氯乙酸(包括三氯乙酸、二氯乙酸和一氯乙酸)脱氯率的影响。当纳米钯/铁双金属颗粒钯化率小于0.10 wt%时,氯乙酸的脱氯率随着钯化率的增高而增加,钯化率大于0.10 wt%时氯乙酸脱氯率随着钯化率的增高而减小。增加投加量可以促进脱氯反应的进行,纳米钯/铁双金属颗粒对氯乙酸的催化还原脱氯有较大的pH适用范围。纳米钯/铁双金属颗粒对氯乙酸的脱氯率随着氯乙酸分子中氯取代数的减少而降低。
     采用聚乙烯醇、戊二醛和聚乙二醇等为主要亲水化试剂,对聚偏氟乙烯(PVDF)微孔滤膜进行亲水化改性,以聚丙烯酸(PAA)为螯合剂,以亲水化改性PVDF膜为载体对纳米钯/铁双金属颗粒进行固定化,制备出负载纳米钯/铁双金属颗粒PAA/PVDF复合膜,采用等离子发射光谱、SEM和傅立叶红外光谱(FT-IR)对负载纳米钯/铁双金属颗粒PAA/PVDF复合膜的颗粒负载量、膜表面和截断面形貌及表面基团组成进行了分析,以三氯乙酸(TCAA)为目标污染物考察复合膜的催化还原脱氯效果。结果表明,经亲水化和PAA交联处理的负载纳米钯/铁双金属颗粒的复合膜上颗粒分散效果最好,载入的颗粒量最大,对三氯乙酸的催化还原脱氯效果优于未亲水化及未PAA交联的复合膜。
     负载纳米钯/铁双金属颗粒的复合膜对三氯乙酸的脱氯反应速率高于非固定化的纳米钯/铁双金属颗粒和负载纳米铁颗粒的复合膜。负载纳米钯/铁双金属颗粒的复合膜对三氯乙酸的催化还原脱氯效果受钯化率、负载颗粒投加量和目标污染物初始浓度等因素的影响。钯化率为0.534 wt%、颗粒投加量为0.391 g/L时复合膜对三氯乙酸的去除率最高。三氯乙酸初始浓度亦影响其去除率,随着初始浓度的升高,三氯乙酸的去除率降低。负载纳米钯/铁双金属颗粒的PVDF复合膜重复使用4次对三氯乙酸去除率基本不变,复合膜具有一定的稳定性。复合膜上PAA对Fe2+的螯合作用可避免Fe2+对水体的污染,也可防止铁颗粒表面氢氧化物钝化层的形成,即有利于避免负载纳米钯/铁双金属颗粒的失活。水的存在对脱氯反应起到重要作用,它促使零价铁发生腐蚀反应产生氢,贵金属钯在纳米钯/铁双金属颗粒对目标污染物进行脱氯反应中起到了催化的作用。将负载纳米钯/铁双金属颗粒的复合膜保存于无溶解氧的超纯无水乙醇中可防止膜变质和颗粒的失活,使得复合膜保持较高的反应活性。
Chlorinated organic compounds (COCs) have been extensively used as synthetic intermediates and solvents in industrial applications, such as manufacture of chemicals, pharmaceuticals, leatherwares, electro-products, and pesticides. Due to leaks, spills, and releases from industrial sources, they inevitably contaminate the environment. COCs are ubiquitous and hazardous pollutants found in atmosphere, soil, surface water and groundwater. They are highly toxic and poorly biodegradable, and present a serious threat to the environment and human health. Reductive dechlorination of COCs by zerovalent iron (ZVI) has gained acceptance as a promising treatment technology. Compared with other treatment methods, ZVI technology has obvious advantages due the lowcost and nontoxicity of iron. Dechlorination of COCs can be conducted at ambient temperature and atmospheric pressure by relatively simple technique and equipment. The dechlorination reaction rate can be significantly increased by using iron nanoparticles post-coated with palladium. The enhanced reactivity of Pd/Fe bimetallic nanoparticles is attributed to the increased surface area and the deposition of the second metal Pd as a catalyst onto the surface of iron.
     Pd/Fe bimetallic nanoparticles were prepared by the liquid phase method, a simple two-step synthetic method where Pd was deposited onto the Fe surface. An aqueous solution of potassium hexachloropalladate and an ethanol solution of palladium acetate were used as palladization solution, respectively. Pd/Fe bimetallic nanoparticles were dried in an oven under vacuum, and extensively characterized in terms of BET-N2, SEM, TEM, XRD, XRF and EDS to identify the specific surface area, morphology, particle shape, size, crystal structure, Pd content, and surface elemental composition. The results suggest that Pd/Fe bimetallic nanoparticles palladized by using an ethanol solution of palladium acetate had smaller aggregation tendency and were more evenly sized than Pd/Fe bimetallic nanoparticles palladized by using an aqueous solution of potassium hexachloropalladate with a diameter in the range of 20?50 nm and a surface area of 51.4 m2/g. The crystal structure of iron was a regular bccα-Fe crystalline state.
