纳米金属氧化物修饰电极的制备及其在环境分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属离子和杀虫剂等环境污染物是危害人体健康安全的重要因素,如何对环境污染物进行快速测定和有效处理一直是国内外研究的热点。TiO2在重金属的光催化还原、光催化沉积和传感器的制作应用等方面有着很大的发展潜力。纳米二氧化钛(TiO2)、二氧化锆(ZrO2)等金属氧化物容易在电极上成膜,而且成膜后的性能稳定,因而可利用这些纳米金属氧化物修饰电极来进行电分析,有利于快速、现场获得相关数据,以利于对环境污染物处理过程中的机理进行分析;并且可以利用它的催化和强吸附性能,可用作修饰电极来对环境污染物进行电化学分析,以期提高检测的选择性和灵敏度。本论文将纳米技术、膜制备技术和电化学分析理论和方法有机地结合起来,致力于构建TiO2、ZrO2等纳米金属氧化物材料修饰电极,应用于光催化还原重金属离子的机理研究和环境污染物的检测分析。其主要内容如下:
     一、纳米TiO2修饰电极研究TiO2对重金属离子的光催化还原行为
     采用石英晶体微天平(QCM)和微分脉冲伏安法(DPV)等技术作如下三方面的研究:
     1.纳米TiO2光催化沉积铋机理的现场研究:QCM、DPV方法以及电流时间法现场研究了Bi(Ⅲ)在纳米TiO2表面的吸附及光化学还原过程。首次采用新型的分析方法估算了氧化态和还原态铋的质量比,得出如下结果:Bi(Ⅲ)借助于纳米TiO2的表面羟基发生吸附,其吸附过程符合准二级动力学反应,反应的速率常数为13.3g·mol-1·min-1;饱和吸附量为267.5 mg(Bi)/g(TiO2)。Bi(Ⅲ)的吸附和光还原速率均受溶液的浓度和pH值影响。另外,有机物作为空穴清除剂对光还原速率有很大的影响,甲酸是光催化还原Bi(Ⅲ)的最有效的空穴清除剂,在紫外光照和空穴清除剂的作用下,光化学沉积的物质包括氧化态Bi(ⅡⅠ)和零价铋,其质量比约为7.48:1。
     2.纳米TiO2修饰电极研究重金属离子在络合剂存在的情况下,TiO2的光催化还原行为:研究了乙二胺四乙酸二钠(EDTA)对光催化还原以汞为代表的重金属离子的影响:采用现场QCM技术,DPV和循环伏安法(CV)来研究EDTA在TiO2表面对光催化还原汞的影响。在不同的pH下,EDTA对TiO2吸附Hg(Ⅱ)和光催化还原Hg(Ⅱ)的影响过程进行了详细的研究。根据现场研究汞吸附到TiO2表面的QCM响应和准二级动力学模型,估算出吸附的速率常数和饱和吸附量分别为4.71×10.6 g·m0l-1·min-1和46.36 mg(Hg(II))/g(Ti02).光催化还原汞的量受溶液的pH值和EDTA与Hg(II)的摩尔比的影响。当摩尔比为1:1时,最有利于光催化还原汞。关于甲酸和EDTA对光催化还原汞的作用进行了比较研究,其光催化还原机制得以进一步地阐明。
     3.纳米TiO2复合膜修饰电极研究TiO2在光催化还原重金属离子过程中与有机物之间的相互作用:采用QCM现场技术和DPV方法,以及红外光谱和扫描电镜(SEM)作为辅助手段研究了纳米TiO2和壳聚糖(CS)在光催化还原汞过程中的相互作用。结果显示Ti02.CS.TiO2与CS(1:1,质量比)的复合膜对汞离子的静态饱和吸附量分别为46.36(mg Hg(Ⅱ)/g Ti02),120(mg Hg(Ⅱ)/g CS)和75(mg Hg(Ⅱ)/ (1/2 g TiO2和1/2 g CS)).纳米纳米TiO2对CS具有固定和保护其免受UV分解的作用是由于形成氢键的作用;同时CS的加入有利于Ti02对汞的吸附还原作用;在有空穴清除剂存在的情况下,光催化还原汞的过程中,TiO2几乎不会光催化分解CS。
     二、修饰电极溶出伏安法检测环境污染物含量
     1.修饰电极溶出伏安法快速测定重金属离子:
     (1)重金属络合剂(N,N’-哌嗪二硫代氨基甲酸钠,BDP)掺杂碳糊修饰电极(BDP/CPE)阳极溶出伏安法测定痕量汞。BDP能与重金属离子形成螯合物,将其制作成掺杂BDP的CPE电极,对汞离子具有富集作用。考察了BDP/CPE测定汞离子的优化条件,通过将富集介质和溶出介质分开的方法使得实验的灵敏度和选择性得以明显提高。该修饰电极测定汞的线性范围为2~20μg·L-1,检出限为1μg·L-1(S/N=3),常见的干扰离子Pb2+、Cd2+、Cu2+和Zn2+浓度为汞离子浓度的500倍时均对其测定峰电流没有影响,应用于实际样品自来水和人发丝中的汞含量测定,其回收率分别为97%-103%和95%-107%。
     (2)采用同位镀铋方法,同时检测水溶液或发丝中的多种金属离子Zn2+、Cd2+、Pb2+和Cu2+,溶出电流与浓度的线性范围分别为20~100μg·L-1、5~50μg·L-1、5~50μg·L-1和20~100μg·L-1;检出限分别为10μg·L-1、2μg·L-1、2μg·L-1和10μg·L-1(S/N=3).并比较了铋膜电极和汞膜电极在测定铜离子含量中的差别。
     2.TiO2纳米管光化学沉积汞膜修饰电极吸附溶出伏安法(AdSV)测定有机药物含量
     利用Ti基体电极采用阳极氧化法制得TiO2纳米管,然后采用光催化还原汞离子制得汞膜修饰TiO2/Ti电极AdSV测定磺胺嘧啶(SDZ)。研究结果表明:在优化的条件下,吸附SDZ 5min后于B-R缓冲溶液(pH=2)中溶出峰电流在1.0×10-8~1×10-6M SDZ范围内具有良好线性,检测限为4.35×10-9 M,测定牛奶中的SDZ,其回收率为95%-108%。从而实现快速、灵敏和选择性较好地测定SDZ。
     3.自组装单层膜电沉积氧化锆修饰电极溶出伏安法测定对硫磷含量:在巯基自组装单层膜(SAM)上电沉积ZrO2纳米粒(ZNPs)修饰金电极,从而制得一种新的传感器,在没有介体的条件下,采用方波溶出伏安法(SWV)来直接测定对硫磷的含量。在优化的SWV操作参数下测定对硫磷,得到了线性相关的浓度范围为0.005-1.0μg·ml-1,该方法的检测限为0.8 ng·ml-1 (S/N=3)。ZNPs在自组装单层修饰金电极上显示了可接受的重现性(RSD4.16%,n=10)和良好的稳定性。该修饰电极应用于实际样品的测定得到令人满意的结果。
Heavy metal ions and pesticides were the major environmental problem threatening our health and even our lives, so it is critical to develop fast, simple, and sensitive method for analysis and treatment of these pollutes. Nano-titania has great potential to be used as modified electrode in photocatalytic reduction or photodeposition of heavy metals ions and adsorption of environmental pollutes. TiO2 could form stable film on the electrode and could be employed to explore the mechanism of its photocatalytic reduction of heavy metal ions. At the same time, the catalytic and strong adsorpted performance of TiO2 could enhance the sensitivity while determining of environmental pollutes. The paper combined with the nanotechnology, film fabrication technology, the theory and method of electro-analytical chemistry to employ novel nano-TiO2 and nano-ZrO2 modified electrode. The modified electrodes were used to determine the mechanism of photocatalytic reduction of heavy metal ions and the contents of environmental pollutes. The main work could be summarized as follows:
     1. Study on the behavior of photocatalytic reduction heavy metal ions with nano-TiO2 modified electrode.
     With the in-situ technology quartz crystal microbalance (QCM), differential pulse voltammetry (DPV), three main parts were studied:
     (1) In-situ techniques of QCM, DPV were employed to investigate the adsorption of Bi(III) ions and the photocatalytic deposition processes of Bi at the surface of nanocrystalline TiO2. It was obtained that the adsorption of Bi(III) ions onto nanocrystalline TiO2 accorded with the pseudo-second-order reaction and the reaction rate constant k was about 13.3 g·mol-1·min-1. In addition, the photocatalytic deposition of Bi onto the surface of TiO2 was further investigated. It was found that photocatalytic deposition rate at the surface of TiO2 was enhanced by increasing pH value or initial concentration of Bi(III) ions. The influence of organic hole-scavegeners on the photocatalytic deposition of Bi was obtained that formic acid might be the best hole-scavegener for the photocatalytic reduction of Bi. The mass ratio between the Bi(III) and Bi metal deposition were calculated as 7.48:1.
     (2) In-situ techniques QCM, DPV and cyclic voltammetry (CV) were employed to investigate the effect of disodium ethylenediamine tetraacetate (EDTA) on photocatalytic reduction of mercury onto nanocrystalline TiO2. Effects of EDTA on adsorption of Hg(II) and its photocatalytic reduction processes at the surface of TiO2 at different pH value solutions had been studied in detail. From the in-situ response to the adsorption of Hg(II) onto TiO2, the reaction rate and saturation adsorption amount were estimated about 4.71×10-6 g·mol-1·min-1 and 46.36 mg(Hg(Ⅱ))/g(TiO2) respectively via the model of pseudo-second-order kinetics. The photocatalytic reduction of Hg at the surface of TiO2 was influenced by pH values and the mole ratio of Hg(II) to EDTA. When the ratio of Hg(Ⅱ) to EDTA was 1:1, it was most favorable for the photocatalytic reduction of mercury. In addition, the effects of HCOOH and EDTA on the reduction of Hg(II) were comparatively investigated and the mechanism on the photocatlytic reduction of mercury was also illustrated.
