基于生物活性多肽及蛋白的电化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电化学方法具有快速、灵敏和操作简单等优点,由于大多数多肽或蛋白质不具有电化学活性,阻碍了电化学方法在生物化学领域的应用。通过电活性标记物的引入,可使本身不具有电活性或在电极表面电子传递速率较慢的多肽或蛋白具有电化学活性。在生命过程中的许多生理现象与电流或电势的变化密切相关。因此,研究生物组分的氧化还原特性对探讨疾病的致病机理、研发新型药物等具有重要的意义。基于上述考虑,本论文的主要内容有:
     (1)以二茂铁甲酸为起始原料,采用液相合成法得到具有电活性的还原型谷胱甘肽-二茂铁(GSH-Fc),总收率为12.5%。利用电化学方法研究了GSH-Fc与BSA的相互作用,结合比和结合常数分别为1.41±0.06和6.53±2.01×106 L-mol-1,结合位点位于BSA的subdomain IIA。利用荧光光谱方法验证了电化学方法的可靠性,同时荧光方法表明GSH-Fc与BSA结合以疏水作用和氢键为主。利用电化学方法研究了GSH-Fc与金属硫蛋白(MT)的相互作用。实验结果表明GSH-Fc在Zn7-MT修饰金电极上有一对很好的氧化还原峰,Epa=0.218V, Epc=0.154V,ΔAEp=64mV,Ipa/Ipc=1.03。而GSH-Fc在裸金电极上的氧化还原电位分别为Epa'=0.205 V和Epc'=0.147 V,ΔEp'=58mV,Ipa'/Ipc'=1.02,说明MT与GSH-Fc之间具有特殊相互作用,结合比和结合常数分别为1.78±0.15和5.54±0.43×108L-mol-1,在GSH-Fc或GSH)和GSSG存的溶液中,Zn(Ⅱ)可以从MT分子中释放。
     (2)构建了11-二茂铁基十一烷基-1-硫醇(FcC11SH)和聚丙烯酰胺包覆的过氧化氢酶(HRP)混双分子膜修饰电极实现过氧化氢(H2O2)的微量检测。通过调整组装HRP的硫醇链长以及FcC11SH介体,电子能在FcC11SH和HRP之间转移。该电极安培检测H2O2最低浓度为0.64nmol-L-1,检测动态范围宽。HRP的包覆没有影响电子的传递以及H2O2的扩散,更重要的是通过与未包覆的酶电极、商业化的无线HRP/polymer电极对比,包覆后的酶能有效的提高酶的稳定性,在3星期后,酶的活性能保持90%,且能有效的防止介体的渗漏。此外,FcC11SH/包覆的HRP电极能快速测定样品中H2O2的浓度,具有较好的重现性。采用FcC11SH和葡萄糖氧化酶(GOD)混双分子膜电极研究了第二代酶传感器,由于FcC11SH电位比较高,因此在实际样品检测时,许多电活性物质如抗坏血酸(AA)、尿酸(UA)和对乙酰氨基酚(ACP)容易氧化,对结果造成干扰。利用网状玻璃碳(RVC)材料的高表面积以及高电流密度设计一种全新的葡萄糖传感器检测装置。通过联用FcC11SH和GOD混双分子膜组装的薄层电极,葡萄糖的浓度在0.05~40 mmol·L-1之间呈现良好的线性关系,检测限为3.6μmol-L-1。通过调整流动注射的流速和RVC电极的电位,具有电活性物质基本上完全被氧化,且氧化后的产物对酶电极不会产生干扰信号。应用该装置实现了实际样品的实时在线检测。
     (3)阿尔茨海默氏病(AD)是一种神经退行性疾病,主要病因是病人大脑中β-淀粉样肽(amyloidβ-peptide,Aβ)的异常聚集,因此抑制Aβ的异常聚集能有效的延缓或治疗老年痴呆症。大量研究表明Lys-Leu-Val-Phe-Phe(KLVFF)五肽序列能够与Aβ结合从而阻止Aβ的聚集。但KLVFF水溶性及脂溶性差,易被酶解。因此,采用固相合成法合成了二茂铁标记的水溶性较好的阻断肽Fc-KLVFFK6,该阻断肽含有能与Aβ识别并阻断Aβ形成纤维的疏水性片段。利用二茂铁的电化学活性研究了该阻断肽对Aβ聚集的动力学,表明Fc-KLVFFK6能较好的阻断Aβ纤维的聚集,同时利用荧光光谱和原子力显微镜研究了Fc-KLVFFK6和KLVFFK6抑制Aβ纤维的聚集,结果和电化学方法一致。
     (4)帕金森病(PD)是第二大最常见的神经退行性疾病,主要特征是多巴胺能神经元细胞的丢失引起多巴胺的缺乏,以及金属离子(Cu和Fe)沉积,目前致病机理尚未清楚。α-syn在PD的神经病理中具有重要的作用,能与Cu(Ⅱ), Zn(Ⅱ)和Fe(Ⅱ)结合,因此本研究利用质谱分析了α-syn与Fe(Ⅱ)相互作用,证明α-syn与Fe(Ⅱ)相互作用能形成1:1的配合物,该配合物的氧化电位和还原电位分别为0.143V和-0.093V,根据能斯特方程,α-syn-Fe(Ⅲ)的平衡常数KA为1.2×1013 L·mol-1。由于Fe(Ⅲ)溶度积常数Ksp为1.0×10-38,在生理条件下α-syn-Fe(Ⅲ)不稳定,容易水解,且α-syn与Fe(Ⅱ)结合后,在空气中能与O2反应生成H2O2。通过荧光光谱方法验证了H2O2生成,并探讨了α-syn与Fe(Ⅱ)结合后在PD中的诱导的氧化应激步骤、a-syn的聚集以及在细胞内Fe(Ⅱ)的传递。Cu(Ⅱ)能加速a-syn的聚集形成不同神经毒性的聚集,然而Cu(Ⅱ)是具有氧化还原活性,而Cu(Ⅱ)和许多蛋白或多肽形成的配合物与神经退行性疾病的氧化步骤相关。因此,在本研究中,合成了a-syn的两个具有与Cu(Ⅱ)结合较强的片段:α-syn(1-19)和α-syn(20-50),利用质谱分析了α-syn,α-syn(1-19)和α-syn(20-50)与Cu(Ⅱ)相互作用,表明α-Syn及其片段多肽能和Cu(Ⅱ)形成配合物,并利用电化学方法研究了其电化学行为,其标准氧化还原电位分别为0.04V,0.072V和0.025V,在O2存在的条件下能催化O2的还原,生成H2O2,且抗坏血酸(AA)和多巴胺(DA)溶液分别加入α-Syn和Cu(Ⅱ)的混合溶液,与PD病直接相关的DA电化学行为没有发生改变,而AA能还原α-Syn蛋白和多肽与Cu(Ⅱ)的配合物,由此可知α-Syn和Cu(Ⅱ)的配合物在AA或者其他具有氧化还原活性片的物质(如GSH和NADH)能导致氧化应激步骤,从而可能导致多巴胺细胞的损伤。
The interaction between peptide and protein has been investigated extensively using electrochemical method. However, most of peptides or proteins are electro-inactive which limits the application of electrochemical method. Introducing of an electroactive group should allow bimolecular that are either electro-inactive or do not exhibit reversible voltammetric responses to be analyzed and detected. The metabolism and various physiological phenomena in human and animal were almost related to the current or potential change; meanwhile, it is important to investigate the redox mechanism of some biological components for searching the pathogenesis of the diseases and developing new drugs. In the thesis, the following studies were carried out.