     Dechlorination efficiencies of chlorinated methanes (including tetrachlorinated methane (CT), trichlorinated methane (CF), and dichlorinated methane (DCM)) by Pd/Fe bimetallic nanoparticles were higher than that by iron nanoparticles or microscale iron powders. The effects of some essential parameters, such as Pd loading, Pd/Fe nanoparticle addition, initial pH value of reaction system, initial concentration of target pollutants, on the dechlorination efficiency of chlorinated methanes were systematically studied. Dechlorination efficiency increased with increasing nanoparticle addition. For chlorinated methane solution with initial concentration of 100 mg/L, the optimal dechlorination efficiency was obtained at Pd/Fe nanoparticle addition of 10 g/L, Pd loading of 0.20 wt%, and initial pH value of 7.
     Effects of Pd loading, nanoparticle addition, initial pH value of reaction system on dechlorination efficiency of chloroacetic acids (including trichloroacedic acid (TCAA), dichloroacetic acid (DCAA), and monochloroacetic acid (MCAA)) were investigated. Dechlorination efficiency of chloroacetic acids increased with the increase of Pd loading at Pd loading < 0.10 wt%, while it was found to decrease at Pd loading > 0.10 wt%. Increasing Pd/Fe nanoparticle addition resulted in the increase of dechlorination efficiency. Dechlorination of chloroacetic acid by Pd/Fe bimetallic nanoparticles can be conducted in a wide range of pH value. Dechlorination efficiency of chloroacetic acid with low-chlorinated chloroacetic acid was greater than that of high-chlorinated chloroacetic acid.
     PVDF microfiltration (MF) membrane was hydrophilized by coating with a mixture of polyvinyl alcohol (PVA), glutaraldehyde, and polyethylene glycol (PEG). Polyacrylic acid (PAA) was used as chelating reagent to functionalize hydrophilized PVDF MF membrane. Pd/Fe bimetallic nanoparticles were immobilized in modified PAA/PVDF MF membrane matrix. Pd/Fe composite membrane system showed high reactivity in catalytic dechlorination of TCAA. The amount and dispersal of Pd/Fe nanoparticles immobilized in PAA/PVDF MF membrane were largely influenced by hydrophilization and PAA crosslinking treatment of the pristine membrane. The metal content, morphology, and surface chemical structure of composite membrane were measured by using ICP-OES, SEM, and FT-IR, respectively. No obvious aggregation of Pd/Fe bimetallic nanoparticles were found in hydrophilized and PAA crosslinked PVDF MF membrane. Compared with unmodified Pd/Fe composite membrane, the hydrophilized and crosslinked PAA functionalized Pd/Fe composite membrane showed higher reactivity for catalytic dechlorination of TCAA.
     Removal efficiency of TCAA by Pd/Fe PVDF composite membrane was greater than that by nonimmobilized Pd/Fe bimetallic nanoparticles. Some important parameters, such as Pd loading and Pd/Fe nanoparticles addition contained in the composite membrane, and initial concentration of target pollutant, were found to have effects on the removal efficiency of TCAA. The highest removal efficiency of TCAA with initial concentration of 5 mg/L was obtained at Pd loading of 0.534 wt% and Pd/Fe nanoparticles addition of 0.391 g/L. Removal efficiency decreased with the increase of initial concentration of TCAA. The stability and longevity of Pd/Fe membrane system were preliminarily studied by a multi-spiking batch experiment where complete removal of TCAA was achieved for four times although the aging of the composite membrane was found. With ferrous chelating by PAA, the secondary pollution caused by the dissolved metal could be avoided. Water plays a key role in dechlorination reaction process. No removal of TCAA was detected in an ethanol solution of TCAA, indicating that no dechlorination reaction took place in the absence of water, which is the donor of hydrogen from the Fe corrosion reaction, and the hydrodechlorination reaction requires the presence of some water to facilitate the corrosion. Being stored in pure ethanol solution without water and dissolved oxygen would benefit the maintenance of catalytic dechlorination activity of Pd/Fe composite membrane.
