微/纳米功能材料的电化学制备与生物/有机小分子的振荡电催化氧化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料由于其特殊的结构以及由此产生的一系列纳米效应,决定了其具有不同于普通材料的新异性质,广泛应用于能源、化工、电子等领域。目前,人们已能利用各种方法来制备纳米材料。其中,电化学方法制备纳米材料具有反应条件温和、可控性好、适用范围广等优点,是一种有前途的纳米材料制备方法。同时,生物/有机小分子的电氧化研究不仅在电化学吸脱附、电化学反应等表面过程具有基础理论研究价值,而且能促进与之相关的生物分析、能源转化利用等方面的实际应用。纳米材料上生物/有机小分子的振荡电催化氧化研究,对于认识和理解纳米材料上的电极过程,丰富非线性动力学,均具有重要的科学意义。
     本学位论文发展了一些新颖、便捷的电化学方法,用来制备诸如纳米粒子、微/纳米多孔金属和纳米多孔氢氧化物薄膜等功能材料,发现和系统研究了纳米多孔薄膜电极材料上多种生物/有机小分的振荡电催化氧化反应与机理。主要内容如下:
     1.系统综述了微/纳米材料的制备和应用,生物/有机小分子的电催化氧化及电化学振荡相关的文献。
     2.报道了一种在NaOH空白液中,通过方波电势脉冲技术对光亮Au基底实施表面重建来便捷制备多功能三维梯度多孔Au膜的新方法。制备过程涉及Au的氧化-还原和强析氢反应。Au表面经氧化-还原产生Au纳米粒子,在氢气泡动态模板的导向作用下组装成多孔结构。该方法绿色、方便、经济,既不需要在溶液中引入Au(Ⅲ)物种和添加剂,也无需去模板处理,即可在Au表面构建三维多孔结构。用扫描电镜(SEM)表征了孔的形成与演化。该三维多孔Au膜具有多功能:①对乙醇、葡萄糖和抗坏血酸等燃料/生物分子的电氧化表现出高的电催化活性;②三维多孔Au膜具有强且稳定的表面增强拉曼散射(SERS)效应,且拉曼活性易更新;③当多孔膜表面修饰单层硫醇后,由超亲水转变为超疏水。
     3.用氢气泡模板法直接电沉积,成功制备了贵金属Au、Pd和AuPd合金多孔膜。NaOH介质中氢气泡高的稳定性,以及强阴极条件下Au(Ⅲ)物种高的还原速率,使得Au以跨泡方式电沉积,形成三维微/纳米多孔结构。而在HCl介质中,Au、Pd或AuPd以气泡间隙填充方式电沉积,形成二维微/纳米多孔结构。用SEM表征了上述多孔结构。X-射线衍射(XRD)和能量散射谱(EDS)揭示了多孔膜的组成。电化学测试表明贵金属多孔膜具有高比表面积,对低碳醇的电氧化表现出高的电催化活性。而且,多孔膜表面修饰硫醇后具有超疏水性。
     4.发展了一种利用方波电势脉冲或交流电技术在NaOH空白溶液中电化学分散纯Pt丝新方法,制备出Pt的水溶胶。在电势扰动过程中,Pt表面经氧化-还原产生的Pt原子重排形成团簇和纳米粒子,在析氢作用下,分散于底液中。运用上述策略,溶液中无需任何前驱体离子和还原剂,且在温和的条件下,实现了干净Pt粒子的绿色、简易合成。而且,采用两电极系统对两根Pt丝实施成对电解,可同时产生Pt溶胶。用SEM、TEM和XRD对Pt纳米粒子进行了表征。所制备的Pt纳米粒子对乙醇的电催化氧化具有高活性,并有一定的SERS效应。
     5.通过阴极电沉积法制备了纳米多孔Ni(OH)_2薄膜(NHNF)。系统研究了该多孔薄膜上多种氨基酸(α-丙氨酸、丙氨酸、赖氨酸、甘氨酸、丝氨酸、精氨酸)和甘肽的振荡电催化氧化反应。用时间分辨和电势调制拉曼光谱在分子水平上原位监测了上述电催化过程。实验结果表明:①NHNF作为有效的电子传递体,对上述生物分子的电氧化有较高的电催化活性:②α-氨基酸的电氧化经历脱羧和氨基转化为腈的过程;③该电氧化受扩散传质控制。首次观察到上述生物分子在NHNF上电氧化时的电势和电流振荡。周期性析氧对振荡的产生起关键作用,即极限扩散控制下反应物分子在电极表面的氧化耗尽引发析氧,由此又产生搅拌对流作用使其表面浓度得以恢复,析氧停止,如此循环,产生振荡。
     6.在所制备的三维多孔Au薄膜(PGF)上,通过阴极沉积方法分别修饰Ni或Pt,制备出Ni/PGF或Pt/PGF修饰电极。分别研究了碱性下Ni/PGF对三种生物分子(抗坏血酸、葡萄糖和甘氨酸)和酸性下Pt/PGF对甲酸的的振荡电催化氧化过程。结果表明,Ni/PGF对生物分子的电氧化有较高的电催化活性,电氧化受扩散传质控制,且首次发现这些体系中均能产生电势振荡。其中,葡萄糖和抗坏血酸的电势振荡分为小振幅和大振幅两种:前一振荡出现在析氧前,主要与强吸附中间体的形成与去除有关,为电化学反应与表面过程耦合型;后一振荡伴随周期性析氧,主要源于表面浓度的极限扩散消耗与析氧引起表面浓度的对流恢复,归于电化学反应与扩散对流传质耦合型。甘氨酸的电氧化仅出现第二类振荡。Pt/PGF电极对甲酸的电催化活性随铂修饰量增加而降低,涉及表面过程为主的电势振荡则变得容易发生。这主要由于低Pt量时甲酸氧化以直接过程为主,毒化中间体CO_(ad)的形成受到抑制,体系无明显负反馈;高Pt量时甲酸氧化以间接过程为主,解离吸附的CO_(ad)的毒化作用使负反馈增强,且与强的正反馈(CO_(ad)的去除)匹配,在特定电流范围内产生电势振荡。
     7.运用循环伏安交叉环判据,观测到生物分子在Pt、Ag电极上的电氧化振荡。其中,半胱氨酸在Pt上进行阳极氧化时,在较低的电势范围内出现振荡。考察并分析了溶液中各组分(半胱氨酸、H~+、Cl~-)浓度对振荡的影响。半胱氨酸可经半胱氨酸自由基氧化成胱氨酸或经半胱氨酸自由基氧化成RSO_3~-而振荡的产生可能源于一对正负反馈,即自由基在铂表面的形成与去除。一定浓度的Cl~-有助于平衡正负反馈而产生振荡。多种生物分子(甲硫氨酸、精氨酸、赖氨酸、抗坏血酸和葡萄糖)在Ag电极上电氧化也出现电化学振荡,且均与析氧过程有关,推测振荡主要源于生物分子的极限扩散氧化和析氧引起对流恢复。电势振荡和析氧过程可改变银电极表面形貌,继而对振荡也有一定影响。
Nanomaterials have attracted considerable attention in diverse fields such as energy, chemical engineering and electronics, due to their unique physicochemical properties that are different from those of common materials. Various methods have been developed to prepare nanomaterials. Thereinto, electrochemical preparation of nanomaterials is a promising technique and has several advantages such as mild condition, easy control and wide application. Meantime, the study of electrooxidation of small bio-organic molecules is significant both for fundamental research on electrochemical ad/desorption and reactions and for potential application in bioanalysis, energy conversion and utilization. The study of oscillatory electrocatalytic oxidation of small bio-organic molecules on nanomaterials has important scientific meaning for recognizing and understanding nanomaterials from the viewpoint of nonlinear science, deepening the whole understanding of the electrochemical processes, enriching the research content of nonlinear kinetics.