     (1) Glutathione (GSH) tagged with a ferrocene (Fc) label at its C-terminal was synthesized via coupling ferrocene monocarboxylic to glutathione in liquid-phase with the yields of 12.5%. The interaction of GSH-Fc with bovine serum albumin (BSA) was investigated, and a binding ratio of 1.41±0.06 (GSH-Fc/BSA) and an affinity constant Ka of 6.53±2.01 X 106 L·mol-1 were determined. And the voltammetric study in solution or surface confirmed that GSH-Fc binds at subdomain IIA of BSA with high affinity. These results compare well with those measured by fluorescence, the hydrophobic association and hydrogen bonding played the important roles in the binding process of GSH-Fc with BSA through fluorescence method. Electrochemical method was also employed to study the interaction between GSH-Fc and Zn7-MT. A pair of well-defined voltammetric peaks with the anodic peak potential (Epa=0.218 V) and cathodic peak potential (Epc=0.154 V) were observed for GSH-Fc at Zn7-MT modified electrode (ΔEp=77 mV,Ipa/Ipc=1.13). However, the anodic and cathodic peak potentials of 0.205 V and 0.147 V, respectively, were observed for GSH-Fc at bare gold electrode (ΔEp'=58 mV,Ipa'/Ipc'=1.02). It indicates that GSH-Fc undergoes a reversible electron transfer reaction and a specific interaction between GSH-Fc and MT, the binding constant and the binding ratio were 5.54±0.43×108 L·mol-1 and 1.78±0.15, respectively. Furthermore, Zn(Ⅱ)can be released from MT in the present of GSH-Fc(or GSH) and GSSG.
     (2) We constructed a mixed monolayer comprising ferrocenylalkanethiol and encapsulated horse radish peroxidase (HRP) at a gold electrode for enhanced amperometric detection of H2O2 at trace levels. By tuning the alkanethiol chain lengths that tether the HRP enzyme and the ferrocenylalkanethiol (FcC11SH) mediator, facile electron transfer between FcC11SH and HRP can be achieved. The electrocatalytic reaction proceeding at the mixed monolayer-modified electrode was used to attain a low amperometric detection level (0.64 nmol-L-1) and a dynamic range spanning over three orders of magnitude. Not only does the thin hydrophilic porous HRP capsule allow facile electron transfer, it also enables H2O2 to permeate. More significantly, the enzymatic activity of the encapsulated HRP is able to retain for a considerably longer period (more than three weeks) than naked HRP molecules attached to an electrode or those wired HRP/polymer electrode. Furthermore, the mixed monolayer-modified electrode is capable of rapidly and reproducibly detecting H2O2 present in complex sample media. The mixed monolayer of ferrocenylalkanethiol (FcC11SH) and glucose oxidize (GOD) electrodes were also employed to investigate the second generation enzyme sensor. As for the high potential of the FcC11SH oxidation, many electroactive interferences in samples such as the ascorbic acid (AA), uric acid (UA) and acetaminophen (ACP) can be oxidized, resulting in the errors. So we utilized the large surface area and high current densities reticulated vitreous carbon (RVC) electrode combined with thin-layer electrode assembled with FcC11SH/GOD to design a novel glucose sensor system. It had a good linear of the catalytic current with the glucose concentration (0.05~40 mmol·L-1), the detection limit was 3.6μmol·L-1. Through adjusting the flow rate and the applied potential at RVC, the electroactive interferences were almost oxidized and did not interfere the enzyme electrode.
     (3) Alzheimer's disease (AD) is a devastating degenerative disorder and the main etiology of AD is the deposition of aggregates composed by a misfolded form of the amyloid beta peptide (Aβ), so inhibition of the Aβaggregation can effective delay or cure. It was proved that Lys-Leu-Val-Phe-Phe (KLVFF) can inhibit the AP aggregation. However, the lipophilicity, water solubility and proteolytic stability of KLVFF were poor. Herein, we employed the ferrocene moiety as an electrochemical marker to label the hendecapeptide KLVFFK6, designed and synthesized a novel N-ferrocenoyl peptide Fc-Lys-Leu-Val-Phe-Phe-Lys-Lys-Lys-Lys-Lys-Lys (Fc-KLVFFK6) for an inhibitor, which contained the hydrophobic core of Aβ, could interact with the corresponding residues of Aβvia self-cognition and disrupted the self-assembly of Aβinto fibrils. We used electrochemical method to investigate the interaction and the kinetic process of inhibitor with Aβin vitro. The electrochemical results revealed Fc-KLVFFK6 inhibits Aβaggregation well. The inhibitory effect on Aβwas also investigated using thioflavin T (Th-T) fluorescence probe and AFM.