     (3) In-situ techniques QCM, DPV and the assistant technology of IR and SEM were employed to study on the interaction of TiO2 and chitosan (CS) while in the photocatalytic reduction of mercury. Results showed that The static saturation adsorption amount of TiO2, CS, and the composition of TiO2 and CS to Hg(Ⅱ) were about 46.36 (mg Hg(II)/g TiO2),120 (mg Hg(Ⅱ)/g CS) and 75 (mg Hg(II)/(1/2 g TiO2 and 1/2 g CS), respectively. Nanocrystalline TiO2 could protect CS from the UV-light; the addition of CS was favorable for the adsorption of mercury and increased the rate of photocatalytic reduction of mercury; TiO2 hardly decomposed CS when hole-scavenger was used to assist photocatalytic reduction of mercury.
     2. Modified electrode with stripping voltammetry method to detect environmental pollutes.
     (1) Determination of heavy metals
     a. Bis-(dithiocarbamate) piperazine (BDP) made by ourselves was employed to prepare BDP doped carbon paste modified electrode (BDP/CPE). BDP/CPE was employed to determine the content of trace mercury with stripping voltammetry method. With the activity of complex with heavy metals, BDP could be used to enrich mercury ions. The optimum conditions such as the time of enrichment and the amount of BDP are investigated. Under the optimized condition, the enrichment of Hg(II) with BDP enhanced the sensitivity and selectivity of the determination of mercury. A linear adsorptive stripping voltammetric response over the concentration range from 2 to 20μg·L-1 was obtained under the optimized operational parameters. The limit of detection was 1μg·L-1 (S/N=3). Several metal ions Pb2+, Cd2+, Cu2+and Zn2+with the concentration 500 times of the mercury ions, showed almost no influence on the peak current of the mercury ions. With the standard additions, the mercury in the spiked water and the hair was determined with the recovery were 97%~103%and 95%~107%respectively.
     b. With the isochronous bismuth plating method, Zn2+, Cd2+, Pb2+, Cu2+in piked water or hair could be determined synchronously. A linear stripping voltammetric response over the concentration range of Zn2+, Cd2+, Pb2+, Cu2+were 20-100μg·L-1,5~50μg·L-1,5~50μg·L-1 and 20-100μg·L-1, respectively. The limit of detection were 10μg·L-1,2μg·L-1,2μg·L-1and 10μg·L-1 (S/N=3) respectively. At the same time, it was compared with the determination of copper using bismuth or mercury film electrode.
     (2) A method for the determination of sulfadiazine (SDZ) in milk was proposed by the adsorptive stripping voltammetry (AdSV) based on photocatalytic reduction of Hg film onto the TiO2 nanotube modified titanium electrode. Under the optimized conditions:After enrichment of SDZ in electrolyte of Britton-Robinson (B-R) buffer solution, pH of 2.0, for 5 min, the oxidation peak current was linearly proportional with the concentration of SDZ over the range of 1×10-8~1×10-6 M (R2=0.997) with the determination limit of 4.35×10-9M and the recovery results were 95%~108%. It was achieved to determine SDZ rapidly, selectively and sensitively.
     (3) A self-assembled monolayer (SAM) template was employed for the electrodeposition of zirconia nanoparticles (ZNPs) onto gold electrode. The ZNPs film was highly stable and could selectively adsorb molecules containing organic phosphoric groups. Therefore, a sensor was developed for the determination of parathion (PT) based on the ZNPs electrodeposited on the SAM modified gold electrode. The electrochemistry of PT on the present electrode was studied using CV and square-wave voltammetry (SWV). A linear adsorptive stripping voltammetric response over the concentration range from 0.005 to 1.0μg·ml-1 (after a 2-min adsorption) was obtained under the optimized operational parameters of SWV. The limit of detection was 0.8 ng·ml-1 (S/N=3). The ZNPs modified on SAM surface of gold electrode presented acceptable reproducibility (RSD 4.16%, n=10) and a good stability. The present electrode was also applied for the determination of PT in real samples and the satisfactory results were obtained.
引文
[1]董绍俊,车广礼,谢远武.化学修饰电极.第一版.北京:科学出版社;2003.
    [2]Du D, Ye XP, Zhang JD et al. Stripping voltammetric analysis of organophosphate pesticides based on solid-phase extraction at zirconia nanoparticles modified electrode. Electrochemistry Communications.2008,10(5):686-690
    [3]Liu GD, Lin YH. Electrochemical sensor for organophosphate pesticides and nerve agents using zirconia nanoparticles as selective sorbents. Analytical Chemistry.2005,77(18):5894-5901
    [4]Yuchi A, Matsuo K. Adsorption of anions to zirconium(IV) and titanium(IV) chemically immobilized on gel-phase. Journal of Chromatography A.2005, 1082(2):208-213
    [5]Aslam M, Pethkar S, Bandyopadhyay K et al. Preparation, characterization and mechanistic features of zirconia films on bare and functionalized gold surfaces. Journal of Materials Chemistry.2000,10(7):1737-1743
    [6]Bandyopadhyay K, Vijayamohanan K. Formation of Microcrystalline Zirconia Using the Functionalized Interface of a Self-Assembled Monolayer of Dithiol on Polycrystalline Gold at Room Temperature. Langmuir.1998,14(24):6924-6929
    [7]Soolaman DM, Yu HZ. Monolayer-directed electrodeposition of oxide thin films: Surface morphology versus chemical modification. Journal of Physical Chemistry C.2007,111(38):14157-14164
    [8]Zuo SH, Zhang LF, Zhao YH et al. Electrochemical Detection of Short DNA Sequences Related to the Escherichia coli Pathogen Using a Zirconia-Modified Screen-Printed DNA Biosensor. Australian Journal of Chemistry.2008,61(12): 962-967
    [9]Su X, Ng HT, Dai CC et al. Disposable, low cost, silver-coated, piezoelectric quartz crystal biosensor and electrode protection. Analyst.2000,125(12): 2268-2273
    [10]Nien PC, Wang JY, Chen PY et al. Encapsulating benzoquinone and glucose oxidase with a PEDOT film:application to oxygen-independent glucose sensors and glucose/O2 biofuel cells. Bioresource Technology 2010,101(14):5480-5486
    [11]Arecchi A, Scampicchio M, Drusch S et al. Nanofibrous membrane based tyrosinase-biosensor for the detection of phenolic compounds. Analytica ChimicaActa.2010,659(1-2):133-136
    [12]Crespilho FN, lost RM, Travain SA et al. Enzyme immobilization on Ag nanoparticles/polyaniline nanocomposites. Biosensors & Bioelectronics.2009, 24(10):3073-3077
    [13]Lakshmi D, Prasad BB, Sharma PS. Creatinine sensor based on a molecularly imprinted polymer-modified hanging mercury drop electrode. Talanta.2006, 70(2):272-280
    [14]Blanco-Lopez MC, Gutierrez-Fernandez S, Lobo-Castanon MJ et al. Electrochemical sensing with electrodes modified with molecularly imprinted polymer films. Analytical and Bioanalytical Chemistry.2004,378(8): 1922-1928
    [15]Zuo SH, Zhang LF, Yuan HH et al. Electrochemical detection of DNA hybridization by using a zirconia modified renewable carbon paste electrode. Bioelectrochemistry.2009,74(2):223-226
    [16]Gilmartin MA, Hart JP. Novel, reagentless, amperometric biosensor for uric acid based on a chemically modified screen-printed carbon electrode coated with cellulose acetate and uricase. Analyst.1994,119(5):833-840
    [17]Mizutani F, Yabuki S, Sato Y. Voltammetric enzyme sensor for urea using mercaptohydroquinone-modified gold electrode as the base transducer. Biosensors & Bioelectronics.1997,12(4):321-328
    [18]Indest T, Laine J, Johansson LS et al. Adsorption of fucoidan and chitosan sulfate on chitosan modified PET films monitored by QCM-D. Biomacromolecules. 2009,10(3):630-637
    [19]Yang HY, Chen WY, Sun IW. Anodic stripping voltammetric determination of bismuth(III) using a Tosflex-coated mercury film electrode. Talanta.1999,50(5): 977-984
    [20]Lin KW, Lin CH, Hsieh YZ. Electrooxidation of catecholamines at carbon nanotube-modified indium tin oxide electrodes. Analytica Chimica Acta.2008, 619(1):49-53