     In this thesis, several novel and convenient electrochemical methods have been developed to prepare some functional nanomaterials such as nanoparticles, micro-nano porous metals and nanoporous hydroxide film. Moreover, electrochemical oscillations during the electrooxidation of small bio-organic molecules on nanostructured materials have been investigated. The main points of this thesis are summarized as follows:
     1. Researches on the preparation and application of micro-nano structured materials, the electrooxidation of small bio-organic molecules, and the electrochemical oscillations have been reviewed systematically.
     2. We report here a novel one-step electrochemical method to fabricate three dimensional (3D) micro-nano hierarchical porous gold films (PGFs) by the surface rebuilding of smooth gold substrates in a blank solution of NaOH with square wave potential pulse (SWPP). The potential is controlled such that it involves repeated gold oxidation-reduction and intensive hydrogen evolution, where the hydrogen gas bubbles function as a dynamic template to shape the assembly of the gold nanoparticles from the oxidation-reduction. Particularly, this method is green, convenient, and economical, which enables us to fabricate the 3D porous structure from the metal itself requiring neither Au(Ⅲ) species and additives in solution nor post-treatment of template removal. The pore formation and evolution have been characterized by scanning electron microscopy (SEM). The as-prepared 3D PGF has multifunction. For example, (i) high electrocatalytic activity toward the oxidation of some fuel/biomolecules like ethanol, glucose, and ascorbic acid; (ii) strong surface-enhanced Raman scattering (SERS) effect with the merits of being stable and easily-renewed; and (iii) interesting transition from superhydrophilicity to superhydrophobicity by decorating with a self-assembled thiol monolayer.
     3. Macro-nano porous films (PFs) of noble metals of Au, Pd, and AuPd alloy have been successfully fabricated by electrodeposition with hydrogen bubble template. SEM results show that the Au PF prepared in NaOH medium is three-dimension (3D) and the Au, Pd or AuPd alloy PF in HCl medium is two-dimension (2D). X-ray diffraction (XRD) and X-ray energy dispersive spectrum (EDS) results reveal the components of these PFs. The stabilization of hydrogen gas bubbles in NaOH solution and the fast electroreduction of Au(Ⅲ) species at strong cathodic polarization play key roles in forming the 3D macro-nano porous structures through the bubble-covered electrodeposition. While the uniform 2D macro-nano porous structure of Au, Pd or AuPd alloy is associated with the accumulative filling of metals between bubbles in HCl medium. Electrochemical behaviors show that the as-prepared PFs possess high surface area and exhibit high electrocatalytic activities toward electrooxidation of low-carbon alcohols in alkaline solution. Also the superhydrophobicity is observed on these PFs assembled with a thiol monolayer.
     4. Pt hydrosols have been synthesized by dispersing a pure Pt wire in a NaOH solution with square wave potential (SWP) or alternating voltage (AV). The rearrangements of superfacial Pt atoms by repeated and fast electro-redox under the potential perturbations (PPs), coupling with the impetus of concurrent hydrogen gas, account for this novel dispersion of bulk Pt. Using this strategy we are able to realize the green and facile synthesis of clean Pt nanoparticles (NPs) requiring no any precursor ions and reducers in aqueous solution under mild conditions. Moreover, the dispersion of bulk Pt has also been carried out by paired electrolysis with two Pt wires. The as-prepared Pt NPs were characterized by SEM, transmission electron microscopy (TEM) and XRD. The Pt NPs exhibit high electrocatalytic activity toward the ethanol electrooxidation and detectable SERS signals for adsorbed pyridine.
     5. Systematic investigations have been carried out with respect to the electrocatalytical oxidation of several amino biomolecules in alkaline solutions on a nanoporous thin film electrode of electrodeposited nickel hydroxide nanoflakes (NHNFs). The amino biomolecules studied here include five amino acids (β-alanine, alanine, lysine, glycine, serine and arginine) and one dipeptide (glycylglycine). Potential-dependent and temporal-resolved in situ Raman spectra, together with electrochemical measurements, have been employed to reveal the electrocatalytical processes at the molecular level for the first time. Experimental results show that (i) the NHNFs act as an effective electron mediator with high electrocatalytical activity toward these biomolecules, (ii) amino group is transferred into nitrile group and decarboxylation occurs simultaneously for theα-amino acids, and (iii) the electrooxidation reaction rate of amino biomolecules is diffusion-controlled. Moreover, oscillations both in potential and in current have been observed for the first time during the electrocatalytic oxidation of these biomolecules on the film electrode of NHNFs. Periodic oxygen evolution plays a key role in the oscillations. It is triggered off and shut up, respectively, while the surface concentration of amino biomolecules depletes to zero by diffusion-limited oxidation and is replenished by the convection-enhanced flow from the gas release.