     (4) Parkinson's disease (PD) is the second most common neurodegenerative disease, and it is characterized by a progressive loss of the dopaminergic cells in the substantial nigra which is a small brain region producing dopamine and high concentrations of the metal ions(Cu and Fe), but the pathogenic mechanism of PD is unclear at present.α-Synuclein (α-syn), a presynaptic protein believed to play an important role in neuropathology in Parkinson's disease (PD), is known to bind Cu(Ⅱ), Zn(Ⅱ) and Fe(Ⅱ). We used the mass spectrum to investigate the interaction of a-syn with Fe(Ⅱ), and the results revealed they could form a complex and the binding ration was unity. Also the oxidized and reduced potential of complex was 0.143 V and-0.093 V, respectively. The value of equilibrium constant (KA) was 1.2×1013 L-mol-1. As for the Ksp of Fe(Ⅲ) was 1.O×10-38, a-syn-Fe(Ⅲ) was unstable in the physiologic condition and had the stronger tendency to hydrolyze. When a-syn binded with Fe(Ⅱ), the complex can react with O2 to produce H2O2 which was proved by fluorescence kit. We also studied the process of a-syn-Fe(Ⅱ) induced the oxidative stress, a-syn aggregation and transporting Fe(Ⅱ) in cells of PD. Cu(Ⅱ) has been shown to accelerate the aggregation of a-syn to form various toxic aggregates in vitro. However, copper is a redox active metal and its complexes with other amyloidogenic proteins/peptides have been linked to oxidative stress in major neurodegenerative diseases. So we synthesized the two a-syn N-terminus peptides (a-syn(1-19) and a-syn(20-50)) which they can form complexes with Cu(Ⅱ) and the results were confirmed by electrospray-mass spectrometry. We utilized the electrochemical methods to study the electrochemical behaviors of these complexes, and the redox potential of a-syn-Cu(Ⅱ), a-syn(1-19)-Cu(Ⅱ) and a-syn(20-50)-Cu(Ⅱ) was 0.04 V,0.072 V and 0.025 V, respectively. These complexes can catalyze O2 to reduce to H2O2 when bubbled with O2 to solution. While easily oxidized cellular species such as ascorbic acid can undergo electron transfer reaction with the copper complex of a-syn, dopamine, the most important neurotransmitter relevant to PD, cannot be directly oxidized, while AA can reduce the copper complex of a-syn. Herein, the copper complex of a-syn can react with AA or redox molecules (e.g., GSH and NADH) to induce the oxidative stress and could lead the dopaminergic cell damage.
引文
[1]李启隆,胡劲波.电分析化学.北京:北京师范大学出版社,1997.
    [2]罗国安,王宗花,王义明.生物兼容性电极购置及应用.北京:科学出版社,2006.
    [3]Cass A E G, Davis G, Francis G D, et al. Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal. Chem.,1984,56:667-671.
    [4]Koide S, Yokoyama K. Electrochemical characterization of an enzyme electrode based on a ferrocene-containing redox polymer. J. Electroanal. Chem.,1999,468:193-201.
    [5]田承云,陈静,张黎.N-(3-二茂铁乙酞胺基)丙基毗咯聚合物修饰的葡萄糖电极的研究.电化学,1998,4:418422.
    [6]Updike S J, Hicks G P. The enzyme electrode. Nature,1967,214:986-988.
    [7]Wang J. Electrochemical glucose biosensors. Chem. Rev.,2008,108: 814-825.
    [8]Katrlik J, Brandsteter R, Svorc J, et al. Mediator type of glucose microbial biosensor based on aspergillus niger. Anal. Chim. Acta,1997,356:217-224.
    [9]Hendry S P, Cardosi M F, Turner A P F, et al. Polyferrocenes as mediators in amperometric biosensors for glucose. Anal. Chim. Acta,1993,281:453-459.
    [10]Karyakin A A, Karyakina E E, Schuhmann W, et al. New amperometric dehydrogenase electrodes based on electrocatalytic NADH-oxidation at poly(methylene blue)-modified electrodes. Electroanalysis,1994,6:821-829.
    [11]Schlereth D D, Katz E, Schmidt H-L. Toluidine blue covalently immobilized onto gold electrode surfaces:an electrocatalytic system for NADH oxidation. Electroanalysis,1994,6:725-734.
    [12]Persson B, Lan H L, Gorton L, et al. Amperometric biosensors based on electrocatalytic regeneration of NAD+at redox polymer-modified electrodes. Biosens. Bioelectron.,1993,8:81-88.
    [13]Qian J, Liu Y, Liu H, et al. Immobilization of horseradish peroxidase with a regenerated silk fibroin membrane and its application to a tetrathiafulvalene-mediating H2O2 sensor. Biosens. Bioelectron.,1997,12: 1213-1218.
    [14]Cenas N, Kulys J. Biocatalytic oxidation of glucose on the conductive charge transfer complexes. Bioelectrochem. Bioenerg.,1981,8:103-113.
    [15]Leech D, Wang J, Smyth M R. Electrocatalytic detection of streptomycin and related antibiotics at ruthenium dioxide modified graphite-epoxy composite electrodes. Analyst,1990,115:1447-1450.
    [16]Pishko M V, Katakis I, Lindquist S E, et al. Direct Electrical Communication between Graphite-Electrodes and Surface Adsorbed Glucose-Oxidase Redox Polymer Complexes. Angew. Chem. Int. Ed.,1990,29:82-89.
    [17]Armstrong F A, Hill H A O, Walton N J. Direct electrochemistry of redox protein. Ace. Chem. Res.,1998,21:407-413.
    [18]Liu H H, Tian Z Q, Lu Z X, et al. Direct electrochemistry and electrocatalysis of heme-proteins entrapped in agarose hydrogel films. Biosens. Bioelectron., 2004,20:294-304.
    [19]Li Q W, Luo G A, Feng J. Direct electron transfer for heme proteins assembled on nanocrystalline TiO2 film. Electroanalysis,2001,13:359-363.
    [20]Wang L, Wang J X, Zhou F M. Direct electrochemistry of catalase at a gold electrode modified with sigle-wall carbon nanotubes. Electroanalysis,2004, 16:627-632.
    [21]Wang L, Yuan Z B. Direct electrochemistry of glucose oxidase at a gold electrode modified with sigle-wall carbon nanotubes. Sensors,2003,3: 544-554.
    [22]Bosque R, Lopez C, Sales J. Substituent effects on the electrochemical behaviour of iron(Ⅱ) in schiff bases derived from ferrocene and their cyclopalladated compounds. Inorg. Chem. Acta.,1996,244:141-145.
    [23]Thomas J K R, Jiann T L, Wen Y S. Synthesis, spectroscopy and structure of new push-pull ferrocene complexes containing heteroaromatic rings (thiophene and furan) in the conjugation chain. J.Organomet. Chem.,1999, 575:301-309.
    [24]Guldi D M, Maggini M, Scorrano G, et al. Intramolecular electron transfer in fullerene/ferrocene based donor bridge acceptor dyads. J. Am. Chem. Soc. 1997,119:974-980.
    [25]柴向东,姜月顺,杨文胜.推拉电子取代基对二茂铁衍生物性质及电子结构影响.高等学校化学学报,1996,17:1899-1903.
    [26]Staveren D R, Metzler-Nolte N. Bioorganometallic chemistry of ferrocene. Chem. Rev.,2004,104:5931-5985.
    [27]Abbott N L, Jewell C M, Hays M E. Ferrocene-containing cationic lipids:Influence of redox state on cell transfection. J. Am. Chem. Soc,2005, 127:11576-11577.