    [21]Blanco-Lopez MC, Lobo-Castanon MJ, Miranda-Ordieres AJ et al. Voltammetric sensor for vanillylmandelic acid based on molecularly imprinted polymer-modified electrodes. Biosensors & Bioelectronics.2003,18(4): 353-362
    [22]Yang HY, Sun IW. Determination of selenium(IV) by a photooxidized 3,3'-diaminobenzidine/perfluorinated polymer mercury film electrode. Analytical Chemistry.2000,72(15):3476-3479
    [23]Yang Z, Si S, Zhang C et al. Quartz crystal microbalance studies on bilirubin adsorption on self-assembled phospholipid bilayers. Journal of Colloid Interface Science.2007,305(1):1-6
    [24]Yang Z, Zhang C. Photocatalytic degradation of bilirubin on hydroxyapatite-modified nanocrystalline titania coatings. Catalysis Communications.2008,10(3):351-354
    [25]Lane RF, Hubbard AT. Differential double pulse voltammetry at chemically modified platinum electrodes for in vivo determination of catecholamines. Analytical Chemistry.1976,48(9):1287-1292
    [26]Lynch ML, Barner BJ, Corn RM. In situ second harmonic generation studies of chemisorption at well-ordered Pt(111) electrodes in perchloric acid solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry.1991, 300(1-2):447-465
    [27]Katz E. Application of bifunctional reagents for selective immobilization of amino and thiol compounds on a carbon electrode surface. Journal of Electroanalytical Chemistry.1993,361(1-2):109-114
    [28]Medard C, Morin M. Chemisorption of aromatic thiols onto a glassy carbon surface. Journal of Electroanalytical Chemistry.2009,632(1-2):120-126
    [29]Salimi A, Kavosi B, Babaei A et al. Electrosorption of Os(III)-complex at single-wall carbon nanotubes immobilized on a glassy carbon electrode: application to nanomolar detection of bromate, periodate and iodate. Analytica Chimica Acta.2008,618(1):43-53
    [30]Wang M, Guo D-j, Li H-l. High activity of novel Pd/TiO2 nanotube catalysts for methanol electro-oxidation. Journal of Solid State Chemistry.2005,178(6): 1996-2000
    [31]McKenzie KJ, Marken F, Opallo M. TiO2 phytate films as hosts and conduits for cytochrome c electrochemistry. Bioelectrochemistry.2005,66(1-2):41-47
    [32]Yang Q, Zhang Y, Liu M et al. Study of fibrinogen adsorption on hydroxyapatite and TiO2 surfaces by electrochemical piezoelectric quartz crystal impedance and FTIR-ATR spectroscopy. Analytica Chimica Acta.2007,597(1):58-66
    [33]陆琪,庞代文,胡深等.DNA修饰电极的研究—Ⅶ.价键合和吸附 DNA-SAM/Au修饰电极的制备及表征.中国科学B辑.1999,29(04):341-347
    [34]Shervedani RK, Pourbeyram S. Zirconium immobilized on gold-mercaptopropionic acid self-assembled monolayer for trace determination of phosphate in blood serum by using CV, EIS, and OSWV. Biosensors & Bioelectronics.2009,24(7):2199-2204
    [35]Wang H, Wang J, Choi DW et al. EQCM immunoassay for phosphorylated acetylcholinesterase as a biomarker for organophosphate exposures based on selective zirconia adsorption and enzyme-catalytic precipitation. Biosensors & Bioelectronics.2009,24(8):2377-2383
    [36]Liu J, Rinzler AG, Dai H et al. Fullerene Pipes. Science.1998,280(5367): 1253-1256
    [37]潘大为.新型化学修饰电极的构筑及在生物传感和电催化中的应用.[博士学位论文].长沙:湖南大学,2007
    [38]Vidal JC, Garcia E, Castillo JR. Electropolymerization of pyrrole and immobilization of glucose oxidase in a flow system:influence of the operating conditions on analytical performance. Biosensors & Bioelectronics.1998, 13(3-4):371-382
    [39]Vidal JC, Espuelas J, Garcia-Ruiz E et al. Amperometric cholesterol biosensors based on the electropolymerization of pyrrole and the electrocatalytic effect of Prussian-Blue layers helped with self-assembled monolayers. Talanta.2004, 64(3):655-664
    [40]De Giglio E, Guascito MR, Sabbatin L et al. Electropolymerization of pyrrole on titanium substrates for the future development of new biocompatible surfaces. Biomaterials.2001,22(19):2609-2616
    [41]Charlton A, Underhill AE, Williams G et al. Thiophene-Functionalized TTF pi-Electron Donors as Potential Precursors to Conducting Polymers and Organic Metals:Synthesis, Properties, Structure, and Electropolymerization Studies. The Journal of Organic Chemistry.1997,62(10):3098-3102
    [42]Uchiyama S, Sakamoto H. Immobilization of uricase to gas diffusion carbon felt by electropolymerization of aniline and its application as an enzyme reactor for uric acid sensor. Talanta.1997,44(8):1435-1439
    [43]Muhammet SM, Cete S, Arslan F et al. Amperometric cholesterol biosensors based on the electropolymerization of pyrrole and aniline in sulphuric Acid for the determination of cholesterol in serum. Artif Cells Blood Substit Immobil Biotechnology.2009,37(6):273-278
    [44]Stevenson KJ, Hurtt GJ, Hupp JT. High resolution assembly of patterned metal oxide thin films via microtransfer molding and electrochemical deposition techniques. Electrochemical and Solid State Letters.1999,2(4):175-177
    [45]Djenizian T, Santinacci L, Schmuki P. Electron-beam induced nanomasking for metal electrodeposition on semiconductor surfaces. Journal of the Electrochemical Society.2001,148(3):C197-C202
    [46]Bandyopadhyay K, Vijayamohanan K. Formation of Microcrystalline Zirconia Using the Functionalized Interface of a Self-Assembled Monolayer of Dithiol on Polycrystalline Gold at Room Temperature. Langmuir.1998,14(24):6924-6929
    [47]Shacham R, Mandler D, Avnir D. Electrochemically induced sol-gel deposition of zirconia thin films. Chemistry.2004,10(8):1936-1943
    [48]Yu HZ, Rowe AW, Waugh DM. Templated electrochemical deposition of zirconia thin films on "recordable CDs.". Analytical Chemistry.2002,74(22):5742-5747
    [49]Tong Z, Yuan R, Chai Y et al. Direct electrochemistry of horseradish peroxidase immobilized on DNA/electrodeposited zirconium dioxide modified, gold disk electrode. Biotechnology Letter.2007,29(5):791-795
    [50]刘有芹,金松子,刘六战等.铁氰化锰修饰玻碳电极的制备及其电化学行为.分析化学.2004,32(07):847-851
    [51]Carpenter MK, Conell RS, Simko SJ. Electrochemistry and electrochromism of vanadium hexacyanoferrate. Inorganic Chemistry.1990,29(4):845-850
    [52]Qian L, Yang X. Preparation of cobalt hexacyanoferrate nanowires using carbon nanotubes as templates. Talanta.2006,69(4):957-962
    [53]Thangavel S, Ramaraj R. Electrochemical and in situ spectroelectrochemical studies on the gold nanoparticles co-deposited with cobalt hexacyanoferrate modified electrode and its application in sensor. Journal of Nanoscience and Nanotechnology.2009,9(4):2353-2363
    [54]Cui X, Hong L, Lin X. Electrocatalytic oxidation of hydroxylamine on glassy carbon electrodes modified by hybrid copper-cobalt hexacyanoferrate films. Analytical Sciences.2002,18(5):543-547
    [55]王升富,蒋勉,周性尧.铁氰化镍化学修饰电报对多巴胺电催化氧化及其测定.分析科学学报.1994,10(01):15-19
    [56]王政萍,王升富,蒋勉等.铁氰化镍化学修饰电极对亚硫酸根离子的电催化氧化及其应用.分析试验室.1993,12(01):91-93
    [57]Xu JJ, Wang C, Chen HY. Electrochemical characteristics of nickel hexacyanoferrate monolayer anchoring to bi-(2-aminoethyl)-aminodithiocarboxyl acid self-assembled film modified electode. Analytical Sciences.2000,16(2): 231-234
    [58]吴萍,蔡称心,陆天虹.铁氰化钐修饰电极的制备、表征及电催化.应用化学.2004,21(11):1101-1104
    [59]陆云,艾仕云,姜林等.铁氰化钆修饰电极对鸟嘌呤的电催化氧化及应用.分析化学.2008,36(09):1277-1280
    [60]石彦茂,杜攀,吴萍等.铁氰化钆修饰电极的制备及表征.电化学.2006,12(04):382-387
    [61]范崇政,肖建平,丁延伟.纳米TiO2的制备与光催化反应研究进展.科学通报.2001,(04):265-273
    [62]蒋子铎,吴璧耀,刘安华.二氧化钛的表面化学改性.现代化工.1991,(05):14-18
    [63]张淑霞,李建保,张波等.TiO2颗粒表面无机包覆的研究进展.2001:71-75
    [64]Wang R, Hashimoto K, Fujishima A et al. Photogeneration of Highly Amphiphilic TiO2 Surfaces Advanced Masterials.1998,10(2):135-138
    [65]O'Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature.1991,353(6346):737-740
    [66]蒋文新.纳米二氧化钛光催化降解无机污染物的研究进展.天津科技大学学报.2004,19(2):15-17
    [67]黄锦勇.纳米二氧化钛光催化还原重金属离子研究进展.环境科学与技术.2008,31(12):104-108
    [68]付宏祥,吕功煊,李新勇,李树本.重金属离子的光催化还原研究进展.感光科学与光化学.1995,(04):325-333