引文
1程荣,王建龙,张伟贤.纳米金属铁降解有机卤化物的研究进展.化学进展. 2006, 18(1): 93~99
    2陈芳艳,陆敏,唐玉斌.纳米铁在水污染控制中的应用研究进展.工业安全与环保. 2007, 33(2): 18~20
    3 C. H. Dimmer, A. McCulloch, P. G. Simmonds, et al. Tropospheric Concentrations of the Thlorinated Tolvents Tetrachloroethene and Trichloroethene Measured in the Remote Northern Hemisphere. Atmospheric Environment. 2001, 35(7): 1171~1182
    4 H. Keppler, Nicole Métrich. Volcanic Degassing of Bromine and Iodine Experimental Fluid/Melt Partitioning Data and Applications to Stratospheric Chemistry. Earth and Planetary Science Letters. 2000, 183(1): 51~60
    5 Y. Yokouchi, D. Toom-Sauntry, K. Yazawa, et al. Recent Decline of Methyl Bromide in the Troposphere. Atmospheric Environment. 2002, 36(32): 4985~4989
    6 C. H. HDimmerH, P. G. Simmonds, G. Nickless, et al. Biogenic Fluxes of Halomethanes from Irish Peatland Ecosystems. Atmospheric Environment. 2001, 35(2): 321~330
    7陈颖敏,左俊利.饮用水中消毒副产物的污染与控制.工业安全与环保. 2007, 33(3):17~18
    8魏建荣,王振纲.饮用水中消毒副产物研究进展.卫生研究. 2004, 33(1): 115~118
    9 B. L. Dvorak, D. F. Lawler. Selecting Among Physical/Chemical Processes for Removing Synthetic Organics from Water. Water Environment Research. 1993, 65: 827~838
    10刘毅慧.水中氯代有机物催化还原脱氯的研究.大连理工大学博士论文. 1999: 13~21
    11 Y. Zheng, D. G. Allen. Biological Dechlorination of Model Organochlorie Compounds in Bleached Kraft Mill Effluents. Environmental Science and Technology. 1996, 30: 1890~1895
    12 A. Sch?llhorn, C. Savary, G. Stucki, et al. Comparison of Different Susbstrates for the Fast Reductive Echlorination of Trichloroethene under Groundwater Conditions. Water Research. 1997, 31: 1275~1282
    13 K. Broholm, T. H. Christensen, B. K. Jensen. Different Abilities of Eight Mixed Cultures of Methane-Oxidizing Bacteria to Degrade TCE. Water Research. 1993,27: 215~244
    14 G. W. Strandberg, T. L. Donaldson, L. L. Farr. Degradation of Trichloroethylene and trans-1,2-Dichloroethylene by a Methanotrophic Consortium in a Fixed-Film, Packed-Bed Bioreactor. Environmental Science and Technology. 1989, 23: 1422~1425
    15 T. J. Phelps, J. J. Nledzlelskl, K. J. Malachowsky, et al. Biodegradation of Mixed-Organic Wastes by Microbial Consortia in Continuous-Recycle Expanded-Bed Bioreactors. Environmental Science and Technology. 1991, 25: 1461~1465
    16 S. R. Carter, W. J. Jewell. Biotransformation of Tetrachloroethylene by Anaerobic Attached-Films at Low Temperatures. Water Research. 1993, 27: 607~615
    17 C. Chen, J. A. Puhakka, J. F. Ferguson. Transformation of 1,1,2,2- Tetrachloroethane under Methanogenic Conditions. Environmental Science and Technology. 1996, 30: 542~547
    18赵毅.多氯联苯催化转移氢化脱氯的研究.环境化学. 1994, 13(4): 328~330
    19 D. P. Sinatar, C. G. Schreier, C. S. Chou, et al. Treatment of 1,2-Dibromo-3-Chloropropane and Nitrate-Contaminated Water with Zero-Valent Iron or Hydrogen/Palladium Catalysts. Water Research. 1996, 30(10): 2315~2322
    20 B. Deng, D. R. Burris, T. J. Campbell. Reductive of Vinyl Chloride in Metallic Iron-Water Systems. Environmental Science and Technology. 1999, 33(15): 2651~2656
    21卫建军.纳米级Pd/Fe双金属对水中氯酚的催化脱氯研究.浙江大学博士论文. 2004: 8~21