     6. Ni or Pt modified PGF (Ni/PGF or Pt/PGF) electrode, as prepared by cathodic electrodeposition method, has been used to investigate the oscillatory electrocatalytic oxidation of biomolecules including ascorbic acid (AA), glucose (Glu) and glycine (Gly) in alkaline medium, and of formic acid (FA) in acidic medium, respectively. Experimental results show that the Ni/PGF exhibits high electrocatalytic activity toward biomolecules and the reactions is diffusion-controlled. Two different types of potential oscillations have been observed during the electrooxidation of AA or Glu. One occurs before oxygen evolution due to the formation and removal of strongly adsorptive intermediate, and belongs to the type of coupling of charge transfer with surface steps. The other arises accompanying periodic oxygen evolution from the coupling of charge transfer with diffusion and convection mass transfer. Only the second type of potential oscillations can be observed during glycine electrooxidation. The Pt/PGF electrode that decorated with a tiny amount of Pt shows excellent performance toward the electrooxidation of formic acid. However, the electrocatalytic activity decreases with the amount of Pt increasing, while the potential oscillations involving surface processes occur easily all the better. Unlike on the surface with low amount Pt where a direct path (CO_(ad)-free path) is essential, the indirect path predominates on the surface with high amount Pt during formic acid decomposition. For the latter, the formation and removal of CO_(ad) constitutes one pair of strong negative and positive feedbacks, which produces oscillations within certain current ranges.
     7. New electrochemical oscillations have been found by means of the CV-based criterion during the electrooxidation of biomolecules on Pt and Ag electrodes. The electrochemical oscillations in the electrooxidation of cysteine on Pt electrode in acidic chloride-containing solution are studied by cyclic voltammetry, chronopotentiometry, chronopotentiometry with current ramp and impedance spectra. It is spectulated that cysteine is first oxidized to cysteine radical (RS·), and then parallelly dimerized to cystine or oxidized to RSO_3~-. A big crossing cycle, which means a pair of overlapping positive and negative feedbacks within a bistable range, is found within a low potential range when cysteine is oxidized in a solution containing enough H~+ and Cl~- Oscillations may result from the overlapping positive and negative feedback, namely formation and removal of RS·on the surface of Pt electrode, while the presence of Cl~- is in favor of the balance of positive and negative feedback. Potential oscillations have also been observed on Ag electrode during the electrooxidation of several biomolecules including methionine, arginine, lysine, ascorbic acid and glucose. Both these oscillations are related to oxygen evolution. The oscillations may originate from the depletion and replenishment of biomolecules surface concentration by diffusion-limited oxidation and by convection-enhanced mass transfer from oxygen evolution, respectively. The repeated redox and oxygen evolution reactions on Ag surface during oscillations can result in complicated changes of surface morphology, and hence can influence the oscillations to certain extent.
引文
[1] 张立德编.纳米材料.北京:化学工业出版社,2000:6-9.
    [2] Z. L. Wang, Y. Liu, Z. Zhang (Ed.). Handbook of Nanophase and Nanostructured Materials. Beijing: Tsinghua University Press and Kluwer Academic/Plenum Publishers, 2002.
    [3] 方华编.纳米材料及其制备.北京:化学工业出版社,2005:17-19.
    [4] 曹茂盛,关长斌,徐甲强编.纳米材料导论.哈尔滨:哈尔滨工业大学出版社,2001:24-46.
    [5] 李晓俊,刘丰,刘小兰编.纳米材料的制备及应用研究.济南:山东大学出版社,2006:10-28.
    [6] 尹秉胜,马厚义,陈慎豪.电化学技术制备纳米材料研究的新进展.化学进展,2004,16:196-203.
    [7] 刘庆,陆文雄,印仁和.电化学法制备纳米材料的研究现状.材料保护,2004,37:33-36.
    [8] W. Wei, J. M. Macak, P. Schmuki. High aspect ratio ordered nanoporous films by anodization of Ta. Electrochem. Commun., 2008, 10: 428-432.
    [9] G. D. Sulka. Highly Ordered Anodic Porous Alumina Formation by Self-Organized Anodizing. In: Ali Eftekhari (Ed.). Nanostructured Materials in Electrochemistry. Weinheim: Wiley-VCH, 2008, Ch. 1, p. 6-7.
    [10] S. Sreekantan, L. R. Gee, Z. Lockman. Room temperature anodic deposition and shape control of one-dimensional nanostructured zinc oxide. J. Alloys Compd., 2008, 476: 513-518.
    [11] M. Lai, D. J. Riley. Templated electrosynthesis of nanomaterials and porous structures. J. Colloid Interface Sci., 2008, 323: 203-212.
    [12] L. H. Lu, A. Eychmiiller. Ordered macroporous bimetallic nanostructures: Design, characterization, and applications. Acc. Chem. Res., 2008, 41: 244-253.
    [13] A. Stein, F. Li, N. R. Denny. Morphological control in colloidal crystal templating of inverse opals, hierarchical structures, and shaped particles. Chem. Mater., 2008, 20: 649-666.
    [14] F. Keller, M. S. Hunter, D. L. Robinson. Structural features of oxide coatings on aluminum. J. Electrochem. Soc, 1953, 100: 411-419.
    [15] B. E. Fischer, R. Spohr. Production and use of nuclear tracks: imprinting structure on solids.Rev.Mod.Phys.,1983,55:907-948.
    [16]O.D.Velev,A.M.Lenhoff.Colloidal crystals as templates for porous materials.Curr.Opin.Colloid Interface Sci.,2000,5:56-63.
    [17]N.V.Dziomkina,G J.Vancso.Colloidal crystal assembly on topologically patterned templates.Soft Matter,2005,1:265-279.
    [18]L.Xu,L.D.Tung,L.Spinu,et al.Synthesis and magnetic behavior of periodic nickel sphere arrays.Adv.Mater.,2003,15:1562-1564.
    [19]G.E.Possin.A method for forming very small diameter wires.Rev.Sci.Instrum.,1970,41:772-774.
    [20]F.C.Meldrum,R.Seshadri.Porous gold structures through templating by echinoid skeletal plates.Chem.Commun.,2000,29-30.
    [21]R.G Laughlin.Phase equilibria and mesophases in surfactant systems.In:T.F.Tadros (Ed.).Surfactants.London:Academic Press,1984.