    [28]Johnson M T, Kreft E, Da N. The cytotoxic activity of macromolecular ferrocene conjugates against the Colo 320 DM human colon cancer line. J. Inorg. Organomet. Polym. Mater.,2003,13:255-267.
    [29]Eberhard W N, Maria M G, Norman F B. Metallocene-containg platinum complexes as potential antitumor agents. Organometallics,1988,7: 2563-2567.
    [30]刘海鹰,邓家祺.二茂铁-Nafion葡萄糖传感器的研究.分析化学,1994,22:1282-1282.
    [31]Demadis K D, Hartshorn C M, Meyer T J. The localized-to-delocalized transition in mixed-valence chemistry. Chem. Rev.,2001,101:2655-2685.
    [32]Gibson V C, Long N J, Long R J, et al. Synthesis, characterization, and metal complexation of unsymmetrical 1,1'-bis(organylthiolato) ferrocenes. Organometallics,2004,23:957-967.
    [33]Deck P A, Lane M J, Montgomery J L, et al. Synthesis and structural trends in pentafluorophenyl-substituted ferrocenes,1,4-tetrafluoro-phenylene-linked diferrocenes and 1,1'-ferrocenylene-1,4-tetrafluorophenylene co-oligomers. Organometallics,2000,19:1013-1024.
    [34]Kay K Y, Kim L H. The first methano-bridged diferrocenyl fullerene (C60). Tetrahedron Lett.,2000,41:1397-1400.
    [35]Gorton J E, Lentzer H L, Watts W E. Bridged ferrocenes-Ⅷ:Polarographic half-wave potentials of ferrocenophanes and related compounds. Tetrahedron, 1971,27:4353-4360.
    [36]Vanda C L, Bechgard K, Cowan D O. Mixed valence cations chemistry of pi-bridged analogues of biferrocene and biferrocenylene. J. Org. Chem.,1976, 41:2700-2704.
    [37]刘万毅,袁耀锋,张凌云.烷基桥联双二茂铁衍生物的取代基效应与电化学性质的研究.高等学校化学学报,1998,19:1251-1255.
    [38]Mahmoud K, Long Y T, Schatte G. Electronic communication through the ureylene bridge:spectroscopy, structure and electrochemistry of dimethyl 1',1'-ureylenedi(1-ferrocenecarboxylate). J. Organomet. Chem.,2004,689: 2250-2255.
    [39]Liu H-H, Huang X-J, Gu B, et al. Alternative route to reconstitute an electrical contact of enzyme on a single-walled carbon nanotube-ferrocene hybrid. J. Electroanal. Chem.,2008,621:38-42.
    [40]Smit M H, Cass A E G. Cyanide detection using a substrate-regenerating, peroxidase-based biosensor. Anal. Chem.,1990,62:2429-2436.
    [41]Wang S, Du D. The electrocatalytic reduction of hydrogen peroxide based coulombically linked ferrocene at L-cysteine self-assembled monolayers. Sens. Actuators B,2004,97:373-378.
    [42]杨庆华,叶宪曾,陶家洵等.二茂铁单羧基衍生物/Nafion修饰电极对多巴胺的电化学催化研究.北京大学学报,1999,35:738-744.
    [43]Moutet J-C, Saint-Aman E, Ungureanu M. Electropolymerization of ferrocene bis-amide derivatives:a possible route to an electrochemical sensory device J. Electroanal. Chem.,1996,410:79-85.
    [44]李青山,张嗣良,余俊堂.提高1,1-二甲基二茂铁石墨糊谷氨酸电极寿命的研究.生物工程学报,1996,12:98-100.
    [45]徐春,蔡宏,方禹之等.二茂铁标记DNA电化学探针的研制及性质研究.高等学校化学学报,2001,22:1492-1495.
    [46]Zhang S, Zheng F, Wu Z, et al. Highly sensitive electrochemical detection of immunospecies based on combination of Fc label and PPD film/gold nanoparticle amplification. Biosens. Bioelectron.,2008,24:129-135.
    [47]Ferapontova E E, Olsen E M, Gothelf K V. An RNA Aptamer-Based Electrochemical Biosensor for Detection of Theophylline in Serum. J. Am. Chem. Soc,2008,130:4256-4258.
    [48]Mahmoud K A, Kraatz H-B. A bioorganometallic approach for the electrochemical detection of proteins:a study on the interaction of ferrocene-peptide conjugates with papain in solution and on Au surfaces. Chem. Eur. J.,2007,13:5885-5895.
    [49]Bharath S, Hsu M, Kaur D, et al. Glutathione, iron and Parkinson's disease. Biochem. Pharmacol.,2002,64:1037-1048.
    [50]Wisnewski A V, Liu Q, Liu J. Glutathione protects human airway proteins and epithelial cells from isocyanates. Clin. Exp. Allergy.,2005,35:352-357.
    [51]Wu G, Fang Y Z, Yang S. Glutathione metabolism and its implications for health. J. Nutr.,2004,134:489-492.
    [52]Nesmeyanov A N, Bogomolova L G, Kochetkova N S. Sodium 2-(ferrocenylcarbonyl)benzoate. Appl. Chem.,1971,2:16-19.
    [53]Tjernberg L O, Naeslund J, Lindqvist F. Arrest of β-amyloid fibril formation by a pentapeptide ligand. Biol. Chem.,1996,271:8545-8548.
    [54]Soto C, Castano E M. The conformation of Alzheimer's β-peptide determines the rate of amyloid formation and its resistance to proteolysis. Biochemistry, 1996,314:701-707.
    [55]Soto C, Sigurdsson E M, Morelli L. β-Sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis:Implications for Alzheimer's therapy. Nat. Med.,1998,4:822-826.
    [56]Moss M A, Nichols M R, Reed D K, et al. The peptide KLVFF-K6 promotes beta-amyloid(1-40) protofibril growth by association but does not alter protofibril effects on cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Mol. Pharmacol.,2003,64:1160-1168.
    [57]Gordon D J, Sciarretta K L, Meredith S C. inhibition of beta-amyloid(40) fibrillogenesis and disassembly of beta-amyloid(40) fibrils by short beta amyloid congeners containing N-methyl amino acids at alternate residues. Biochemistry,2001,40:8237-8245.
    [58]Wolfe M S, Citron M, Diehl T, S. A substrate-based difluoro ketone selectively inhibits Alzheimer's β-secretase activity. J. Med. Chem.,1998,41:6-9.
    [59]Broytman O, Malter J S. Anti-Abeta:The good, the bad, and the unforeseen. Neurosci. Res.,2004,75:301-306.