    [69]彭绍琴,李越湘.二氧化钛光催化回收金属银离子.南昌大学学报(理科版).2003,(02):156-157+170
    [70]Carp O. Huisman CL, Reller A. Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry.2004,32(1-2):33-177
    [71]Zheng HL, Zhang JH, Xiong WQ. New progress in the study on and application of organic pollutants photodegraded by nano-TiO2. Spectroscopy and Spectral Analysis.2004,24(8):1003-1008
    [72]Mahmoodi NM, Arami M. Degradation and toxicity reduction of textile waste water using immobilized titania nanophotocatalysis. Journal of Photochemistry and Photobiology B.2009,94(1):20-24
    [73]Mahmoodi NM, Arami M, Limaee NY. Photocatalytic degradation of triazinic ring-containing azo dye (Reactive Red 198) by using immobilized TiO2 photoreactor:bench scale study. Journal of Hazardous Materials.2006,133(1-3): 113-118
    [74]Zhang GK, Dong AH, Liu Y et al. The research and application of photocatalysts. Rare Metal Materials and Engineering.2005,34(3):341-345
    [75]Wang CY, Pagel R, Bahnemann DW et al. Quantum yield of formaldehyde formation in the presence of colloidal TiO2-based photocatalysts:Effect of intermittent illumination, platinization, and deoxygenation. Journal of Physical Chemistry B.2004,108(37):14082-14092
    [76]Li QA, Su HJ, Tan TW. Synthesis of ion-imprinted chitosan-TiO2 adsorbent and its multi-functional performances. Biochemical Engineering Journal.2008,38(2): 212-218
    [77]Li Q, Su HJ, Li J et al. Studies of adsorption for heavy metal ions and degradation of methyl orange based on the surface of ion-imprinted adsorbent. Process Biochemistry.2007,42(3):379-383
    [78]张昊。谭欣,赵林.废水中重金属离子的光催化还原研究进展.天津理工学 院学报.2004,(03):28-32
    [79]Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature.1972,238(5358):37-38
    [80]Wu JCS, Lin HM, Lai CL. Photo reduction of CO2 to methanol using optical-fiber photoreactor. Applied Catalysis a-General.2005,296(2):194-200
    [81]Bems B, Jentoft FC, Schlogl R. Photoinduced decomposition of nitrate in drinking water in the presence of titania and humic acids. Applied Catalysis B-Environmental.1999,20(2):155-163
    [82]Chatterjee D. Photocatalytic reduction of hydrazine to ammonia catalysed by [Ru-III(edta)(H2O)](-) complex in a Pt/TiO2 semiconductor particulate system. Journal of Molecular Catalysis a-Chemical.2000,154(1-2):1-3
    [83]刘守新.Ag改性提高TiO2对Cr(VI)的光催化还原活性机理.物理化学学报.2004,20(4):355-359
    [84]Chenthamarakshan CR, Rajeshwar K. Heterogeneous photocatalytic reduction of Cr(VI) in UV-irradiated titania suspensions:Effect of protons, ammonium ions, and other interfacial aspects. Langmuir.2000,16(6):2715-2721
    [85]Kajitvichyanukul P, Ananpattarachai J, Pongpom S. Sol-gel preparation and properties study of TiO2 thin film for photocatalytic reduction of chromium(VI) in photocatalysis process. Science and Technology of Advanced Materials.2005, 6(3-4):352-358
    [86]Mohapatra P, Samantaray SK, Parida K. Photocatalytic reduction of hexavalent chromium in aqueous solution over sulphate modified titania. Journal of Photochemistry and Photobiology a-Chemistry.2005,170(2):189-194
    [87]Tuprakay S, Liengcharensit W. Lifetime and regeneration of immobilized titania for photocatalytic removal of aqueous hexavalent chromium. Journal of Hazardous Materials.2005,124(1-3):53-58
    [88]Gkika E, Troupis A, Hiskia A et al. Photocatalytic reduction of chromium and oxidation of organics by polyoxometalates. Applied Catalysis B-Environmental. 2006,62(1-2):28-34
    [89]Zheng S, Gao L. Synthesis and characterization of Pt, Au or Pd clusters deposited titania-modified mesoporous silicate MCM-41. Materials Chemistry and Physics.2002,78(2):512-517
    [90]Mishra T, Hait J, Aman N et al. Effect of UV and visible light on photocatalytic reduction of lead and cadmium over titania based binary oxide materials. Journal of Colloid and Interface Science.2007,316(1):80-84
    [91]Kabra K, Chaudhary R, Sawhney RL. Solar photocatalytic removal of Cu(II), Ni(II), Zn(II) and Pb(II):Speciation modeling of metal-citric acid complexes. Journal of Hazardous Materials.2008,155(3):424-432
    [92]司士辉,杨政鹏,刘波.光化学还原过程中纳米TiO2表面Hg(Ⅱ)的吸附与脱附.中国有色金属学报.2005,15(09):1465-1469
    [93]Wang X, Pehkonen SO, Ray AK. Photocatalytic reduction of Hg(II) on two commercial TiO2 catalysts. Electrochimica Acta.2004,49(9-10):1435-1444
    [94]Zhang F-S, Nriagu JO, Itoh H. Photocatalytic removal and recovery of mercury from water using TiO2-modified sewage sludge carbon. Journal of Photochemistry and Photobiology A:Chemistry.2004,167(2-3):223-228
    [95]Aarthi T, Madras G. Photocatalytic reduction of metals in presence of combustion synthesized nano-TiO2-Catalysis Communications.2008,9(5): 630-634
    [96]Rajeshwar K, Chenthamarakshan CR, Ming Y et al. Cathodic photoprocesses on titania films and in aqueous suspensions. Journal of Electroanalytical Chemistry. 2002,538:173-182
    [97]Li D, McCann JT, Gratt M et al. Photocatalytic deposition of gold nanoparticles on electrospun nanofibers of titania. Chemical Physics Letters.2004,394(4-6): 387-391
    [98]Yu JC, Wang XC, Wu L et al. Sono-and photochemical routes for the formation of highly dispersed gold nanoclusters in mesoporous titania films. Advanced Functional Materials.2004,14(12):1178-1183
    [99]Zhang FX, Jin RC, Chen JX et al. High photocatalytic activity and selectivity for nitrogen in nitrate reduction on Ag/TiO2 catalyst with fine silver clusters. Journal of Catalysis.2005,232(2):424-431
    [100]陈俊水.纳米二氧化钛光催化及其在污水处理与分析检测中的应用研究[博士学位论文].上海:华东师范大学;2004.
    [101]王积森,冯忠彬,孙金全等.纳米TiO2的光催化机理及其影响因素分析.纳米材料与结构.2008,45(1):28-32
    [102]Asahi R, Morikawa T, Ohwaki T et al. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science.2001,293(5528):269-271
    [103]Chen D, K. Ray A. Removal of toxic metal ions from wastewater by semiconductor photocatalysis. Chemical Engineering Science.2001,56(4): 1561-1570
    [104]Somasundaram S, Ming Y, Chenthamarakshan CR et al. Free Radical-Mediated Heterogeneous Photocatalytic Reduction of Metal Ions in UV-Irradiated Titanium Dioxide Suspensions. The Journal of Physical Chemistry B.2004, 108(15):4784-4788
    [105]Rengaraj S, Li XZ, Tanner PA et al. Photocatalytic degradation of methylparathion-An endocrine disruptor by Bi3+-doped TiO2. Journal of Molecular Catalysis A:Chemical.2006,247(1-2):36-43
    [106]Foster NS, Lancaster AN, Noble RD et al. Effect of Organics on the Photodeposition of Copper in Titanium Dioxide Aqueous Suspensions. Ind. Eng. Chem. Res.1995,34(11):3865-3871
    [107]Chen D, K. Ray A. Removal of toxic metal ions from wastewater by semiconductor photocatalysis. Chemical Engineering Science.2001,56(4): 1561-1570
    [108]Caruso F, Rodda E, Furlong DN et al. Quartz Crystal Microbalance Study of DNA Immobilization and Hybridization for Nucleic Acid Sensor Development. Analytical Chemistry.1997,69(11):2043-2049
    [109]Prairie MR, Evans LR, Stange BM et al. An investigation of titanium dioxide photocatalysis for the treatment of water contaminated with metals and organic chemicals. Environ. Sci. Technol.1993,27(9):1776-1782
    [110]Du YK, Rabani J. The measure of TiO2 photocatalytic efficiency and the comparison of different photocatalytic titania. Journal of Physical Chemistry B. 2003,107(43):11970-11978
    [111]屈宜春.纳米TiO2催化剂的改性及机制研究[硕士学位论文].哈尔滨:黑龙江大学,2005
    [112]杨政鹏,司士辉.石英晶体微天平技术研究纳米TiO2表面Cu(Ⅱ)吸附与光化学还原过程.无机化学学报.2005,21(09):1402-1406
    [113]王泽高,郑树楠,贾春阳et al. Cu掺杂TiO2及其纳米管的制备、表征与光催化性能.无机化学学报.2010,(05):875-878
    [114]Akbar SA, Younkman LB, Dutta PK. Selectivity of an anatase TiO2-based gas sensor. Polymers in Sensors.1998,690:161-167
    [115]Sharma RK, Bhatnagar MC. Improvement of the oxygen gas sensitivity in doped TiO2 thick films. Sensors and Actuators B-Chemical.1999,56(3): 215-219