    22 R. M. Hozalski, L. Zhang, W. A. Arnold. Reduction of Haloacetic Acids by Fe0: Implications for Treatment and Fate. Environmental Science and Technology. 2001, 35(11): 2258~2263
    23 C. J. Clark II, P. S. C. Rao, M. D. Annable. Degradation of Perchloroethylene in Cosolvent Solutions by Zero-Valent Iron. Journal of Hazardous Materials. 2003, B96: 65~78
    24 R. Lookman, L. Bastiaens, B. Borremans, et al. Batch-Test Study on the Dechlorination of 1,1,1-Trichloroethane in Contaminated Aquifer Material by Zero-Valent Iron. Journal of Contaminant Hydrology. 2004, 74: 133~144
    25 Y. Q. Liu, G. V. Lowry. Effect of Particle Age (Fe0 Content) and Solution pH on NZVI Reactivity: H2 Evolution and TCE Dechlorination. Environmental Science and Technology. 2006, 40: 6085~6090
    26 A. Parbs, M. Ebert, A. Dahmke. Long-Term Effects of Dissolved CarbonateSpecies on the Degradation of Trichloroethylene by Zerovalent Iron. Environmental Science and Technology. 2007, 41: 291~296
    27 R. Miehr, P. G. Tratnyek, J. Z. Bandstra, et al. Diversity of Contaminant Reduction Reactions by Zerovalent Iron: Role of the Reductate. Environmental Science and Technology. 2004, 38: 139~147
    28 G. D. Sayles, G. You, M. X. Wang, et al. DDT, DDD, and DDE Dechlorination by Zero-Valent Iron. Environmental Science and Technology. 1997, 31(12): 3448~3454
    29何小娟,刘菲,黄园英.利用零价铁去除挥发性氯代脂肪烃的试验.环境科学. 2003, 24(1): 139~142
    30刘菲,汤鸣皋,何小娟.零价铁脱氯水中氯代烃的实验室研究.地球科学. 2002, 27(2): 182~186
    31刘菲,黄园英,何小娟.与铁相关的几种渗透反应格栅材料性能的比较.地学前缘. 2005, 12: 170~175
    32翟辉,张斌辉,李义连.有机氯农药的零价铁脱氯降解研究进展.地质灾害与环境保护. 2008, 19(2): 109~112
    33胡莺.地下水污染修复技术研究进展——零价铁PRB技术的应用与实践.云南地理环境研究. 2007, 19(1):11~15
    34郎印海,聂新华,贾永刚.零价铁渗透反应格栅原位修复地下水中氯代烃的应用及研究进展.土壤. 2006, 38(1): 23~28
    35 US Environmental Protection Agency. Field Alpplications of In-Situ Remediation Technologies: Permeable Reactive Barriers. Washington, DC, 2002: 2~24
    36胡丽娟,董晓丹,周琪.零价铁修复土壤及地下水的PRB技术.环境保护科学. 2005, 31: 48~50
    37白少元,王明玉.零价纳米铁在水污染修复中的研究现状及讨论.净水技术. 2008, 27(1): 35~40, 53
    38邹萍,隋贤栋,黄肖容,等.纳米材料在水处理中的应用.环境科学与技术. 2007, 30(4): 87~90
    39 G. V. Lowry, K. M. Johnson. Congener-Specific Dechlorination of Dissolved PCBs by Microscale and Nanoscale Zerovalent Iron in a Water/Methanol Solution. Environmental Science and Technology. 2004, 38: 5208~5216
    40刘菲,汤鸣皋,何小娟,等.零价铁降解水中氯代烃的实验室研究.中国地质大学学报. 2002, 27: 186~188
    41梁震,王焰新.纳米级零价铁的制备及其用于污水处理的机理研究.工程与技术. 2002, 4: 14~16
    42 H. L. Lien, W. X. Zhang. Nanoscale Iron Particles for Complete Reduction of Chlorinated Ethenes. Colloid Surface A. 2001, 191: 97~106
    43唐次来,张增强,张永涛.纳米铁的制备及其在地下水污染修复中的应用.环境卫生工程. 2007, 15: 61~64
    44王翠英,陈祖耀,程彬,等.金属铁纳米粒子的液相制备、表面修饰及其结构表征.化学物理学报. 1999, 12(6): 670~674
    45刘小虹,颜肖慈,李伟.纳米铁微粒制备新进展.金属功能材料. 2002, 9(2): 8~11
    46高树梅,王晓栋,秦良,等.改进液相还原法制备纳米零价铁颗粒.南京大学学报(自然科学). 2007, 43(4): 358~364
    47何小娟,汤鸣皋,沈照理,等. Ni/Fe双金属对PCE脱氯影响因素研究.中国地质大学学报. 2003, 28: 337~340
    48童少平,胡丽华,魏红,等. Ni/Fe二元金属脱氯降解对氯苯酚的研究.环境科学. 2005, 26: 59~62
    49何小娟,汤鸣皋,李旭东,等.镍/铁和铜/铁双金属降解四氯乙烯的研究.环境化学. 2003, 22: 334~339
    50吴德礼,马鲁铭,周荣丰.水溶液中氯代烷烃的催化还原脱氯研究.环境化学. 2004, 23(6): 631~635.