    [22]G S.Attard,P.N.Bartlett,N.R.B.Coleman,et al.Mesoporous platinum films from lyotropic liquid crystalline phases.Science,1997,278:838-840.
    [23]X.He,D.Antonelli.Recent advances in synthesis and applications of transition metal containing mesoporous molecular sieves.Angew.Chem.Int.Ed.,2002,41:214-229.
    [24]H.F.Zhang,I.Hussain,M.Brust,et al.Templated gold beads using gold nanoparticles as building blocks.Adv.Mater.,2004,16:27-30.
    [25]H.F.Zhang,A.I.Cooper.New approaches to the synthesis of macroporous metals.J.Mater.Chem.,2005,15:2157-2159.
    [26]H.C.Shin,J.Dong,M.Liu.Nanoporous structures prepared by an electrochemical deposition process.Adv.Mater.,2003,15:1610-1614.
    [27]H.C.Shin,M.L.Liu.Copper foam structures with highly porous nanostructured walls.Chem.Mater.,2004,16:5460-5464.
    [28]Y Li,W.Z.Jia,Y Y Song,et al.Superhydrophobicity of 3D porous copper films prepared using the hydrogen bubble dynamic template.Chem.Mater.,2007,19:5758-5764.
    [29]J.H.Kim,R.H.Kim,H.S.Kwon.Preparation of copper foam with 3-dimensionally interconnected spherical pore network by electrodeposition.Electrochem.Commun.,2008,10:1148-1151.
    [30]C.A.Marozzi,A.C.Chialvo.Development of electrode morphologies of interest in electrocatalysis.Part 1:Electrodeposited porous nickel electrodes. Electrochim.Acta,2000,45:2111-2120.
    [31]H.C.Shin,M.L.Liu.Three-dimensional porous copper-tin alloy electrodes for rechargeable lithium batteries.Adv.Funct.Mater.,2005,15:582-586.
    [32]Y.Li,Y.Y.Song,C.Yang,et al.Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose.Electrochem.Commun.,2007,9:981-988.
    [33]E.Hosono,S.Fujihara,H.Imai,et al.Fabrication of highly porous and micropatterned SnO_2 films by oxygen bubbles generated on the anode electrode.Chem.Commun.,2005,2609-2611.
    [34]F.L.Jia,C.F.Yu,K.J.Deng,et al.Nanoporous metal (Cu,Ag,Au) films with high surface area:general fabrication and preliminary electrochemical performance.J.Phys.Chem.C,2007,111:8424-8431.
    [35]L.Sun,C.L.Chien,P.C.Searson.Fabrication of nanoporous nickel by electrochemical dealloying.Chem.Mater.,2004,16:3125-3129.
    [36]D.V.Pugh,A.Dursun,S.G Corcoran.Electrochemical and morphological characterization of Pt-Cu dealloying.J.Electrochem.Soc,2005,152:B455-B459.
    [37]H.J.Jin,D.Kramer,Y.Ivanisenko,et al.Macroscopically strong nanoporous Pt prepared by dealloying.Adv.Eng.Mater.,2007,9:849-854.
    [38]F.L.Jia,C.F.Yu,Z.H.Ai,et al.Fabrication of nanoporous gold film electrodes with ultrahigh surface area and electrochemical activity.Chem.Mater.,2007,19:3648-3653.
    [39]J.S.Yu,Y.Ding,C.X.Xu,et al.Nanoporous metals by dealloying multicomponent metallic glasses.Chem.Mater.,2008,20:4548-4550.
    [40]J.Erlebacher,M.J.Aziz,A.Karma,et al.Evolution of nanoporosity in dealloying.Nature,2001,410:450-453.
    [41]H.W.Pickering.Characteristic features of alloy polarization curves.Corros.Sci.,1983,23:1107-1120.
    [42]M.T.Reetz,W.Helbig.Size-selective synthesis of nanostructured transition metal clusters.J.Am.Chem.Soc,1994,116:7401-7402.
    [43]M.T.Reetz,W.Helbig,S.A.Quaiser.Electrochemical preparation of nanostructured bimetallic Clusters.Chem.Mater.,1995,7:2227-2228.
    [44]M.T.Reetz,S.A.Quaiser.A new method for the preparation of nanostructured metal clusters.Angew.Chem.Int.Ed.Engl.,1995,34:2240-2241.
    [45]M.V.ten Kortenaar,Z.I.Kolar,F.D.Tichelaar.Formation of long-lived silver clusters in aqueous solution by anodic dispersion.J.Phys.Chem.B,1999,103:2054-2060.
    [46]D.P.Singh,N.R.Neti,A.S.K.Sinha,et al.Growth of different nanostructures of Cu_2O (nanothreads,nanowires,and nanocubes) by simple electrolysis based oxidation of copper.J.Phys.Chem.C,2007,111:1638-1645.
    [47]B.J.Murray,Q.Li,J.T.Newberg,et al.Shape-and size-selective electrochemical synthesis of dispersed silver(I) oxide colloids.Nano.Lett.,2005,5:2319-2324.
    [48]Q.L.Zhao,Z.L.Zhang,B.H.Huang,et al.Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite.Chem.Commun.,2008,5116-5118.
    [49]R.M.Penner.Mesoscopic metal particles and wires by electrodeposition.J.Phys.Chem.B,2002,106:3339-3353.
    [50]M.J.Siegfried,Kyoung-Shi Choi.Electrochemical crystallization of cuprous oxide with systematic shape evolution.Adv.Mater.,2004,16:1743-1746.
    [51]S.J.Guo,Y.X.Fang,S.J.Dong,et al.Templateless,surfactantless,electrochemical route to a cuprous oxide microcrystal:From octahedra to monodisperse colloid spheres.Inorg.Chem.,2007,46:9537-9539.
    [52]M.S.Wu,Y.A.Huang,C.H.Yang,et al.Electrodeposition of nanoporous nickel oxide film for electrochemical capacitors.Int.J.Hydrogen Energy,2007,32:4153-4159.
    [53]M.S.Wu,Y.A.Huang,J.J.Jow,et al.Anodically potentiostatic deposition of flaky nickel oxide nanostructures and their electrochemical performances.Int.J.Hydrogen Energy,2008,33:2921-2926.
    [54]M.S.Wu,Y.A.Huang,C.H.Yang.Capacitive behavior of porous nickel oxide/hydroxide electrodes with interconnected nanoflakes synthesized by anodic electrodeposition.J.Electrochem.Soc,2008,155:A798-A805.