    [60]Forman M S, Lee V M Y, Trojanowski J Q. Nosology of Parkinson's disease: Looking for the way out of a quackmire. Neuron,2005,47:479-482.
    [61]Moore D J, West A B, Dawson V L, et al. Molecular pathophysiology of Parkinson's disease. Annu. Rev. Neurosci.,2005,28:57-87.
    [62]Dalfo E, Portero-Otin M, Ayala V, et al. Evidence of oxidative stress in the neocortex in incidental Lewy body disease. J. Neuropathology Exp. Neurol., 2005,64:816-830.
    [63]Chinta S J, Andersen J K. Dopaminergic neurons. Int. J. Biochem. Cell Biol., 2005,37:942-946.
    [64]Wright J A, Brown D R. Alpha-synuclein and its role in metal binding: Relevance to Parkinson's disease. J. Neurosci. Res.,2008,86:496-503.
    [65]Aruoma O, Halliwell B. Molecular biology of free radicals in human diseases. Saint Lucia:OICA International,1998.
    [66]Gort A, Imlay J. Balance between endogenous superoxide stress and antioxidant defenses. J. Bacteriol.,1998,180:1402-1410.
    [67]Imlay J, Linn S. Toxic DNA damage by hydrogen peroxide through the fenton reaction in vivo and in vitro. Science,1988,240:640-642.
    [68]Barjla G, Herrero A. Oxidative damage to mitoehondrial DNA is inversely related to maxium life span in the heart and brain of mammals. Faseb J.,2000, 14:312-318.
    [69]Barnham K J, Masters C L, Bush A I. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov.,2004,3:205-214.
    [70]Olanow C W, Jankovic J. Neuroprotective therapy in Parkinson's disease and motor complications:A search for a pathogenesis-targeted, disease modifying strategy. Mov. Disord,2005,20:S3-S10.
    [71]Bradbury J. New hope for mechanism based treatment of Parkinson's disease. Drug Discov. Today,2005,10:80-81.
    [72]Wolozin B, Golts N. Iron and Parkinson's disease. Neuroscientist,2002,8: 22-32.
    [73]Bush A I. Metals and neuroscience. Curr. Opin. Chem. Biol.,2000,4: 184-191.
    [74]Doraiswamy P M, Finefrock A E. Metals in our minds:therapeutic implications for neurodegenerative disorders. Lancet Neurol.,2004,3: 431-434.
    [75]雷鹏,吴为辉,李艳梅.过渡金属离子与神经退行性疾病.大学化学,2006,6:32-35.
    [76]Huang X, Atwood C S, Hartshorn M A, et al. The Ab peptide of Alzheimer's disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry,1999,38:7609-7916.
    [77]Hironishi M, Ueyama E, Senba E. Systematic expression of immediate early genes and intensive astrocyte activation induced by intrastriatal ferrous iron injection. Brain Res.,1999,828:145-153.
    [78]Antipenko A, Himanen J P, Leyen K, et al. Surteture of the smepahorin-3A receptor binding module. Neuron,2003,39:589-598.
    [79]Peltonen J M, Nyronen T, Wurster S, et al. Molecular mechanisms of ligand-receptor interactions in transmembrane domain V of the alpha2A-adrenoceptor. J. Pharmacol.,2003,140:347-358.
    [80]Rneuad J, Bisehoffs F, Buhl T. Estrogen receptor modulators:identification and structure-activity relationships of potent ERalpha-selective tetrahydroisoquinoline ligands J. Med. Chem.,2003,46:2945-2957.
    [81]李清文,高宏,黄昊.血红蛋白与NO分子间相互作用的电化学表征.高等学校化学学报,2001,22:1373-1375.
    [82]孙伟,焦奎,刘晓云.电化学法研究蛋白质和茜素红的相互作用.分析化学,2002,30:312-314.
    [83]郭尧君.荧光实验技术及其在分子生物学中的应用.北京:科学出版社,1983.
    [84]Moriyama Y, Takeda K. Protetive effects of small amounts of Bis(2-ethylhexyl) Sulfosuccinate on the helical structure of human and bovine serum albumins in their thermal denatrurations. Langmuir,2005,21:5524-5528.
    [85]胡红雨,鲁子贤.核磁振法研究蛋白质和多肤的结构和功能.化学通报,1995,7:14-22.
    [86]张猛,杨频.核磁振研究蛋白二级结构的方法.化学通报,2000,12:26-33.
    [87]Chait B, Tkent B H. Weighing naked proteins:practical, high-accuracy mass measurement of peptides and proteins. Science,1992,257:1885-1894.
    [88]Fenn J B, Mann M, Meng C K. Electrospray ionization for mass spectrometry of large biomolecules. Scienee,1989,246:64-71.
    [89]Smiht D L, Zhang Z. Probing noneovalnet sturetural features of Porteins by mass spectrometry. Mass Spectrom. Rev.,1994,13:411-429.
    [90]易平贵,商志刁,俞庆森.微量热法研究[Cu(phen)2]与DNA的作用.无机化学学报,2001,17:77-81.
    [91]Masuoka J, Saltman P. Zinc and copper binding to serum bumin.A comparative study of dog, bovine, and human albmuin. J. Biol. Chem.,1994, 269:2555-2556.
    [92]董艳红,邵伟平,唐雯霞.平衡透析法研究顺铂与多核普酸的作用.无机化学报,1991,7:104-108.
    [93]Pnag D W, Abunra H D. Micormethod of the investigation of the intearetions between DNA and redox-active Molecules. Anal. Chem.,1998,70: 3162-3169.
    [94]陈润生,董贻诚.紫茉莉抗病毒蛋白的空间结构和与底物相互作用的模拟研究.生物物理学报,1996,12:452-458.
    [95]张保林,王文清,白凤莲.葱醒及黄酮类化合物与人血清白蛋白的结合反应研究.高等学校化学学报,1994,15:373-378.
    [96]Coffey R N, Watson R W, Hegarty N J, et al. Thiol-mediated apoptosis in prostrate carcinoma cells. Cancer,2000,88:2092-2104.
    [97]Mullineaux P, Creissen G P. Glutathione reductase:regulation and role in oxidative stress. Oxidative stress and the molecular biology of antioxidant defenses. New York:Cold Spring Harbor Laboratory Press,1997.
    [98]Meister A. Glutathione metabolism and its selective modification. J. Biol. Chem.,1998,26:17205-17208.
    [99]Townsend D M, Tew K D, Tapiero H. The importance of glutathione in human disease. Biomed. Pharmacother.,2003,57:145-155.
    [100]Syngai C, Kumari A L, Khar A. Effect of curcumin on normal and tumor cells: Role of glutathione and bcl-2. Mol. Cancer Ther.,2004,3:1101-1108.