    51黄园英,刘菲,汤鸣皋,等.纳米镍/铁对四氯乙烯快速脱氯试验.岩矿测试. 2005, 24: 93~101
    52黄园英,刘菲,汤鸣皋,等.纳米级Ni/Fe颗粒降解四氯化碳批实验研究.山东农业大学学报(自然科学版). 2004, 35(4): 565~568
    53 J. Feng, T. T. Lim. Pathways and Kinetics of Carbon Tetrachloride and Chloroform Reductions by Nano-Scale Fe and Fe/Ni Particles: Comparison with Commercial Micro-Scale Fe and Zn. Chemosphere. 2005, 59: 1267~1277
    54 X. H. Xu, H. Y. Zhou, P. He, et al. Wang. Catalytic Dechlorination Kinetics of p-Dichlorobenzene Over Pd/Fe Catalysts. Chemosphere. 2005, 58: 1135~1140
    55 C. J. Lin, S. L. Lo, Y. H. Liou. Dechlorination of Trichloroethylene in Aqueous Solution by Noble Metal-Modified Iron. Journal of Hazardous Materials. 2004, 116: 219~228
    56 H. L. Lien, W. X. Zhang. Hydrodechlorination of Chlorinated Ethanes by Nanoscale Pd/Fe Bimetallic Particles. Journal of Environmental Engineering. 2005, 9: 4~10
    57 D. M. Cwiertny, S. J. Bransfield, K. J. T. Livi, et al. Exploring the Influence ofGranular Iron Additives on 1,1,1-Trichloroethane Reduction. Environmental Science and Technology. 2006, 40: 6837~6843
    58 X. Q. Li, W. X. Zhang. Iron Nanoparticles: the Core-Shell Structure and Unique Properties for Ni(II) Sequestration. Langmuir. 2006, 22: 4638~4642
    59黄园英,刘菲,汤鸣臬,等.纳米镍/铁和铜/铁双金属对四氯乙烯脱氯研究.环境科学学报. 2007, 27: 80~85
    60周红艺,汪大翚,徐新华. Pd/Fe双金属对水中m–二氯苯的催化脱氯.化工学报. 2004, 55(11): 1912~1915
    61徐新华,金剑,卫建军,等.纳米Pd/Fe双金属对2,4–二氯酚的脱氯机理及动力学.环境科学学报. 2004, 24(4): 561~567
    62 R. Muftikian, Q. Fernando, N. Korte. A Method for the Rapid Dechlorination of Low Molecular Weight Chlorinated Hydrocarbons in Water. Water Research. 1995, 29(10): 2434~2439
    63 Y. H. Liu, F. L. Yang, P. L. Yue, et al. Catalytic Dechlorination of Chlorophenols in Water by Palladium/Iron. Water Research. 2001, 35: 1887~1890
    64 S. Choe, S. H. Lee, Y. Y. Chang, et al. Rapid Reductive Destruction of Hazardous Organic Compounds by Nanoscale Fe0. Chemosphere. 2001, 42: 367~372
    65 W. X. Zhang, C. B. Wang, H. L. Lien. Treatment of Chlorinated Organic Contaminants with Nanoscale Bimetallic Particles. Catalysis Today. 1998, 40: 387~395
    66 H. L. Lien, W. X. Zhang. Transformation of Chlorinated Methanes by Nanoscale Iron Particles. Journal of Environmental Engineering. 1999: 1402~1409
    67 F. He, D. Y. Zhao. Preparation and Characterization of a New Class of Starch-Stabilized Bimetallic Nanoparticles for Degradation of Chlorinated Hydrocarbons in Water. Environmental Science and Technology. 2005, 39(9): 3314~3320
    68 X. Xu, H. Zhou, D. Wang. Structure Relationship for Catalytic Dechlorination Rate of Dichlorobenzenes in Water. Chemosphere. 2005, 58: 1497~1502
    69 W. X. Zhang. Nanoscale Iron Particles for Environmental Remediation: An Overview. Journal of Nanoparticle Research. 2003, 5: 323~332
    70 B. W. Zhu, T. T. Lim, J. Feng. Reductive Dechlorination of 1,2,4- Trichlorobenzene with Palladized Nanoscale Fe0 Particles Supported on Chitosan and Silica. Chemosphere. 2006, 65: 1137~1145
    71 J. Feng, T. T. Lim. Iron-Mediated Reduction Rates and Pathways ofHalogenated Methanes with Nanoscale Pd/Fe: Analysis of Linear Free Energy Relationship. Chemosphere. 2007, 6: 1765~1774
    72 X. H. Xu, H. Y. Zhou, M. Zhou. Catalytic Amination and Dechlorination of para-Nitrochlorobenzene (p-NCB) in Water Over Palladium-Iron Bimetallic Catalyst. Chemosphere. 2006, 62: 847~852
    73 R. A. Doong, Y. J. Lai. Dechlorination of Tetrachloroethylene by Palladized Iron in the Presence of Humic Acid. Water Research. 2005, 39: 2309~2318
    74 C. Grittini, M. Malcomson, Q. Femando, et al. Rapid Dechlorination of Polychlorinated Biphenyls on the Surface of a Pd/Fe Bimetallic System. Environmental Science and Technology. 1995, 29(11): 2898~2900