    [55]N.Tian,Z.Y.Zhou,S.G.Sun,et al.Electrochemical preparation of platinum nanothorn assemblies with high surface enhanced Raman scattering activity.Chem.Commun.,2006,4090-4092.
    [56]N.Tian,Z.Y.Zhou,S.G Sun,et al.Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity.Science,2007,316:732-735.
    [57]N.Tian,Z.Y.Zhou,S.G Sun.Platinum metal catalysts of high-index surfaces:from single-crystal planes to electrochemically shape-controlled nanoparticles.J.Phys.Chem.C,2008,112:19801-19817.
    [58]Q.S.Chen,S.G Sun,J.W.Yan,et al.Electrochemical preparation and structural characterization of Co thin films and their anomalous IR properties.Langmuir,2006,22:10575-10583.
    [59]Y.X.Chen,S.P.Chen,Q.S.Chen,et al.Electrochemical preparation of iron cuboid nanoparticles and their catalytic properties for nitrite reduction.Electrochim.Acta,2008,53:6938-6943.
    [60]H.Meng,S.H.Sun,J.P.Masse,et al.Electrosynthesis of Pd single-crystal nanothorns and their application in the oxidation of formic acid.Chem.Mater.,2008,20:6998-7002.
    [61]Y.Li,G Q.Shi.Electrochemical growth of two-dimensional gold nanostructures on a thin polypyrrole film modified ITO electrode.J.Phys.Chem.B,2005,109:23787-23793.
    [62]G T.Duan,W.P.Cai,Y.Y.Luo,et al.Electrochemically induced flowerlike gold nanoarchitectures and their strong surface-enhanced Raman scattering effect.Appl.Phys.Lett.,2006,89:211905.
    [63]L.Wang,S.J.Guo,X.G.Hu,et al.Facile electrochemical approach to fabricate hierarchical flowerlike gold microstructures:Electrodeposited superhydrophobic surface.Electrochem.Commun.,2008,10:95-99.
    [64]K.Fukami,S.Nakanishi,H.Yamasaki,et al.General mechanism for the synchronization of electrochemical oscillations and self-organized dendrite electrodeposition of metals with ordered 2D and 3D microstructures.J.Phys.Chem.C,2007,111:1150-1160.
    [65]J.A.Switzer,C.J.Hung,L.Y.Huang,et al.Electrochemical self-assembly of copper/cuprous oxide layered nanostructures.J.Am.Chem.Soc,1998,120:3530-3531.
    [66]S.Nakanishi,K.Fukami,T.Tada,et al.Metal latticeworks formed by self-organization in oscillatory electrodeposition.J.Am.Chem.Soc,2004,126:9556-9557.
    [67]S.Nakanishi.Highly self-organized formation of layered nanostructures by oscillatory electrodeposition.In:Ali Eftekhari (Ed.).Nanostructured Materials in Electrochemistry.Weinheim:Wiley-VCH,2008,Ch.6,p.267-290.
    [68]A.J.Arvia,J.C.Canullo,E.Custidiano,et al.Electrochemical faceting of metal electrodes.Electrochim.Acta,1986,31:1359-1368.
    [69]C.L.Perdriela.J.Arvia.Electrochemical faceting of polycrystalline gold in 1 M H_2SO_4.J.Electrochem.Chem.,1986,215:317-329.
    [70]A.Visintin,W.E.Triaca,A.J.Arvia.Changes in the surface morphology of platinum electrodes produced by the application of periodic potential treatments in alkaline solution.J.Electroanal.Chem.,1990,284:465-480.
    [71]X.Wei,A.Reiner,E.Müller,et al.Electrochemical surface reshaping of polycrystalline platinum:Morphology and crystallography.Electrochim.Acta,2008,53:4051-4058.
    [72]Z.Q.Tian,B.Ren,D.Y.Wu.Surface-enhanced Raman scattering:From noble to transition metals and from rough surfaces to ordered nanostructures.J.Phys.Chem.B,2002,106:9463-9483.
    [73]J.L.Delplancke,J.Dille,J.Reisse,et al.Magnetic nanopowders:Ultrasound-assisted electrochemical preparation and properties.Chem.Mater.,2000,12:946-955.
    [74]Y.P.Deng,W.Huang,X.Chen,et al.Facile fabrication of nanoporous gold film electrodes.Electrochem.Commun.,2008,10:810-813.
    [75]N.A.Hampson,M.J.Willars.The methanol-air fuel cell:A selective review of methanol oxidation mechanisms at platinum electrodes in acid electrolytes.J.Power Sources,1979,4:191-201.
    [76]S.Wasmus,A.Küver.Methanol oxidation and direct methanol fuel cells:A selective review.J.Electroanal.Chem.,1999,461:14-31.
    [77]M.C.Daniel,D.Astruc.Gold nanoparticles:Assembly,supramolecular chemistry,quantum-size-related properties,and applications toward biology,catalysis,and nanotechnology.Chem.Rev.,2004,104:293-346.
    [78]H.S.Liu,C.J.Song,L.Zhang,et al.A review of anode catalysis in the direct methanol fuel cell.J.Power Sources,2006,155:95-110.
    [79]V.R.Stamenkovic,B.S.Mun,M.Arenz,et al.Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces.Nat.Mater.,2007,6:241-247.
    [80]C.Coutanceau,S.Brimaud,C.Lamy,et al.Review of different methods for developing nanoelectrocatalysts for the oxidation of organic compounds.Electrochim.Acta,2008,53:6865-6880.
    [81] X. W. Yu, P. G. Pickup. Recent advances in direct formic acid fuel cells (DFAFC). J. Power Sources, 2008, 182: 124-132.
    [82] O. A. Petrii. Pt-Ru electrocatalysts for fuel cells: A representative review. J. Solid State Electrochem., 2008, 12: 609-642.
    [83] D. Hern(?)ndez-Santos, M. B. Gonz(?)lez-Garc(?)a, A. C. Garc(?)a. Metal-nanoparticles based electroanalysis. Electroanalysis, 2002, 14: 1225-1235.
    [84] E. Katz, I. Willner, J. Wang. Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis, 2004, 16: 19-44.
    [85] A. Walcarius, A. Kuhn. Ordered porous thin films in electrochemical analysis. Trends Anal. Chem., 2008, 27: 593-603.