    [101]Zsila F, Bikadi Z, Simonyi M. Probing the binding of the flavonoid, quercetin to human serum albumin by circular dichroism, electronic absorption spectroscopy and molecular modelling methods. Biochem Pharmacol,2003, 65:447-456.
    [102]Shang L, Jiang X, Dong S. In vitro study on the binding of neutral red to bovine serum albumin by molecular spectroscopy. J Photochemistry and Photobiology A:Chemistry,2006,184:93-97.
    [103]Yamasaki K, Maruyama T, Kragh-Hansen U, Otagiri M. Characterization of site I on human serum albumin:concept about the structure of a drug binding site. Biochim. Biophys. Acta,1996,1295:147-157.
    [104]Loach P A. Handbook of Biochemistry and Molecular Biology, Physical and Chemical Data 3rd ed. Cleveland:RC Press,1976.
    [105]Barisic L, Rapic V, Pritzkow H, et al. Ferrocene compounds part ⅩⅩⅩⅢ. J. Organomet. Chem.,2003,682:131-142.
    [106]Beer P D, Wild K Y. New bis-ferrocenyl dibenzo-18-crown-6 ligands that can electrochemically sense group 1 and 2 metal cations. Polyhedron,1996,15: 775-780.
    [107]Morita T, Kimura S. Long-range electron transfer over 4 nm governed by an inelastic hopping mechanism in self-assembled monolayers of helical peptides. J. Am. Chem. Soc.,2003,125:8732-8733.
    [108]Mahmoud K A, Kraatz H-B. A bioorganometallic approach for the electrochemical detection of proteins:a study on the interaction of ferrocene-peptide conjugates with papain in solution and on Au surfaces. Chem. Eur. J.,2007,13:5885-5895.
    [109]Hoffmanns U, Metzler-Nolte N. Use of the sonogashira coupling reaction for the "Two-Step" labeling of phenylalanine peptide side chains with organometallic compounds. Bioconjugate Chem.,2006,17:204-213.
    [110]Hatten X, Weyhermiiller T, Metzler-Nolte N. Ferrocenoyl peptides with sulfur-containing side chains:synthesis, solid state and solution structures. J. Organomet. Chem.,2004,689:4856-4867.
    [111]Patolsky F, Weizmann Y, Willner I. Redox active nucleic acid replica for the amplified bioelectrocatalytic detection of viral DNA. J. Am. Chem. Soc,2002, 124:770-772.
    [112]Luo X, Lee T M. Immobilization-free sequence-specific electrochemical detection of DNA using ferrocene-labeled peptide nucleic acid. Anal. Chem., 2008,80:7341-7346.
    [113]Fan C, Plaxco K W, Heeger A J. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proc. Natl. Acad. Sci. USA,2003,100:9134-9148.
    [114]Suzuki K T, Imura N, Kimura M. Metallothioneins Ⅲ. Boston:Birkhauser; 1993.
    [115]Ngu T T, Stillman M J. Arsenic binding to human metallothionein. J. Am. Chem. Soc.,2006,128:12473-12483.
    [116]Stillman M J, Cai W, Zelazowski A J. Cadmium binding to metallothioneins-Domain specificity in reactions of alpha-fragment and beta-fragment, apometallothionein, and zinc metallothionein with Cd2+. J. Biol. Chem.,1987, 262:4538-4548.
    [117]Jiang L J, Maret W, Vallee B L. The glutathione redox couple modulates zinc transfer from metallothionein to zinc-depleted sorbitol dehydrogenase. Proc.Natl.Acad.Sci,1998,95:3483-3488.
    [118]Chen Y, Maret W. Catalytic selenols couple the redox cycles of metallothionein and glutathione. Eur.J. Biochemistry,2001,268:3346-3353.
    [119]Barisic L, Rapic V, Kovac V. Ferrocene Compounds. XXIX Efficient Syntheses of 1'-Aminoferrocene-1-carboxylic Acid Derivatives. Croat. Chem. Acta,2002,75:199-210.
    [120]Barisic L, Cakic, M., Mahmoud, et al. Helically chiral ferrocene peptides containing 1'-aminoferrocene-l-carboxylic acid subunits as turn inducers. Chem. Eur. J.,2005,12:4965-4970.
    [121]Sudlow G, Birkett D J, Wade D N. Further characterization of specific drug binding sites on human serum albumin. Mol. Pharmacol.,1976,12: 1052-1061.
    [122]He X M, Carter D C. Atomic structure and chemistry of human serum albumin. Nature,1992,358:209-215.
    [123]Iiichev Y V, Perry J L, Simon J D. Interaction of ochratoxin A with human serum albumin. A common binding site of ochratoxin A and warfarin in subdomain Ⅱ A. J. Phys. Chem.,2002,106:452-465.
    [124]Baroni S, Mattu M, Vannini A, et al. Effect of ibuprofen and warfarin on the allosteric properties of haem-human serum albumin. Eur. J. Biochem.,2001, 268:6214-6220.
    [125]Hill H D, Straka J G. Protein determination using bicinchoninic acid in the presence of sulfhydryl reagents. Anal. Biochem.,1988,170:203-208.
    [126]Beer P D, Wild K Y. New bis-ferrocenyl dibenzo-18-crown-6 ligands that can electrochemically sense group 1 and 2 metal cations. Polyhedron,1996,15: 775-780.
    [127]Ohki S, Baker G A, Page P M. Interaction of influenza virus fusion peptide with lipid membranes:Effect of lysolipid. J. Membrane Biol.,2006,211: 191-200
    [128]Tetin S Y, Ruan Q Q, Saldana S C. Interactions of two monoclonal antibodies with BNP:High resolution epitope mapping using fluorescence correlation spectroscopy Biochemistry,2006,45:14155-14165.
    [129]Blom N F, Neuse E W, Thomas H G. Transition Met. Chem.,1987,12: 301-305.
    [130]Eckenhoff R G, Johansson J S. Molecular interactions between inhaled anesthetics and proteins. Pharmacol. Rev.,1997,49:343-367.
    [131]Sklar L A, Hudson B S, Simoni R D. Conjugated polyene fatty acids as fluorescent probes:binding to bovine serum albumin. Biochemistry.,1977,16: 5100-5108.
    [132]Congdon R W, Muth G W, Splittgerber A G. The binding interaction of coomassie blue with proteins. Anal. Biochem.,1993,213:407-413.
    [133]Ross P D, Subramanian S. Thermodynamics of protein association reactions:forces contributing to stability. Biochemistry,1981,20:3096-3102.