    [116]Varghese OK, Grimes CA. Metal oxide nanoarchitectures for environmental sensing. Journal of Nanoscience and Nanotechnology.2003,3(4):277-293
    [117]Varghese OK, Gong DW, Paulose M et al. Hydrogen sensing using titania nanotubes. Sensors and Actuators B-Chemical.2003,93(1-3):338-344
    [118]闵红.Au-TiO2纳米粒子修饰电极用于有机磷农药对硫磷的直接电化学检测的研究.化学传感器.2007,27(2):20-25
    [119]戴鸿娟,司士辉,杨政鹏等.纳米TiO2修饰石英晶体微天平测定水样中痕量Pb(Ⅱ).传感器世界.2007,(11):19-22
    [120]李赛,司士辉,杨政鹏等.尿素酶固载于纳米二氧化钛多孔膜上的尿素生物传感器.分析测试学报.2007,26(04):523-525
    [121]Yang ZP, Si SH, Dai HJ et al. Piezoelectric urea biosensor based on immobilization of urease onto nanoporous alumina membranes. Biosensors & Bioelectronics.2007,22(12):3283-3287
    [122]Chen X, Yang Z, Si S. Potentiometric urea biosensor based on immobilization of urease onto molecularly imprinted TiO2 film. Journal of Electroanalytical Chemistry.2009,635(1):1-6
    [123]Chen J, Yan F, Dai Z et al. Reagentless amperometric immunosensor for human chorionic gonadotrophin based on direct electrochemistry of horseradish peroxidase. Biosensors & Bioelectronics.2005,21(2):330-336
    [124]Guo CX, Hu FP, Li CM et al. Direct electrochemistry of hemoglobin on carbonized titania nanotubes and its application in a sensitive reagentless hydrogen peroxide biosensor. Biosensors & Bioelectronics.2008,24(4): 819-824
    [125]Choi HN, Kim MA, Lee WY. Amperometric glucose biosensor based on sol-gel-derived metal oxide/Nafion composite films.Analytica Chimica Acta. 2005,537(1-2):179-187
    [126]Cheng JJ, Di JW, Hong JH et al. The promotion effect of titania nanoparticles on the direct electrochemistry of lactate dehydrogenase sol-gel modified gold electrode. Talanta.2008,76(5):1065-1069
    [127]郝秀宁.超纯纳米ZrO2粉体的制备及控制其团聚的措施[硕士学位论文].杭州:浙江大学,2008
    [128]叶秀平.纳米材料及铋膜修饰玻碳电极的研究和应用.[硕士学位论文].武汉:华中师范大学,2009
    [129]黄小梅,袁若,柴雅琴等.基于二氧化锆和碳纳米管协同作用的过氧化氢生物传感器.化学研究与应用.2009,21(12):1687-1692
    [130]Alhooshani K, Kim TY, Kabir A et al. Sol-gel approach to in situ creation of high pH-resistant surface-bonded organic-inorganic hybrid zirconia coating for capillary microextraction (in-tube SPME). Journal of Chromatography A.2005, 1062(1):1-14
    [131]Budziak D, Martendal E, Carasek E. Application of NiTi alloy coated with ZrO2 as a new fiber for solid-phase microextraction for determination of halophenols in water samples. Analytica Chimica Acta.2007,598(2):254-260
    [132]Li J, Qi HY, Shi YP. Determination of melamine residues in milk products by zirconia hollow fiber sorptive microextraction and gas chromatography-mass spectrometry. Journal of Chromatography A.2009,1216(29):5467-5471
    [133]Li J, Qi HY, Shi YP. Applications of titania and zirconia hollow fibers in sorptive microextraction of N,N-dimethylacetamide from water sample. Analytica Chimica Acta.2009,651(2):182-187
    [134]Gonzalvez A, Preinerstorfer B, Lindner W. Selective enrichment of phosphatidylcholines from food and biological matrices using metal oxides as solid-phase extraction materials prior to analysis by HPLC-ESI-MS/MS. Analytical and Bioanalytical Chemistry.2010,396(8):2965-2975
    [135]喻德忠,邓张双,郑敏敏等.纳米二氧化锆的合成及其对染料的吸附性质.环境科学与技术.2004,27(01):75-76
    [136]刘淑娟,谭正初,钟兴刚.基于纳米粒子吸附的甲基对硫磷传感器研究.化学传感器.2010,30(03):41-47
    [137]刘淑娟,谭正初,钟兴刚等.基于二氧化锆纳米粒子固定乙酰胆碱酯酶的甲基对硫磷传感器.传感技术学报.2009,22(05):613-617
    [138]Zong SZ, Cao Y, Zhou YM et al. Zirconia nanoparticles enhanced grafted collagen tri-helix scaffold for unmediated biosensing of hydrogen peroxide. Langmuir.2006,22(21):8915-8919
    [139]Zong SZ, Cao Y, Zhou YM et al. Reagentless biosensor for hydrogen peroxide based on immobilization of protein in zirconia nanoparticles enhanced grafted collagen matrix. Biosensors & Bioelectronics.2007,22(8):1776-1782
    [140]Tong ZQ, Yuan R, Chai YQ et al. A novel and simple biomolecules immobilization method:Electro-deposition ZrO2 doped with HRP for fabrication of hydrogen peroxide biosensor. Journal of Biotechnology.2007, 128(3):567-575
    [141]Wang GX, Lu HY, Hu NF. Electrochemically and catalytically active layer-by-layer films of myoglobin with zirconia formed by vapor-surface sol-gel deposition. Journal of Electroanalytical Chemistry.2007,599(1):91-99
    [142]Wang GX, Liu Y, Hu NF. Comparative electrochemical study of myoglobin loaded in different types of layer-by-layer assembly films. Electrochimica Acta. 2007,53(4):2071-2079
    [143]Qiao K, Hu NF. Direct electron transfer and electrocatalysis of myoglobin loaded in layer-by-layer films assembled with nonionic poly(ethylene glycol) and ZrO2 nanoparticles. Bioelectrochemistry.2009,75(1):71-76
    [144]Qu S, Pei SP, Zhou SL et al. One-step Electrodeposited Carbon Nanotube/Zirconia/Myoglobin Film for Direct Electron Transfer and Electrocatalysis. Journal of the Chinese Chemical Society.2009,56(4):822-827
    [145]邓敏强.碳纳米管复合材料的制备及其在生物传感中的应用[硕士学位论文].南昌:南昌大学,2008
    [146]Yang LZ, Liu HY, Hu NF. Loading of Myoglobin into Multilayer Films Assembled by ZrO2 Nanoparticles and Phytic Acid:Electrochemistry and Electrocatalysis. Journal of Nanoscience and Nanotechnology.2009,9(4): 2442-2449
    [147]滕瑛丽.基于纳米材料和介孔材料电化学生物传感器的研究[硕士学位论文].重庆:西南大学,2010
    [148]杨婕.聚合物膜制备DNA电化学传感器及纳米材料在其中的应用[硕士学位论文].青岛:青岛科技大学;2007.
    [149]刘淑娟.基于聚电解质和ZrO2纳米粒子的压电免疫传感器[硕士学位论文].长沙:湖南大学,2007
    [150]姚守拙,ed.压电化学与生物传感器.长沙:湖南师范大学出版社;1998.
    [151]Konash PL, Bastians GJ. Piezoelectric crystal as detec- tors in liquid chromatography. Analytical Chemistry 1980,52:1929-1931
    [152]姚守拙,周铁安.石英压电振子在液体中的某些振荡特性研究.科学通报.1985,(15):1153-1156
    [153]杨政鹏.生化物质在纳微多孔材料上的吸附、催化及自组钙化行为研究[博士学位论文].长沙:中南大学,2008
    [154]Chin P, Grant CS, Ollis DF. Quantitative photocatalyzed soot oxidation on titanium dioxide. Applied Catalysis B.2009,87(3-4):220-229
    [155]Hidaka H, Honjo H, Horikoshi S et al. Photoinduced Agn0 cluster deposition-Photoreduction of Ag+ ions on a TiO2-coated quartz crystal microbalance monitored in real time. Sensors and Actuators B-Chemical.2007,123(2): 822-828
    [156]Si S, Huang K, Wang X et al. Investigation of photoelectrochemical oxidation of Fe2+ ions on porous nanocrystalline TiO2 electrodes using electrochemical quartz crystal microbalance. Thin Solid Films.2002,422(1-2):205-210
    [157]Yang Z, Si S, Zhang C et al. Quartz crystal microbalance studies on bilirubin adsorption on self-assembled phospholipid bilayers. Journal of Colloid Interface Science.2006,305(1):1-6
    [158]Saito N, Matsuda T. Protein adsorption on self-assembled monolayers with water-soluble non-ionic oligomers using quartz-crystal microbalance. Materials Science and Engineering:C.1998,6(4):261-266
    [159]甄春花,范纯洁,谷艳娟等.碱性介质中甘氨酸在纳米金膜电极上的吸附和氧化.物理化学学报.2003,19(01):60-64
    [160]沈鹤柏,夏静芬,王浙苏等.鸟嘌呤、鸟苷、鸟苷酸的电化学石英晶体微天平研究.高等学校化学学报.2001,22(06):962-965
    [161]刘立华,关鲁雄.硫辛酸在金电极上自组装成膜动力学研究.化学研究与应用.2002,14(01):53-55
    [162]刘立华,龚竹青,郑雅杰等.石英晶体微天平对硫辛酸自组装成膜动力学的研究.化学世界.2002,(12):625-627,649
    [163]林珩,陈声培,林进妹等.1,4-丁二醇在Pt及其修饰电极上吸附氧化过程研究.分子科学学报.2003,19(03):159-165
    [164]谷艳娟,周志有,陈声培等.酸性和碱性介质中甘氨酸解离吸附和氧化的EQCM研究.高等学校化学学报.2003,24(03):501-505
    [165]杜滨阳,范潇,曹峥等.石英晶体微天平在聚合物薄膜研究中的应用与展望.分析化学.2010,38(05):752-759
    [166]胡安珍,史济斌,戎宗明等.胶原在聚乳酸旋涂膜表面的吸附研究.高分子学报.2010,(11):1262-1268
    [167]薛平,史济斌,戎宗明.用石英晶体微天平法研究聚乳酸的酶降解过程.华东理工大学学报(自然科学版).2010,36(03):389-394
    [168]何纯莲,杨政鹏,刘国聪.纳米TiO2表面对Cd2+的吸附与光化学还原过程的QCM研究.分析科学学报.2005,21(04):371-374
    [169]Yamashita K, Kikkawa Y, Kurokawa K et al. Enzymatic degradation of poly(L-lactide) film by proteinase K:quartz crystal microbalance and atomic force microscopy study. Biomacromolecules.2005,6(2):850-857
    [170]Sabot A, Krause S. Simultaneous quartz crystal microbalance impedance and electrochemical impedance measurements. Investigation into the degradation of thin polymer films. Analytical Chemistry.2002,74(14):3304-3311
    [171]胡强,胡继明,胡毅等.电化学石英晶体微天平研究普鲁士蓝修饰电极.高等学校化学学报.1993,14(03):336-338
    [172]王英,刘长伟,朱果逸等.电化学石英晶体微天平研究六氰亚铁铜膜修饰电极及其离子效应.分析化学.1997,25(02):153-156