    [86] 黄美荣,马小立,李新贵.聚苯二胺与贵金属纳米复合物的研究进展.河南化工.2008,25:1-5.
    [87] A. Gamez, D. Richard, P. Gallezot. Oxygen reduction on well-defined platinum nanoparticles inside recast ionomer. Electrochim. Acta, 1996, 41: 307-314.
    [88] Y. Takasu, N. Ohashi, X. G. Zhang, et al. Size effect of platinum particles on the electroreduction of oxygen. Electrochim. Acta, 1996,41: 2595-2600.
    [89] Y. Zhang, S. Asahina, S. Yoshihara, et al. Oxygen reduction on Au nanoparticle deposited boron-doped diamond films. Electrochim. Acta, 2003, 48: 741-747.
    [90] M. S. El-Deab, T. Ohsaka. An extraordinary electrocatalytic reduction of oxygen on gold nanoparticles-electrodeposited gold electrodes. Electrochem. Commun., 2002, 4: 288-292.
    [91] K. Yahikozawa, Y. Fujii, Y. Matsuda, et al. Electrocatalytic properties of ultrafine platinum particles for oxidation of methanol and formic acid in aqueous solutions. Electrochim. Acta, 1991, 36: 973-978.
    [92] N. Tateishi, K. Nishimura, K. Yahikozawa, et al. Electrocatalytic properties of ultrafine gold particles towards oxidation of acetaldehyde and ethanol. J. Electroanal. Chem., 1993, 352: 243-252.
    [93] J. T. Zhang, P. P. Liu, H. Y. Ma, et al. Nanostructured porous gold for methanol electro-oxidation. J. Phys. Chem. C, 2007, 111: 10382-10388.
    [94] Bikash Kumar Jena, C. Retna Raj. Synthesis of flower-like gold nanoparticles and their electrocatalytic activity towards the oxidation of methanol and the reduction of oxygen. Langmuir, 2007, 23: 4064-4070.
    [95] H. Dong, X. D. Cao. Nanoporous gold thin film: Fabrication, structure evolution, and electrocatalytic activity. J. Phys. Chem. C, 2009,113: 603-609.
    [96] 孔景临,薛宽宏,邵颖等.镍纳米线电极对乙醇的电催化氧化动力学参数的测定.物理化学学报,2002,18:268-271.
    [97] Y. D. Zhao, W. D. Zhang, H. Chen, et al. Electrocatalytic oxidation of cysteine at carbon nanotube powder microelectrode and its detection. Sensors and Actuators B, 2003, 92: 279-285.
    [98] S. Park, Y. Xie, M. J. Weaver. Electrocatalytic pathways on carbon-supported platinum nanoparticles: Comparison of particle-size-dependent rates of methanol, formic acid, and formaldehyde electrooxidation. Langmuir, 2002, 18: 5792-5798.
    [99] P. O. Eseban, J. M. Leger, C. Lamy. Electrocatalytic oxidation of methanol on platinum dispersed in polyaniline conducting polymers. J. Appl. Electrochem., 1989, 19: 462-465.
    [100] M. Tominaga, T. Shimazoe, M. Nagashima, et al. Electrocatalytic oxidation of glucose at gold-silver alloy, silver and gold nanoparticles in an alkaline solution. J. Electroanal. Chem., 2006, 590: 37-46.
    [101] 唐亚文,包建春,周益明等.碳纳米管负载铂催化剂的制备及其对甲醇的电催化氧化研究.无机化学学报.2003,19:905-908.
    [102] 朱玉奴,彭图治,李建平.碳纳米管沉积铂修饰电极的制备和分析应用.浙江大学学报.2004,31:300-305.
    [103] Z. J. Zhuang, X. D. Su, H. Y. Yuan, et al. An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Analyst, 2008, 133: 126-132.
    [104] 董相廷,曲晓刚,洪广言等.CeO_2纳米晶的制备及其在电化学中的应用.科学通报,1996,41:847-850.
    [105] L. Kavan, M. Gratzel, J. Rathousky, et al. Nanocrystalline TiO_2 (anatase) electrodes: Surface morphology, adsorption, and electrochemical properties. J. Electrochem. Soc., 1996, 143: 394-400.
    [106] M. Fleischmann, P. J. Hendra, A. J. Mcquillan. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett., 1974, 26: 163-166.
    [107] D. L. Jeanmaire, R. P. Van Duyne. Surface Raman spectroelectrochemistry part Ⅰ. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem., 1977, 84:1-20.
    [108] 周光明,黎司虞,丹尼.SERS中的活性基底.化工时刊.2006,20:65-70.
    [109] 高书燕,张树霞,杨恕霞等.表面增强拉曼散射活性基底.化学通报,2007,(12):908-914.
    [110] 张孝芳,齐小花,邹明强等.表面增强拉曼光谱活性基底与纳米结构.检验检疫科学,2007,17:78-81.
    [111] D. Y. Wu, J. F. Li, B. Ren, et al. Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chem. Soc. Rev., 2008, 37: 1025-1041.
    [112] L. W. H. Leung, M. J. Weaver. Extending surface-enhanced Raman spectroscopy to transition-metal surfaces: Carbon monoxide adsorption and electrooxidation on platinum- and palladium-coated gold electrodes. J. Am. Chem. Soc., 1987, 109: 5113-5119.
    [113] L. W. H. Leung, M. J. Weaver. Adsorption and electrooxidation of carbon monoxide on rhodium- and ruthenium-coated gold electrodes as probed by surface-enhanced Raman spectroscopy. Langmuir, 1988, 4: 1076-1083.
    [114] S. Zou, M. J. Weaver, X. Q. Li, et al. New strategies for surface-enhanced Raman scattering at transition-metal interfaces: Thickness-dependent characteristics of electrodeposited Pt-group films on gold and carbon. J. Phys. Chem.B, 1999, 103:4218-4222.
    [115] R. Emory, W. E. Haskins, S. Nie. Direct observation of size-dependent optical enhancement in single metal nanoparticles. J. Am. Chem. Soc., 1998, 120: 8009-8010.
    [116] 崔颜,顾仁敖.Ag核Au壳金属复合纳米粒子的制备及表面增强拉曼光谱研究.高等学校化学学报,2005,26:2090-2092.