    75 I. F. Cheng, Q. Fernando, N. Korte. Electrochemical Dechlorination of 4-Chlorophenol to Phenol. Environmental Science and Technology. 1997, 31(4): 1074~1078
    76 Z. L. Liu, X. Y. Ling, X. D. Su, et al. Carbon-Supported Pt and PtRu Nanoparticles as Catalysts for a Direct Methanol Fuel Cell. Journal of Physical Chemistry. B2004, 108(24): 8234~8240
    77 K. Mallick, M .S. Scurrell. CO Oxidation Over Gold Nanoparticles Supported on TiO2 and TiO2-ZnO: Catalytic Activity Effects Due to Surface Modification of TiO2 with ZnO. Applied Catalysis A. 2003, 253(2): 527~536
    78 C. L. Sun, M. J. Peltre, M. Briend, et al. Catalysts for Aromatics Hydrogenation in Presence of Sulfur: Reactivities of Nanoparticles of Ruthenium Metal and Sulfide Dispersed in Acidic Y Zeolites. Applied Catalysis A. 2003, 245(2): 245~256
    79 S. Kidambi, M. L. Bruening. Multilayered Polyelectrolyte Films Containing Palladium Nanoparticles: Synthesis, Characterization, and Application in Selective Hydrogenation. Chemistry of Materials. 2005, 17(2): 301~307
    80 L. Wu, M. Shamsuzzoha, S. M. C. Ritchie. Preparation of Cellulose Acetate Supported Zero-Valent Iron Nanoparticles for the Dechlorination of Trichloroethylene in Water. Journal of Nanoparticle Research. 2005, 7(4): 469~476
    81 J. K. Gotpagar, E. A. Grulke, T. Tsang, et al. Reductive Dehalogenation of Trichloroethylene Using Zero-valent Iron. Environmental Progress. 1997, 16(2): 37~143
    82 F. Li, C. Vipulanandan, K. K. Mohanty. Microemulsion and Solution Approaches to Nanoparticle Iron Production for Degradation of Trichloroethylene. Colloids and Surfaces. A. 2003, 223(1): 103~112
    83 L. F. Wu, S. M. C. Ritchie. Removal of Trichloroethylene from Water by Cellulose Acetate Supported Bimetallic Ni/Fe Nanoparticles. Chemosphere.2006, 63(2): 285~292
    84 J. Xu, D. Bhattacharyya. Membrane-Based Bimetallic Nanoparticles for Environmental Remediation: Synthesis and Reactive Properties. Environmental Progress. 2005, 24(4): 358~366
    85 T. C. Wang, M. F. Rubner, R. E. Cohen. Polyelectrolyte Multilayer Nanoreactors for Preparing Silver Nanoparticle Composites: Controlling Metal Concentration and Nanoparticle Size. Langmuir. 2002, 18(8): 3370~3375
    86 J. Xu, D. Bhattacharyya. Fe/Pd Nanoparticle Immobilization in Microfiltration Membrane Pores: Synthesis, Characterization, and Application in the Dechlorination of Polychlorinated Biphenyls. Industrial and Engineering Chemistry Research. 2007, 46(8): 2348~2359
    87 S. P. Nunes, K. V. Peinemann. Ultrafiltration Membranes from PVDF/ PMMA Blends. Journal of Membrane Science. 1992, 73: 25~35
    88 N. A. Ochoa, M. Masuelli, J. Marchese. Effect of Hydrophilicity on Fouling of an Emulsified Oil Wastewater with PVDF/PMMA Membranes. Jouranl of Membrane Science. 2003, 226: 203~211
    89 J. F. Hester, P. Banerjee, A. M. Mayes. Preparation of Protein-Resistant Surfaces on Poly(vinylidene fluoride) Membranes via Surface Segregation. Macromolecules. 1999, 32: 1643~1650
    90王湛,吕亚文,王淑梅,等. PVDF/CA混超滤膜制备及其特性的研究.膜科学与技术. 2002, 22(6): 4~8
    91 M. Mahendran, M. Mailvaganam, K. P. Goodboy. Method of Making a Dope Comprising Hydrophilized PVDF and Alpha-Alumina Membrane Made Therefrom [P].US Pat, 6024872. 2000-02-15
    92李健生,梁袆,王慧雅,等. TiO2/PVDF复合中空纤维膜的制备和表征.高分子学报. 2004, 5: 709~712
    93李健生,王连军,梁袆,等.纳米氧化物粒子对PVDF中空纤维膜结构与性能的影响.环境科学, 2005, 26(3): 126~129
    94梁袆,李健生,孙秀云,等.纳米γ-Al2O3/PVDF中空纤维膜的研究.水处理技术. 2004, 30(4): 199~201
    95包艳辉,朱宝库,陈炜.聚偏氟乙烯微孔膜的亲水化改性及功能化研究进展.功能高分子学. 2003, 16(2): 269~271
    96苗小郁,李建生,王连军,等.聚偏氟乙烯膜的亲水化改性研究进展.材料导报. 2006, 20(3): 56~59