    [173]谭月明,谢青季,黄金花等.电化学石英晶体微天平研究普鲁士蓝薄膜的两电极系统伏安行为.中国科学(B辑:化学).2008,38(07):567-577
    [174]Kiya Y, Hutchison GR, Henderson JC et al. Elucidation of the redox behavior of 2,5-dimercapto-1,3,4-thiadiazole (DMcT) at poly(3,4-ethylenedioxythiophene) (PEDOT)-modified electrodes and application of the DMcT-PEDOT composite cathodes to lithium/lithium ion batteries. Langmuir.2006,22(25):10554-10563
    [175]Shervedani RK, Mozaffari SA. Copper(Ⅱ) nanosensor based on a gold cysteamine self-assembled monolayer functionalized with salicylaldehyde. Analytical Chemistry.2006,78(14):4957-4963
    [176]Su Y, Xie Q, Chen C et al. Electrochemical quartz crystal microbalance studies on enzymatic specific activity and direct electrochemistry of immobilized glucose oxidase in the presence of sodium dodecyl benzene sulfonate and multiwalled carbon nanotubes. Biotechnol Prog.2008,24(1):262-272
    [177]Yang Z, Si S, Zhang C. Study on the activity and stability of urease immobilized onto nanoporous alumina membranes. Microporous Mesoporous Mater.2008,111(1-3):359-366
    [178]汪川,王振尧,柯伟.石英晶体微天平工作原理及其在腐蚀研究中的应用与进展.腐蚀科学与防护技术.2008,20(05):367-371
    [179]Feng L, Liu YJ, Zhou XD et al. The fabrication and characterization of a formaldehyde odor sensor using molecularly imprinted polymers. Journal of Colloid and Interface Science.2005,284(2):378-382
    [180]Sartore L, Barbaglio M, Penco M et al. Polymer-Coated Quartz Crystal Microbalance Chemical Sensor for Heavy Cations in Water. Journal of Nanoscience and Nanotechnology.2009,9(2):1164-1168
    [181]Timofeyenko YG, Rosentreter JJ, Mayo S. Piezoelectric quartz crystal microbalance sensor for trace aqueous cyanide ion determination. Analytical Chemistry.2007,79(1):251-255
    [182]Fu Y, Finklea HO. Quartz crystal microbalance sensor for organic vapor detection based on molecularly imprinted polymers. Analytical Chemistry.2003, 75(20):5387-5393
    [183]Li G, Morita S, Ye S et al. Quartz crystal microbalance and infrared reflection absorption spectroscopy characterization of bisphenol A absorption in the poly(acrylate) thin films. Analytical Chemistry.2004,76(3):788-795
    [184]Kurosawa S, Aizawa H, Park JW. Quartz crystal microbalance immunosensor for highly sensitive 2,3,7,8-tetrachlorodibenzo-p-dioxin detection in fly ash from municipal solid waste incinerators. Analyst.2005,130(11):1495-1501
    [185]Sprung C, Wahlisch D, Huttl R et al. Detection and monitoring of biofilm formation in water treatment systems by quartz crystal microbalance sensors. Water Science and Technology.2009,59(3):543-548
    [186]Han HC, Chang YR, Hsu WL et al. Application of parylene-coated quartz crystal microbalance for on-line real-time detection of microbial populations. Biosensors & Bioelectronics.2009,24(6):1543-1549
    [187]姜宪尘,杜晓燕.吸附溶出伏安法在环境检测和药物分析中的应用与进展.化学传感器.2007,27(04):16-20
    [188]Adeloju SB, Young TM, Jagner D et al. Constant current cathodic stripping potentiometric determination of arsenic on a mercury film electrode in the presence of copper ions. Analytica Chimica Acta.1999,381(2-3):207-213
    [189]Wang J, Lu J, Kirgoz UA et al. Insights into the anodic stripping voltammetric behavior of bismuth film electrodes. Analytica Chimica Acta.2001,434(1): 29-34
    [190]Hutton EA, Ogorevc B, Hocevar SB et al. An introduction to bismuth film electrode for use in cathodic electrochemical detection. Electrochemistry Communications.2001,3(12):707-711
    [191]Lin L, Thongngamdee S, Wang J et al. Adsorptive stripping voltammetric measurements of trace uranium at the bismuth film electrode. Analytica Chimica Acta.2005,535(1-2):9-13
    [192]Wang J, Lu D, Thongngamdee S et al. Catalytic adsorptive stripping voltammetric measurements of trace vanadium at bismuth film electrodes. Talanta.2006,69(4):914-917
    [193]Yang M, Zhang Z, Hu Z et al. Differential pulse anodic stripping voltammetry detection of metallothionein at bismuth film electrodes. Talanta.2006,69(5): 1162-1165
    [194]Hocevar SB, Svancara I, Ogorevc B et al. Antimony film electrode for electrochemical stripping analysis. Analytical Chemistry.2007,79(22): 8639-8643
    [195]Hu S, Xu C, Wang G et al. Voltammetric determination of 4-nitrophenol at a sodium montmorillonite-anthraquinone chemically modified glassy carbon electrode. Talanta.2001,54(1):115-123
    [196]Hason S, Dvorak J, Jelen F et al. Impedance analysis of DNA and DNA-drug interactions on thin mercury film electrodes. Critical Reviews in Analytical Chemistry.2002,32(2):167-179
    [197]Wang J. Stripping analysis at bismuth electrodes:A review. Electroanalysis. 2005,17(15-16):1341-1346
    [198]Wang J, Anik Kirgoz U, Lu J. Stripping voltammetry with the electrode material acting as a built-in internal standard. Electrochemistry Communications.2001,3(12):703-706
    [199]Kadara RO, Tothill IE. Resolving the copper interference effect on the stripping chronopotentiometric response of lead(Ⅱ) obtained at bismuth film screen-printed electrode. Talanta.2005,66(5):1089-1093
    [200]Gong JM, Wang LY, Song DD et al. Stripping voltammetric analysis of organophosphate pesticides using Ni/Al layered double hydroxides as solid-phase extraction. Biosensors & Bioelectronics.2009,25(2):493-496
    [201]Zen J-M, Jou J-J, Senthil Kumar A. A sensitive voltammetric method for the determination of parathion insecticide. Analytica Chimica Acta.1999,396(1): 39-44
    [202]Gupta VK, Jain R, Radhapyari K et al. Voltammetric techniques for the assay of pharmaceuticals-A review. Analytical Biochemistry.2011,408(2):179-196
    [203]de Prada AGV, Reviejo AJ, Pingarron JM. A method for the quantification of low concentration sulfamethazine residues in milk based on molecularly imprinted clean-up and surface preconcentration at a Nafion-modified glassy carbon electrode. Journal of Pharmaceutical and Biomedical Analysis.2006, 40(2):281-286
    [204]Msagati TAM, Ngila JC. Voltammetric detection of sulfonamides at a poly(3-methylthiophene) electrode. Talanta.2002,58(3):605-610
    [205]Souza CD, Braga OC, Vieira IC et al. Electroanalytical determination of sulfadiazine and sulfamethoxazole in pharmaceuticals using a boron-doped diamond electrode. Sensors and Actuators B-Chemical.2008,135(1):66-73
    [206]包晓玉,曹书杰,欣陈等.循环伏安法测定磺胺嘧啶.应用化学.2006,23(8):859-861
    [207]张正奇,陶美娟,黎艳飞.磺胺嘧啶的电分析化学特性研究.分析试验室.1994,(05):1-3
    [208]Yamashita H, Ichihashi Y, Anpo M et al. Photocatalytic Decomposition of NO at 275 K on Titanium Oxides Included within Y-Zeolite Cavities:The Structure and Role of the Active Sites. The Journal of Physical Chemistry.1996,100(40): 16041-16044
    [209]Zhang Z, Wang C-C, Zakaria R et al. Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts. The Journal of Physical Chemistry B.1998,102(52): 10871-10878
    [210]Park SY, Cho BW, Yun KS et al. Photoelectrochemical properties of bismuth-doped titanium oxide electrodes. Journal of Applied Electrochemistry. 1994,24(11):1133-1138
    [211]Yao WF, Wang H, Xu XH et al. Photocatalytic property of bismuth titanate Bi]2TiO20 crystals. Applied Catalysis A.2003,243(1):185-190
    [212]Wang Y, Wang Y, Meng Y et al. A Highly Efficient Visible-Light-Activated Photocatalyst Based on Bismuth-and Sulfur-Codoped TiO2. The Journal of Physical Chemistry C.2008,112(17):6620-6626
    [213]Rajeshwar K, Chenthamarakshan CR, Ming Y et al. Cathodic photoprocesses on titania films and in aqueous suspensions. Journal of Electroanalytical Chemistry.2002,538:173-182
    [214]Park E-H, Jung J, Chung H-H. simultaneous oxidation of EDTA and reduction of metal ions in mixed Cu(Ⅱ)/Fe(Ⅲ)-EDTA system by TiO2 photocatalysis. Chemosphere.2006,64(3):432-436
    [215]Baldrianova L, Svancara I, Sotiropoulos S. Anodic stripping voltammetry at a new type of disposable bismuth-plated carbon paste mini-electrodes. Analytica Chimica Acta.2007,599(2):249-255