    [117] 李剑锋,方萍萍,盛建军等.一种新型的通用的SERS基底核壳结构.第十四届全国光散射学术会议-北京,2007,55.
    [118] 金毅亮,姚建林,顾仁敖.金银合金纳米粒子的合成及其SERS研究.第十四届全国光散射学术会议-北京,2007,132.
    [119] F. Le, D. W. Brandl, Y. A. Urzhumov, et al. Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. ACS Nano, 2008, 2: 707-718.
    [120] J. L. Yao, J. Tang, D. Y. Wu, et al. Surface enhanced Raman scattering from transition metal nanowire array and the theoretical consideration. Surf. Sci., 2002,514: 108-116.
    [121] L. H. Qian, X. Q. Yan, T. Fujita, et al. Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements. Appl. Phys. Lett., 2007,90:153120.
    [122] L. Feng, S. H. Li, Y. Li, et al. Super-hydrophobic surfaces: From nature to artificial. Adv. Mater., 2002, 14: 1857-1860.
    [123] T. Nishino, M. Meguro, K. Nakamae, et al. The lowest surface free energy based on -CF_3 alignment. Langmuir. 1999, 15: 4321-4323.
    [124] R. N. Wenzel. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem., 1936,28:988-994.
    [125] A. B. D. Cassie, S. Baxter. Wettability of porous surfaces. Trans. Faraday Soc., 1944,40:546-551.
    [126] M. L. Ma, R. M. Hill. Superhydrophobic surfaces. Curr. Opin. Colloid Interface Sci.,2006, 11: 193-202.
    [127] X. J. Feng, L. Feng, M. H. Jin, et al. Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. J. Am. Chem. Soc., 2004, 126: 62-63.
    [128] 江雷.从自然到仿生的超疏水纳米界面材料.科技导报.2005,23:4-8.
    [129] 陈新华,孟庆祥.超疏水固体表面的形态特征.许昌学院学报.2005,24:49-57.
    [130] 徐建海,李梅,赵燕,路庆华.具有微纳米结构超疏水表面润湿性的研究.化学进展.2006,18:1425-1433.
    [131] 郭志光,刘维民.仿生超疏水性表面的研究进展.化学进展.2006,18:721-726.
    [132] N. L. Weinberg, H. R. Weinberg. Electrochemical oxidation of organic compounds. Chem. Rev., 1968, 68: 449-523.
    [133] J. Prad(?), J. Koryta. Electrode processes of the sulfhydryl-disulfide system Ⅰ. Cystine at a platinum electrode. J. Electroanal. Chem., 1968, 17: 167-175.
    [134] J. Koryta, J. Pradac. Electrode processes of the sulfhydryl-disulfide system Ⅱ. Cystine at a gold electrode. J. Electroanal. Chem., 1968, 17: 177-183.
    [135] J. Koryta, J. Pradac. Electrode processes of the sulfhydryl-disulfide system Ⅲ. Cysteine at platinum and gold electrodes. J. Electroanal. Chem., 1968, 17: 185-189.
    [136] Z. Samec, Z. Malysheva, J. Koryta, et al. A contribution to the voltammetric study of cystine and cysteine at Pt electrodes in 0.5 M H_2SO_4. J. Electroanal. Chem., 1975, 65:573-586.
    [137]P.J.Vandeberg,D.C.Johnson.Pulsed electrochemical detection of cysteine,cystine,methionine,and glutathione at gold electrodes following their separation by liquid chromatography.Anal.Chem.,1993,65:2713-2718.
    [138]T.R.Ralph,M.L.Hitchman,J.P.Millington,et al.The electrochemistry of L-cystine and L-cysteine Part 1:Thermodynamic and kinetic studies.J.Electroanal.Chem.,1994,375:1-15.
    [139]W.Ronald Fawcett,M.Fedurco,Z.Kovacova,et al.Electrochemistry of cysteine on low-index single-crystal gold electrodes.Langmuir,1994,10:912-919.
    [140]G Horanyi,S.B.Orlov.Radiotracer study of the adsorption of amino compounds at a smooth gold electrode.J.Electroanal.Chem.,1991,309:239-249.
    [141]F.Huerta,E.Morallon,F.Cases,et al.Electrochemical behaviour of amino acids on Pt(h,k,l):A voltammetric and in situ FTIR study.Part 1.Glycine on Pt(111).J.Electroanal.Chem.,1997,421:179-185.
    [142]F.Huerta,E.Morallon,F.Cases,et al.Electrochemical behaviour of amino acids on Pt(h,k,l).A voltammetric and in situ FTIR study.Part Ⅱ.Serine and alanine on Pt(lll).J.Electroanal.Chem.,1997,431:269-275.
    [143]F.Huerta,E.Morallon,J.L.Vazquez,et al.Electrochemical behaviour of amino acids on Pt(hkl).A voltammetric and in situ FTIR study.Part Ⅲ.Glycine on Pt(100) and Pt(110).J.Electroanal.Chem.,1998,445:155-164.
    [144]F.Huerta,E.Morallon,J.L.Vazquez,et al.Electrochemical behaviour of amino acids on Pt(hkl).A voltammetric and in situ FTIR study Part Ⅳ.Serine and alanine on Pt(100) and Pt(110).J.Electroanal.Chem.,1999,475:38-45.
    [145]F.Huerta,E.Morallon,C.Quijada,et al.Potential modulated reflectance study of the electrooxidation of simple amino acids on Pt(111) in acidic media.J.Electroanal.Chem.,2000,489:92-95.
    [146]C.H.Zhen,S.G Sun,C.J.Fan,et al.In situ FTIRS and EQCM studies of glycine adsorption and oxidation on Au(111) electrode in alkaline solutions.Electrochim.Acta,2004,49:1249-1255.
    [147]K.Ogura,M.Kobayashi,M.Nakayama,et al.Electrochemical and in situ FTIR studies on the adsorption and oxidation of glycine and lysine in alkaline medium.J.Electroanal.Chem.,1998,449:101-109.
    [148]K.Ogura,M.Kobayashi,M.Nakayama,et al.In-situ FTIR studies on the electrochemical oxidation of histidine and tyrosine.J.Electroanal.Chem.,1999,463:218-223.
    [149]X.Y.Xiao,S.G.Sun,J.L.Yao,et al.Surface-enhanced Raman spectroscopic studies of dissociative adsorption of amino acids on platinum and gold electrodes in alkaline solutions.Langmuir,2002,18:6274-6279.