    [134]Zhang X, Ju H, Wang J. Electrochemical Sensors, Biosensors and their Biomedical Applications. New. York Academic Press; 2007.
    [135]Cooper J, Cass T. Biosensors. Oxford:Oxford University Press; 2004.
    [136]Ramsay G. Commercial Biosensors:Applications to Clinical, Bioprocess, and Environmental Samples. New York:Wiley-Interscience; 1998.
    [137]Borisov S M, Wolfbeis O S. Optical biosensors. Chem. Rev.,2008,108: 423-461.
    [138]Privett B J, Shin J H, Schoenfisch M H. Electrochemical sensors. Anal. Chem., 2008,80:4499-4517.
    [139]Wang G, Xu J J, Chen H Y, et al. Amperometric hydrogen peroxide biosensor with sol-gel/chitosan network-like film as immobilization matrix. Biosens. Bioelectron.,2003,18:335-343.
    [140]Kang X, Wang J, Tang Z, et al. Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in hybrid organic-inorganic film of chitosan/sol-gel/carbon nanotubes. Talanta,2009,78:120-125.
    [141]Holtz J H, Asher S A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature,1997,389:829-832.
    [142]Liu L, Li P S, Asher S A. Entropic trapping of macromolecules by mesoscopic periodic voids in a polymer hydrogel. Nature,1999,397:141-144.
    [143]Yu X, Sotzing G A, Papadimitrakopoulos F, et al. Wiring of enzymes to electrodes by ultrathin conductive polyion underlayers:Enhanced catalytic response to hydrogen peroxide. Anal. Chem.,2003,75:4565-4571.
    [144]Ma D, Li M, Patil A J, et al. Fabrication of protein/silica core-shell nanoparticles by microemulsion-based molecular wrapping. Adv. Mater.,2004, 16:1838-1841.
    [145]Kumar R, Maitra A N, Patanjali P K, et al. Hollow gold nanoparticles encapsulating horseradish peroxidase. Biomaterials,2005,26:6743-6753.
    [146]Lahiri J, Isaacs L, Tien J, et al. A strategy for the generation of surfaces presenting ligands for studies of binding based on an active ester as a common reactive intermediate:A surface plasmon resonance study. Anal. Chem.,1999, 71:777-790.
    [147]Palegrosdemange C, Simon E S, Prime K L, et al. Formation of Self-Assembled Monolayers by Chemisorption of Derivatives of Oligo(Ethylene Glycol) of Structure Hs(Ch2)11(Och2ch2)Meta-Oh on Gold. J. Am. Chem. Soc.,1991,113:12-20.
    [148]Roberts C, Chen C S, Mrksich M, et al. Using mixed self-assembled monolayers presenting RGD and (EG)(3)OH groups to characterize long-term attachment of bovine capillary endothelial cells to surfaces. J. Am. Chem. Soc, 1998,120:6548-6555.
    [149]Wei X, Cruz J, Gorski W. Integration of enzymes and electrodes: Spectroscopic and electrochemical studies of chitosan-enzyme films. Anal. Chem.,2002,74:5039-5046.
    [150]Liu Y, Wang M K, Zhao F, et al. The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix. Biosens. Bioelectron.,2005,21:984-988.
    [151]Stevens M M, Allen S, Davies M C, et al. The development, characterization, and demonstration of a versatile immobilization strategy for biomolecular force measurements. Langmuir,2002,18:6659-6665.
    [152]Sigal G B, Bamdad C, Barberis A, et al. A self-assembled monolayer for the binding and study of histidine tagged proteins by surface plasmon resonance. Anal. Chem.,1996,68:490-497.
    [153]Rowinski P, Kang C, Shin H, et al. Mechanical and chemical protection of a wired enzyme oxygen cathode by a cubic phase lyotropic liquid crystal. Anal. Chem.,2007,79:1173-1180.
    [154]Bakker E, Meyerhoff M E. Ionophore-based membrane electrodes:new analytical concepts and non-classical response mechanisms. Anal. Chim. Acta, 2000,416:121-137.
    [155]Nevins B S A, Balogh L P, Meyerhoff M E. Potentiometric response characteristics of polycation-sensitive membrane electrodes toward poly(amidoamine) and poly(propylenimine) dendrimers. Anal. Chem.,2004, 76:1474-1482.
    [156]Kim J, Grate J W. Single-enzyme nanoparticles armored by a nanometer-scale organic/inorganic network. Nano Lett.,2003,3:1219-1222.
    [157]Yan M, Ge J, Liu Z, et al. Encapsulation of single enzyme in nanogel with enhanced biocatalytic activity and stability. J. Am. Chem. Soc,2006,128: 11008-11009.
    [158]Liu G D, Lin Y H, Ostatna V, et al. Enzyme nanoparticles-based electronic biosensor. Chem. Commun.,2005:3481-3483.
    [159]Henkel G, Krebs B. Metallothioneins:Zinc, cadmium, mercury, and copper thiolates and selenolates mimicking protein active site features-structural aspects and biological implications. Chem. Rev.,2004,104:801-824.
    [160]Rubin S, Chow J T, Ferraris J P, et al. Electrical communication between components of self-assembled mixed monolayers. Langmuir,1996,12: 363-370.
    [161]Everse J, Grisham M B, Everse K E. Peroxidases in Chemistry and Biology. Boca Raton, FL:CRC Press; 1990.
    [162]Bard A J, Faulkner L R. Electrochemical Methods:Fundamentals and Applications. New York:John Wiley & Sons; 2001.
    [163]Gaggelli E, Kozlowski H, Valensin D, et al. Copper homeostasis and neurodegenerative disorders (Alzheimer's, prion, and Parkinson's diseases and amyotrophic lateral sclerosis). Chem. Rev.,2006,106:1995-2044.
    [164]Lin Y C, Huang Y C, Chen S C, et al. Neuroprotective Effects of Ugonin K on Hydrogen Peroxide-Induced Cell Death in Human Neuroblastoma SH-SY5Y Cells. Neurochem. Res.,2009,34:923-930.
    [165]Heo S R, Han A M, Kwon Y K, et al. p62 protects SH-SY5Y neuroblastoma cells against H2O2-induced injury through the PDK1/Akt pathway. Neurosci. Lett.,2009,450:45-50.
    [166]Clark L C, Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. NY Acad. Sci.,1962,102:29-45.
    [167]Hoshi T, Saiki H, Kuwazawa S, et al. Selective permeation of hydrogen peroxide through polyelectrolyte multilayer films and its use for amperometric biosensors. Anal. Chem.,2001,73:5310-5315.
    [168]Zhang Y N, Hu Y B, Wilson G S, et al. Elimination of the acetaminophen interference in an implantable glucose sensor. Anal. Chem.,1994,66: 1183-1188.