    [216]Hutton EA, Hocevar SB, Mauko L et al. Bismuth film electrode for anodic stripping voltammetric determination of tin. Analytica Chimica Acta.2006, 580(2):244-250
    [217]Kefala G, Economou A, Voulgaropoulos A et al. A study of bismuth-film electrodes for the detection of trace metals by anodic stripping voltammetry and their application to the determination of Pb and Zn in tapwater and human hair. Talanta.2003,61(5):603-610
    [218]Yang Z, Si S, Fung Y Bilirubin adsorption on nanocrystalline titania films. Thin Solid Films.2007,515(7-8):3344-3351
    [219]Sa'g Y, Aktay Y. Kinetic studies on sorption of Cr(Ⅵ) and Cu(Ⅱ) ions by chitin, chitosan and Rhizopus arrhizus biochemical Engineering Journal.2002,12(2): 143-153
    [220]陈中道,王洪恩,孙勤枢等.电位溶出法测定化妆品中铋铅镉.济宁医学院学报.2000,23(1):44
    [221]Zhao YB, Zhang ZJ, Dang HX. A simple way to prepare bismuth nanoparticles. Materials Letters.2004,58(5):790-793
    [222]Porkodi K, Arokiamary SD. Synthesis and spectroscopic characterization of nanostructured anatase titania:A photocatalyst. Materials Characterization.2007, 58:495-503
    [223]Fan Q, McQuillin B, Ray AK et al. High density, non-porous anatase titania thin films for device applications. J. Phys. D:Appl. Phys.2000,33:2683-2686
    [224]Madden TH, Datye AK, Fulton M et al. Oxidation of Metal-EDTA Complexes by TiO2 Photocatalysis. Environ. Sci. Technol.1997,31(12):3475-3481
    [225]Zhang Z, Wang C-C, Zakaria R et al. Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts. The Journal of Physical Chemistry B.1998, 102(52):10871-10878
    [226]Yang J-K, Davis AP. Competitive Adsorption of Cu(II)-EDTA and Cd(II)-EDTA onto TiO2. Journal of Colloid Interface Science.1999,216(1):77-85
    [227]Kim S-J, Lee H-G, Kim S-J et al. Photoredox properties of ultrafine rutile TiO2 acicular powder in aqueous 4-chlorophenol, Cu-EDTA and Pb-EDTA solutions. Applied Catalysis A.2003,242(1):89-99
    [228]Yang JK, Lee SM. EDTA effect on the removal of Cu(Ⅱ) onto TiO2. Journal of Colloid Interface Science.2005,282(1):5-10
    [229]Yang JK, Lee SM, Davis AP. Effect of background electrolytes and pH on the adsorption of Cu(Ⅱ)/EDTA onto TiO2. Journal of Colloid Interface Science. 2006,295(1):14-20
    [230]Babay PA, Emilio CA, Ferreyra RE et al. Kinetics and mechanisms of EDTA photocatalytic degradation with TiO2. Water Science and Technology.2001, 44(5):179-185
    [231]Schlapfer CW, Vlasova NN, Poznyak SK et al. The structure and properties of TiO2-Cu(Ⅱ)-EDTA ternary surface complexes. Journal of Colloid Interface Science.2001,239(1):200-208
    [232]Yang Z, Zhang C. Adsorption/desorption behavior of protein on nanosized hydroxyapatite coatings:A quartz crystal microbalance study. Applied Surface Science.2009,255(8):4569-4574
    [233]Hoogvliet JC, van Bennekom WP. Gold thin-film electrodes:an EQCM study of the influence of chromium and titanium adhesion layers on the response. Electrochimica Acta.2001,47(4):599-611
    [234]Yang Z, Zhang C. Adsorption and photocatalytic degradation of bilirubin on hydroxyapatite coatings with nanostructural surface. Journal of Molecular Catalysis A:Chemical.2009,302(1-2):107-111
    [235]Hidaka H, Honjo H, Horikoshi S et al. Photoinduced AgnO cluster deposition: Photoreduction of Ag+ions on a TiO2-coated quartz crystal microbalance monitored in real time. Sensors and Actuators B:Chemical.2007,123(2): 822-828
    [236]Suarez MF, Mills A, Egdell RG et al. Anodic stripping voltammetry with photochemical preconcentration at nanocrystalline TiO2 films:Detection of Ag+ and Hg2+. Electroanalysis.2000,12(6):413-419
    [237]Zhou JH, Deng CY, Si SH. Study on photocatalytic deposition of bismuth onto nanocrystalline TiO2 by quartz crystal microbalance and electrochemical method. Electrochimica Acta.2010,55(17):4995-4999
    [238]Sag Y, Aktay Y. A comparative study for the sorption of Cu(Ⅱ) ions by chitin and chitosan:application of equilibrium and mass transfer models Separation Science and Technology.2002,37(12):2801-2822
    [239]Cavicchioli A, Gutz IGR. In-line TiO2-assisted photodigestion of organic matter in aqueous solution for voltammetric flow analysis of heavy metals in water samples. Analytica Chimica Acta.2001,445(2):127-138
    [240]Ciesla P, Karocki A, Stasicka Z. Photoredox behaviour of the Cr-EDTA complex and its environmental aspects. Journal of Photochemistry and Photobiology a-Chemistry.2004,162(2-3):537-544
    [241]Mansilla HD, Bravo C, Ferreyra R et al. Photocatalytic EDTA degradation on suspended and immobilized TiO2. Journal of Photochemistry and Photobiology a-Chemistry.2006,181(2-3):188-194
    [242]Rengaraj S, Venkataraj S, Yeon JW et al. Preparation, characterization and application of Nd-TiO2 photocatalyst for the reduction of Cr(Ⅵ) under UV light illumination. Applied Catalysis B-Environmental.2007,77(1-2):157-165
    [243]Nguyen VNH, Amal R, Beydoun D. Effect of formate and methanol on photoreduction/removal of toxic cadmium ions using TiO2 semiconductor as photocatalyst. Chemical Engineering Science.2003,58(19):4429-4439
    [244]Dobson KD, Connor PA, McQuillan AJ. Monitoring Hydrous Metal Oxide Surface Charge and Adsorption by STIRS. Langmuir.1997,13(10):2614-2616
    [245]刘付胜聪,肖汉宁,李玉平.聚丙烯酸在纳米TiO2表面吸附行为的研究.高等学校化学学报.2005,(04):742-746+590
    [246]吴峰,蔡继业.壳聚糖/纳米TiO2杂化材料的制备及抗菌性能表征.高分子材料科学与工程.2008,24(3):148-151
    [247]Li Q, Su H, Li J et al. Studies of adsorption for heavy metal ions and degradation of methyl orange based on the surface of ion-imprinted adsorbent. Process Biochemistry.2007,42379-383
    [248]赵晓蕾,苏海佳,黄祎炜.壳聚糖-TiO2吸附剂对银的吸附及纳米银的生成.环境工程学报.2010,4(05):1107-1110
    [249]夏金虹,赵文玉,王通.改性壳聚糖对茜素红、活性红的脱色研究.化工中间体.2006,(12):19-21,31
    [250]夏金虹,唐郁生.掺杂Ti02壳聚糖对茜素红、活性红的脱色研究.应用化工.2006,35(12):949-951,957
    [251]张显策,张顺花,李慧艳.壳聚糖/纳米TiO2复合膜的制备及其性能分析.浙江理工大学学报.2007,24(6):621-624
    [252]庞洪涛,张志焜.纳米二氧化钛/壳聚糖一维纳米复合材料制备及结构分析.功能材料.2007,38(02):313-315
    [253]陈颖,王宝辉,张海燕等.纳米级TiO2光催化氧化聚丙烯酰胺.催化学报.1999,20(3):309-312
    [254]Zhou J, Deng C, Si S et al. Study on the effect of EDTA on the photocatalytic reduction of mercury onto nanocrystalline titania using quartz crystal microbalance and differential pulse voltammetry. Electrochimica Acta.2011, 56(5):2062-2067
    [255]董战峰,杜予民,樊李红等.壳聚糖/明胶/TiO2三元复合膜的制备与功能特性.功能高分子学报.2004,17(1):61-66
    [256]李世庆.溶出伏安法在环境及生物样品分析中应用的进展.重庆环境科学.1990,12(04):51-55
    [257]王霞,张祥志,陈素兰等.冷原子吸收光谱法测定固体废物浸出液中汞.光谱实验室.2008,25(05):981-984
    [258]谢宇蓉,申治国.冷原子荧光法测定食品中的汞.光谱实验室.2003,20(02):292-294
    [259]张玉涛,杜登福.全膜碳纤维阳极溶出伏安法测定汞.东北大学学报(自然科学版).1992,13(05):514-517
    [260]袁洪志,曾雪艳.离子选择电极法测定水中汞.环境科学与技术.1997,(03):36-38
    [261]谢红旗,周春山,刘梦琴等.聚苯基荧光酮修饰玻碳电极吸附溶出伏安法测定痕量汞.理化检验(化学分册).2007,43(02):141-143,150
    [262]易洪潮,吴康兵,胡胜水.离子交换伏安法同时测定水体中的镉、汞.分析科学学报.2001,17(04):275-278
    [263]黄文胜,杨春海,张升辉.双硫腙修饰玻碳电极阳极溶出伏安法测定痕量 镉和铅.分析化学.2002,30(11):1367-1370
    [264]李建平,乐上旺.双硫腙修饰固体银汞合金电极吸附伏安法测定痕量铅.分析测试学报.2007,26(1):100-103
    [265]李耀华.水中痕量镉的双硫腙修饰电极阳极溶出伏安测定法.环境与健康杂志.2004,21(4):247-249
    [266]Huang WS, Zhang SH. Determination of mercury at a dithizone-modified glassy carbon electrode by anodic stripping voltammetry. Analytical Sciences. 2002,18(2):187-189
    [267]Fu F, Zeng H, Cai Q et al. Effective removal of coordinated copper from wastewater using a new dithiocarbamate-type supramolecular heavy metal precipitant. Chemosphere.2007,69(11):1783-1789
    [268]Fu F, Xiong Y, Xie B et al. Adsorption of Acid Red 73 on copper dithiocarbamate precipitate-type solid wastes. Chemosphere.2007,66(1):1-7
    [269]Fabretti AC, Forghieri F, Ginsti A et al. Speetroscopic, magnetic and thermogravimetric studies of piperazine-bis-(dithiocarbamate) complexes. Spectrochimica Acta.1984,40A:343-346
    [270]张胜帮,张学俊,林祥钦.乙二胺四乙酸二钠/碳糊修饰电极测定银离子.分析化学.2002,30(06):745-747
    [271]黄文胜,瞿万云,张升辉.丁二酮肟修饰碳糊电极阳极溶出伏安法测定痕量铋.分析科学学报.2004,20(04):367-369