    97 A. Bottino, G. Capannelli, O. Monticelli, et al. Poly(vinylidene fluoride) with Improved Functionalization for Membrane Production. Journal of MembraneScience. 2000, 166: 23~29
    98 J. F. Hester, P. Banerjee, Y. Y. Won, et al. ATRP of Amphiphilic Graft Copolymers Based on PVDF and Their Use as Membrane Additives. Macromolecules. 2002, 35: 7652~7661
    99 L. Ying, P. Wang, E. T. Kang, et al. Synthesis and Characterization of Poly(acrylic acid)-graft-poly(vinylidene fluoride) Copolymers and pH-Sensitive Membranes. Macromolecules. 2002, 35: 673~679
    100 D. D. Mariana, L. P. Carminao, T. P. Tatiana. Surface Modification of Polyvinylidene Fluoride (PVDF) under Rf Ar Plasma. Polymer Degradation and Stability. 1998, 61: 65~72
    101 A. Akthakul, R. F. Salinaro, A. M. Mayes. Antifouling Polymer Membranes with Subnanometer Size Selectivity. Macromolecules. 2004, 37: 7663~7668
    102 M. C. Clochard, J. Bègue, A. Lafon, et al. Tailoring Bulk and Surface Grafting of Poly(acrylic acid) in Electron-Irradiated PVDF. Polymer. 2004, 45: 8683~8694
    103 P. Wang, K. L. Tan, E. T. Kang, et al. Neoh. Plasma-Induced Immobilization of Poly(ethylene glycol) onto Poly(vinylidene fluoride) Microporous Membrane. Journal of Membrane Science. 2002, 195: 103~114
    104朱永法.纳米材料的表征及测试技术.北京:化学工业出版社. 2006: 1~95
    105许并社.纳米材料及应用技术.北京:化学工业出版社. 2004: 123~124
    106 Designation: D3973-85, Standard Test Method for Low-Molecular Weight Halogenated Hydrocarbons in Water. ASTM Standards on Chromatography, Sponsored by ASTM Subcommittee E 1907 on Compilation of Chromatographic Methods. ASTM 1916 Race St, philadephia, PA 19103. Snd. Edition 1989
    107 Designation: D2908-91(Reapproved 1995) Standard Practice for Measuring Volatile Organic Matter in Water by Aqueous-Injection Gas Chromatography. ASTM standards on Chromatograpy, Sponsored by ASTM Subcommittee E 1907 on Compilation of Chromatographic Methods. A STM 1916 Race St, philadephia, PA19103. Snd. Edition Arnold E.Greenberg, Lenore S.Clesceri, Andrew D. Eaton. Stand Methods for the Exanmination of Water and Wasterwater. ISO, 18th Edition. 1992
    108国家环保局“水和废水监测分析方法”编委会.水和废水监测分析方法.中国环境科学出版社. 1989: 539~532
    109 J. J. Wei, X. H. Xu, Y. Liu, et al. Catalytic Hydrodechlorination of 2,4-Dichlorophenol over Nanoscale Pd/Fe: Reaction Pathway and Some Experimental Parameters. Water Research. 2006, 40: 348~354
    110 L. J. Graham, G. Jovanovic. Dechlorination of p-Chlorophenol on a Pd/Fe Catalyst in a Magnetically Stabilized Fluidized Bed; Implications for Sludge and Liquid Remediation. Chemical Engineering Science. 1999, 54: 3085~3093
    111 J. G. Doyle, T. A. Miles, E. Parker, et al. Quantification of Total Polychlorinated Biphenyl by Dechlorination to Biphenyl by Pd/Fe and Pd/Mg Bimetallic Particles. Microchemical Journal. 1998, 60: 290~295
    112 J. Feng, T. T. Lim. Iron-Mediated Reduction Rates and Pathways of Halogenated Methanes with Nanoscale Pd/Fe: Analysis of Linear Free Energy Relationship. Chemosphere. 2007, 66: 1765~1774
    113 H. L. Lien, W. X. Zhang. Nanoscale Pd/Fe Bimetallic Particles: Catalytic Effects of Palladium on Hydrodechlorination. Applied Catalysis B. 2007, 77: 110~116
    114 S. Mandal, P. Selvakannan, R. Pasricha, et al. Keggin Ions as UV- Switchable Reducing Agents in the Synthesis of Au Core-Ag Shell Nanoparticles. Journal of American Chemistry Society. 2003, 125: 8440~8441
    115 N. E. Korte, J. L. Zutman, R. M. Schlosser, et al. Field Application of Palladized Iron for the Dechlorination of Trichloroethene.Waste Management. 2000, 20: 687~694
    116 C. J. Lin, S. L. Lo, Y. H. Liou. Dechlorination of Trichloroethylene in Aqueous Solution by Noble Metal-Modified Iron. Journal of Hazardous Materials. 2004, B116: 219~228