    [169]Piechotta G, Albers J, Hintsche R. Novel micromachined silicon sensor for continuous glucose monitoring. Biosens. Bioelectron.,2005,21:802-808.
    [170]Ward W K, Jansen L B, Anderson E, et al. A new amperometric glucose microsensor:in vitro and short-term in vivo evaluation. Biosens. Bioelectron., 2002,17:181-189.
    [171]Malitesta C, Palmisano F, Torsi L, et al. Glucose Fast-Response Amperometric Sensor Based on Glucose-Oxidase Immobilized in an Electropolymerized Poly(Ortho-Phenylenediamine) Film. Anal. Chem.,1990,62:2735-2740.
    [172]Curran D J, Tougas T P. Electrochemical Detector Based on a Reticulated Vitreous Carbon Working Electrode for Liquid Chromatography and Flow Injection Analysis. Anal. Chem.,1984,56:672-678.
    [173]Friedrich J M, Ponce-De-Leon C, Reade G W, et al. Reticulated vitreous carbon as an electrode material. J. Electroanal. Chem.,2004,561:203-217.
    [174]Strohl A N, Curran D J. Reticulated vitreous carbon flow-through electrodes. Anal. Chem.,1979,51:353-357.
    [175]Sorrels J W, Dewald H D. A reticulated vitreous carbon spectroelectrochemical detector for flow-injection analysis and liquid-chromatography. Electroanalysis,1992,4:487-493.
    [176]Spillantini M G, Schmidt M L, Lee V M Y, et al. a-synuclein in Lewy bodies. Nature,1997,388:839-840.
    [177]Spillantini M G, Crowther R A, Jakes R, et al. a-synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with Lewy bodies. Proc. Natl. Acad. Sci. U. S. A.,1998,95:6469-6473.
    [178]Qin Z, Hu D, Han S, et al. Role of different regions of a-synuclein in the assembly of fibrils. Biochemistry,2007,46:13322-13330.
    [179]Riederer P, Sofic E, Rausch W D, et al. Transition-metals, ferritin, glutathione, and ascorbic-acid in Parkinsonian brains. J. Neurochem.,1989,52:515-520.
    [180]Fink A L. The aggregation and fibrillation of a-synuclein. Acc. Chem. Res., 2006,39:628-634.
    [181]Jiang D, Men L, Wang J, et al. Redox reactions of copper complexes formed with different b-amyloid peptides and their neuropathalogical relevance. Biochemistry,2007,46:9270-9282.
    [182]Jiang D, Li X, Williams R, et al. Ternary complexes of iron, amyloid-β, and nitrilotriacetic acid:Binding affinities, redox properties, and relevance to iron-induced oxidative stress in Alzheimer's disease. Biochemistry,2009,48: 7939-7947.
    [183]Golts N, Snyder H, Frasier M, et al. Magnesium inhibits spontaneous and iron-induced aggregation of a-synuclein. J. Biol. Chem.,2002,277: 16116-16123.
    [184]Ding T, Lee S J, Rochet J C, et al. Annular a-synuclein protofibrils are produced when spherical protofibrils are incubated in solution or bound to brain-derived membranes. Biochemistry,2002,41:10209-10217.
    [185]Cornell R M, Schwertmann U. The iron oxides:structure, properties, reactions, occurrences and uses; 2nd ed. Weinheim:Wiley VCH,2003.
    [186]Bard A J, Faulkner L R. Electrochemical methods. Fundamentals and applications. New York:John Wiley & Sons,2001.
    [187]Jenner P. Oxidative stress in Parkinson's disease. Ann. Neurol.,2003,53: S26-S36.
    [188]Uversky V N, Li J, Fink A L. Metal-triggered structural transformations, aggregation, and fibrillation of human a-synuclein:A possible molecular link between Parkinson's disease and heavy metal exposure. J. Biol. Chem.,2001, 276:44284-44296.
    [189]Kostka M, Hogen T, Danzer K M, et al. Single particle characterization of iron-induced pore-forming a-synuclein oligomers. J. Biol. Chem.,2008,283: 10992-11003.
    [190]Crichton R. Iron Metabolism from molecular mechanisms to clinical consequences. West Sussex:John Wiley & Sons Ltd.,2009.
    [191]Gaggelli E, Kozlowski H, Valensin D, et al. Copper homeostasis and neurodegenerative disorders (Alzheimer's, prion, and Parkinson's diseases and amyotrophic lateral sclerosis). Chem. Rev.,2006,106:1995-2044.
    [192]Varadarajan S, Yatin S, Aksenova M, et al. Alzheimer's amyloid b-peptide-associated free radical oxidative stress and neurotoxicity. J. Struct. Biol.,2000,130:184-208.
    [193]Zhu M, Qin Z, Hu D, et al. a-synuclein can function as an antioxidant preventing oxidation of unsaturated lipid in vesicles. Biochemistry,2006,45: 8135-8142.
    [194]Lovell M A, Robertson J D, Teesdale W J, et al. Copper, iron and zinc in Alzheimer's disease senile plaques. J. Neurol. Sci.,1998,158:47-52.
    [195]Smith M A, Harris P L R, Sayre L M, et al. Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc. Natl. Acad. Sci. U. S. A.,1997,94:9866-9868.
    [196]Forno L S. Neuropathology of Parkinson's disease. J. Neuropathol. Exp. Neurol.,1996,55:259-272.
    [197]Binolfi A, Lamberto G R, Duran R, et al. Site-specific interactions of Cu(II) with alpha and b-synuclein:Bridging the molecular gap between metal binding and aggregation. J. Am. Chem. Soc,2008,130:11801-11812.
    [198]Binolfi A, Rasia R M, Bertoncini C W, et al. Interaction of a-synuclein with divalent metal ions reveals key differences:A link between structure, binding specificity and fibrillation enhancement. J. Am. Chem. Soc.,2006,128: 9893-9901.
    [199]Fasman G D. Handbook of Biochemistry and Molecular Biology:Physical and Chemical Data,3rd Ed. Boca Raton:CRC,1976.
    [200]Varadarajan S, Kanski J, Aksenova M, et al. Different mechanisms of oxidative stress and neurotoxicity for Alzheimer's Ab(1-42) and Ab(25-35). J. Am. Chem. Soc.,2001,123:5625-5631.
    [201]Sanaullah, Wilson S, Glass R S. The effect of pH and complexation of amino acid functionality on the redox chemistry of methionine and X-ray structure of [Co(en)2(L-Met)](ClO4)2.H2O. J. Inorg. Biochem.,1994,55:87-99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700