    [272]曹雷,任妍冰,杨惠林.海水中微量镍的吸附溶出伏安法分析研究.中国环境监测.2008,24(01):10-12
    [273]公维磊,杜晓燕,王舒然等.预镀铋膜修饰铂电极差分脉冲溶出伏安法测定痕量铅、镉.分析化学.2008,36(02):177-181
    [274]李建平,彭图治,张雪君.铋膜电极电位溶出法测定痕量铅、镉、锌.分析化学.2002,30(09):1092-1095
    [275]张从良,文春波,王岩等.紫外分光光度法测定土壤中磺胺嘧啶的含量.分析科学学报.2007,23(05):616-618
    [276]林海丹,谢守新,冯德雄等.动物源性食品中磺胺类药物残留的固相萃取-高效液相色谱法测定.分析测试学报.2003,22(01):94-96
    [277]林海丹,谢守新,吴映璇.高效液相色谱法同时测定鳗鱼及其制品中八种磺胺类药物.食品科学.2005,26(01):176-179
    [278]游辉,于辉,武彦文等.快速溶剂萃取-高效液相色谱法同时测定牛肉中5种磺胺类药物残留.化学通报.2010,(09):854-857
    [279]李彤,张振华,杨彩琴等.双波长倍增差示法测定双嘧啶片中磺胺嘧啶和甲氧苄啶的含量.光谱学与光谱分析.1997,17(04):124-127
    [280]王艳芳,时伟杰,孙衍华等.溴取代紫外光度法同时测定痕量磺胺嘧啶和磺胺二甲嘧啶.分析试验室.2007,26(08):29-32
    [281]关嵘,顾鸣,魏万贵等.酶联免疫法检测动物组织中磺胺嘧啶残留方法的建立.检验检疫科学.2004,14(01):9-11
    [282]谢玉璇,谢天尧,刘秋英等.毛细管电泳-电导法分离检测磺胺嘧啶、磺胺甲嘧啶和磺胺二甲嘧啶.分析测试学报.2006,25(03):100-102
    [283]张寅艳,靳淑萍,李自成等.毛细管电泳-电化学检测法测定饲料中的磺胺类药物.分析试验室.2010,29(03):1-5
    [284]Evtugyn GA, Stoikov II, Beljyakova SV et al. Ag selective electrode based on glassy carbon electrode covered with polyaniline and thiacalix[4]arene as neutral carrier. Talanta.2007,71(4):1720-1727
    [285]庄惠芳,赖跃坤,李静等.高度有序的二氧化钛纳米管阵列的制备及其光催化活性的研究.化学学报.2007,(21):2363-2369
    [286]翟育忠,李玉琴,刘彩红等.毛细管电泳-电流突跃标记法测定磺胺甲哑唑磺胺嘧啶和甲氧苄啶的离解常数.医药导报.2009,28(4):420-423
    [287]Bellezza F, Cipiciani A, Quotadamo MA. Immobilization of myoglobin on phosphate and phosphonate grafted-zirconia nanoparticles. Langmuir.2005, 21(24):11099-11104
    [288]Zhang Y, Kang TF, Wan YW et al. Gold nanoparticles-carbon nanotubes modified sensor for electrochemical determination of organophosphate pesticides. Microchimica Acta.2009,165(3-4):307-311
    [289]Mulchandani A, Mulchandani P, Kaneva I et al. Biosensor for Direct Determination of Organophosphate Nerve Agents Using Recombinant Escherichia coli with Surface-Expressed Organophosphorus Hydrolase.1. Potentiometric Microbial Electrode. Analytical Chemistry.1998,70(19): 4140-4145
    [290]Du D, Wang MH, Zhang JM et al. Application of multiwalled carbon nanotubes for solid-phase extraction of organophosphate pesticide. Electrochemistry Communications.2008,10(1):85-89
    [291]Del Carlo M, Mascini M, Pepe A et al. Screening of food samples for carbamate and organophosphate pesticides using an electrochemical bioassay. Food Chemistry.2004,84(4):651-656
    [292]Chouteau C, Dzyadevych S, Durrieu C et al. A bi-enzymatic whole cell conductometric biosensor for heavy metal ions and pesticides detection in water samples. Biosensors & Bioelectronics.2005,21(2):273-281
    [293]Gong J, Wang L, Zhang L. Electrochemical biosensing of methyl parathion pesticide based on acetylcholinesterase immobilized onto Au-polypyrrole interlaced network-like nanocomposite. Biosensors & Bioelectronics.2009, 24(7):2285-2288
    [294]Wang J, Chen L, Mulchandani A et al. Remote biosensor for in-situ monitoring of organophosphate nerve agents. Electroanalysis.1999,11(12):866-869
    [295]Liu GD, Lin YH. Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents. Analytical Chemistry.2006,78(3):835-843
    [296]Kok FN, Hasirci V. Determination of binary pesticide mixtures by an acetylcholinesterase-choline oxidase biosensor. Biosensors & Bioelectronics. 2004,19(7):661-665
    [297]Du D, Ye X, Zhang J et al. Cathodic electrochemical analysis of methyl parathion at bismuth-film-modified glassy carbon electrode. Electrochimica Acta.2008,53(13):4478-4484
    [298]Gong J, Wang L, Song D et al. Stripping voltammetric analysis of organophosphate pesticides using Ni/Al layered double hydroxides as solid-phase extraction. Biosensors & Bioelectronics.2009,25(2):493-496
    [299]Zhang Y, Kang T-f, Lu L-p et al. Preparation and characterization of parathion sensor based on molecularly imprinted polymer. Huanjing Kexue.2008,29(4): 1072-1076
    [300]Wang LG, Liang YC, Jiang X. Analysis of eight organophosphorus pesticide residues in fresh vegetables retailed in agricultural product markets of Nanjing, China. Bulletin of Environmental Contamination and Toxicology.2008,81(4): 377-382
    [301]Pedrosa VA, Miwa D, Machado SAS et al. On the utilization of boron dope diamond electrode as a sensor for Parathion and as an anode for electrochemical combustion of Parathion. Electroanalysis.2006,18(16):1590-1597
    [302]Dorea HS, Sobrinho LL. Analysis of pesticide residues in rice using matrix solid-phase dispersion (MSPD). Journal of the Brazilian Chemical Society.2004, 15(5):690-694
    [303]Brito NM, Navickiene S, Polese L et al. Determination of pesticide residues in coconut water by liquid-liquid extraction and gas chromatography with electron-capture plus thermionic specific detection and solid-phase extraction and high-performance liquid chromatography with ultraviolet detection. Journal of Chromatography A.2002,957(2):201-209
    [304]Fernandez M, Pico Y, Girotti S et al. Analysis of organophosphorus pesticides in honeybee by liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry. Journal of Agricultural and Food Chemistry.2001, 49(8):3540-3547
    [305]Musshoff F, Junker H, Madea B. Rapid analysis of parathion in biological samples using headspace solid-phase micro-extraction (HS-SPME) and gas chromatography/mass spectrometry (GC/MS). Clinical Chemistry and Laboratory Medicine.1999,37(6):639-642
    [306]Dorea HS, Lancas FM. Matrix solid-phase dispersion extraction of organophosphorus and synthetic pyrethroid pesticides in cashew nut and passion fruit. Journal of Microcolumn Separations.1999,11(5):367-375
    [307]Wang M, Li Z. Nano-composite ZrO2/Au film electrode for voltammetric detection of parathion. Sensors and Actuators B:Chemical.2008,133(2): 607-612
    [308]Ulman A. Formation and Structure of Self-Assembled Monolayers. Chem. Rev. 1996,96(-4):1533-1554
    [309]Chow E, Gooding JJ. Peptide modified electrodes as electrochemical metal ion sensors. Electroanalysis.2006,18(15):1437-1448
    [310]Katz E, Willner I. Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy:Routes to impedimetric immunosensors, DNA-Sensors, and enzyme biosensors. Electroanalysis.2003, 15(11):913-947
    [311]Djenizian T, Santinacci L, Schmuki P. Electron beam-induced carbon masking for electrodeposition on semiconductor surfaces. Applied Physics Letters.2001, 78(19):2940-2942
    [312]Dalmia A, Liu CC, Savinell R. Electrochemical behavior of gold electrodes modified with self-assembled monolayers with an acidic endgrou p for selective detection of dopamme. Journal of Electroanalytical Chemistry.1997,430: 205-214
    [313]Li CY, Wang CF, Wang CH et al. Development of a parathion sensor based on molecularly imprinted nano-TiO2 self-assembled film electrode. Sensors and Actuators B-Chemical.2006,117(1):166-171
    [314]Yu H-Z, Rowe AW, Waugh DM. Templated electrochemical deposition of zirconia thin Films on "recordable CDs". Analytical Chemistry.2002,74(-22): 5742-5747
    [315]王宁,丁克强,童汝亭等.席夫碱自组装单分子膜的电化学行为.物理化学学报.2002,18(09):846-849
    [316]Tan XH, Li BH, Zhan GQ et al. Sensitive voltammetric determination of methyl parathion using a carbon paste electrode modified with mesoporous zirconia. Electroanalysis.2010,22(2):151-154
    [317]Wang J, Chatrathi MP, Mulchandani A et al. Capillary electrophoresis microchips for separation and detection of organophosphate nerve agents. Analytical Chemistry.2001,73(8):1804-1808
    [318]Lin Y, Zhang R. Liquid chromatography series dual-electrode amperometric detection for aromatic nitro compounds. Electroanalysis.1994,6(11): 1126-1131
    [319]Osteryoung JG, Osteryoung RA. Square-wave voltammetry. Analytical chemistry.1985,57:A101-A110
    [320]Guiberteau A, Galeano T, Mora N et al. Study and determination of the pesticide Imidacloprid by square wave adsorptive stripping voltammetry. Talanta.2001,53(5):943-949

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700