    117童少平,胡丽华,魏红,等.二元金属脱氯降解对氯苯酚的研究.环境科学. 2005, 26: 60~62
    118魏红,李克斌,童少平,等.镍/铁二元金属对莠去津脱氯特性的影响.环境科学. 2004, 25(1): 154~157
    119 J. K. Gotpagar, E. A. Grulke, T. Tsang, et al. Reductive Dehalogenation of Trichloroethylene Using Zero-Valent Iron. Environmental Progress. 1997, 16(2): 37~143
    120 D. L. Wu, L. M. Ma, Z. Wang, et al. A study of Factors Affecting Variation of pH Values During Dechlorination of Chloroorganics. Industrial Water and Wastewater. 2004, 35(5): 43~46
    121那娟娟,冉均国,苟立,等.纳米铁粉对四氯化碳的脱氯行为.硅酸盐学报. 2006, 34(4): 487~490
    122 D. L. Wu, L. M. Ma, Z. Wang, et al. A Study of Factors Affecting Variation of pH Values During Dechlorination of Chloroorganics. Industrial Water and Wastewater. 2004, 35(5): 43~46
    123 L. J. Matheson, P. G. Tratnyek. Reductive Dehalogenation of Chlorinated Methanes by Iron Metal. Environmental Science and Technology. 1994, 28: 2045~2053
    124 M. J. Alowitz, M. M. Scherer. Kinetics of Nitrate, Nitrite, and Cr(VI) Reduction by Iron Metal. Environmental Science and Technology. 2002, 36: 299~306
    125 P. M. Jeffers, L. M. Ward, L. M. Woytowitch, et al. Homogeneous Hydrolysis Rate Constants for Selected Chlorinated Methanes, Ethanes, Ethenes, and Propanes. Environmental Science and Technology. 1989, 23: 965~969
    126 L. J. Graham. Dechlorination of p-chlorophenol on Bimetallic Pd/Fe Catalyst in a Magnetically Stabilized Fluidized Bed: Experiment and Theory. Ph.D. Thesis. Oregon State University, Corvallis, Oregon. 1999
    127 G. N. Jovanovic, P. ?. Plazl, P. Sakrittichai, et al. Dechlorination of p-Chlorophenol in a Microreactor with Bimetallic Pd/Fe Catalyst. Industrial and Engineering Chemistry Research. 2005, 44: 5099~5106
    128吴德礼,马鲁铭,周荣丰.水溶液中氯代烷烃的催化还原脱氯研究.环境科学. 2004, 23(6): 631~635
    129 J. Farrell, M. Kason, N. Melitas, et al. Investigation of the Long-Term Performance of Zero-Valent Iron for Reductive Dechlorination of Trichloroethylene. Environmental Science and Technology. 2000, 34: 514~521
    130 J. K. Wang, J. Farrell. Investigating the Role of Atomic Hydrogen on Chloroethene Reactions with Iron Using Tafel Analysis and Electrochemical Impedance Spectroscopy. Environmental Science and Technology. 2003, 37(17): 3891~3896
    131 D. R. Burris, T. J. Campbell, V. S. Manoranjan. Sorption of Trichloroethylene and Tetrachloroethylene in a Batch Reactive Metallic Iron-Water System. Environmental Science and Technology. 1995, 29: 2850~2855
    132 B. R. Helland, P. J. J. Alvarez, J. L. Schnoor. Reductive Dechlorination of Carbon Tetrachloride with Elemental Iron. Journal of Hazardous Materterials. 1995, 41: 205~216
    133 T. L. Johnson, M. M. Scherer, P. G. Tratnyek. Kinetics of Halogenated Organic Compound Degradation by Iron Metal. Environmental Science and Technology. 1996, 30: 2643~2640
    134 W. A. Arnold, A. L. Roberts. Pathways and Kinetics of Chlorinated Ethylene and Chlorinated Acetylene Reaction with Fe(0) Particles. Environmental Science and Technology. 2000, 34: 1794~1805
    135 S. Y. Oh, D. K. Cha, P. C. Chiu. Graphite-Mediated Reduction of 2,4-Dinitrotoluene with Elemental Iron. Environmental Science and Technology.2002, 36(10): 2178~2184
    136 H. Song, E. R. Carraway. Reduction of Chlorinated Methanes by Nano-Sized Zero-Valent Iron. Kinetics, Pathways, and Effect of Reaction Conditions. Environmental Engineering Science. 2006, 23: 272~284
    137 L. Zhang, W. A. Arnold, R. M. Hozalski. Kinetics of Haloacetic Acid Reactions with Fe(0). Environmental Science and Technology. 2004, 38(24): 6881~6889

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700