    [150]N.A.Hampson,J.B.Lee,K.I.MacDonald,et al.Oxidations involving silver.part Ⅷ.A study of the oxidation of a-amino-acids at silver electrodes.J.Chem.Soc.B,1970,1766-1769.
    [151]N.A.Hampson,J.B.Lee,K.I.MacDonald.The oxidation of amino compounds at anodic silver.Electrochim.Acta,1972,17:921-955.
    [152]J.M.DeMott,Jr.,E.G E.Jahngen.Determination of amino acids at a silver oxide/silver phosphate electrode and the analysis of structure-response relationships.Electroanalysis,2005,17:599-606.
    [153]L.A.Larew,D.C.Johnson.Concentration dependence of the mechanism of glucose oxidation at gold electrodes in alkaline media.J.Electroanal.Chem.,1989,262:167-182.
    [154]L.H.Essis Yei,B.Beden,C.Lamy.Electrocatalytic oxidation of glucose at platinum in alkaline medium:On the role of temperature.J.Electroanal.Chem.,1988,246:349-362.
    [155]G Wittstock,A.Strübing,R.Szargan,et al.Glucose oxidation at bismuth-modified platinum electrodes.J.Electroanal.Chem.,1998,444:61-73.
    [156]J.M.DeMott,T.R Tougas,Jr.,E.G E.Jahngen.Optimization of response of the silver oxide electrode for the detection of carbohydrates and related compounds.Electroanalysis,1998,10:836-841.
    [157]M.Rueda,A.Aldaz,F.Sanchez-Burgos.Oxidation of L-ascorbic acid on a gold electrode.Electrochim.Acta,1978,23:419-424.
    [158]X.K.Xing,I.T.Bae,M.J.Shao,et al.Electro-oxidation of L-ascorbic acid on platinum in acid solutions:An in-situ FTIRRAS study.J.Electroanal.Chem.,1993,346:309-321.
    [159]Z.J.Cao,Q.J.Xie,M.Li,et al.Simultaneous EQCM and fluorescence detection of adsorption/desorption and oxidation for pyridoxol in aqueous KOH on a gold electrode.J.Electroanal.Chem.,2004,568:343-351.
    [160]M.L.Wang,Y.Y.Zhang,Q.J.Xie,et al.In situ FT-IR spectroelectrochemical study of electrooxidation of pyridoxol on a gold electrode.Electrochim.Acta, 2005,51: 1059-1068.
    [161] R. Parsons, T. VanderNoot. The oxidation of small organic molecules: A survey of recent fuel cell related research. J. Electroanal. Chem., 1988, 257: 9-45.
    [162] E. Herrero, W. Chrzanowski, A. Wieckowski. Dual path mechanism in methanol electrooxidation on a platinum electrode. J. Phys. Chem., 1995, 99: 10423-10424.
    [163] H. Hitmi, E. M. Belgsir, J. M. Leger, et al. A kinetic analysis of the electrooxidation of ethanol at a Platinum electrode in acid medium. Electrochim. Acta, 1994, 39(3): 407-415.
    [164] E. Pastor, S. Wasmus, T. Iwasita. Spectroscopic investigations of C_3 primary alcohols on platinum electrodes in acid solutions. J. Electroanal. Chem., 1993, 350: 97-116.
    [165] 林进妹,林秀梅,胡杰华.碱性介质中正丁醇在Pt电极上氧化和吸附的EQCM研究.漳州师范学院学报(自然科学版),2003,16:60-63.
    [166] M. Fleischmann, K. Korinek, D. Pletcher. The kinetics and mechanism of the oxidation of amines and alcohols at oxide-covered nickel, silver, copper, and cobalt electrodes. J. Chem. Soc., Perkin Ⅱ, 1972, 1396-1403.
    [167] G. Prabhakara Rao, M. Usman, S. K. Rangarajan. Anodic behavior of silver in alkaline formaldehyde. Electrochim. Acta, 1977, 22: 137-140.
    [168] L. D. Burke, W. A. O'Leary. Electro-oxidation of formaldehyde at silver anodes role of submonolayer hydroxy complexes in noble metal electrocatalysis. J. Electrochem. Soc., 1988, 135: 1965-1970.
    [169] A. J. Ahen, L. C. Nagle, L. D. Burke. Electrocatalysis at polycrystalline silver in base: An example of the complexity of surface active state behaviour. J. Solid State Electrochem., 2002, 6: 451-462.
    [170] G. Orozco, M. C. Perez, A. Rincon, et al. Electrooxidation of methanol on silver in alkaline medium. J. Electroanal. Chem., 2000, 495: 71-78.
    [171] H. A. Gasteiger, N. Markovic, P. N. Ross, et al. Methanol electrooxidation on well-characterized Pt-Ru alloys. J. Phys. Chem., 1993, 97: 12020-12029.
    [172] M. V. George, K. S. Balachandran. Nickel-peroxide oxidation of organic compounds. Chem. Rev., 1975, 75: 491-519
    [173] M. Fleischmann, K. Korinek, D. Pletcher. The oxidation of organic compounds at a nickel anode in alkaline solution. J. Electroanal. Chem., 1971, 31: 39-49.
    [174] P. M. Robertson. On the oxidation of alcohols and amines at nickel oxide electrodes: Mechanistic aspects. J. Electroanal. Chem., 1980, 111: 97-104.
    [175] J. Kaulen, H. J. Schafer. Oxidation of alcohols by electrochemically regenerated nickel oxide hydroxide selective oxidation of hydroxysteroids. Tetrahedron, 1982, 38: 3299-3308.
    [176] P. M. Robertson, F. Schwager, I.b.l. Norbert. The electrochemical oxidation of ethylamine at a nickel anode. Electrochim. Acta, 1973, 18: 923-924.
    [177] A. S. Vaze, S. B. Sawant, V. G. Pangarkar. Electrochemical oxidation of isobutanol to isobutyric acid at nickel oxide electrode: Improvement of the anode stability. J. Appl. Electrochem, 1997, 27: 584-588.
    [178] J. Taraszewska, G. Roslonek. Electrocatalytic oxidation of methanol on a glassy carbon electrode modified by nickel hydroxide formed by ex situ chemical precipitation. J. Electroanal. Chem., 1994, 364: 209-213.
    [179] S. Berchmans, H. Gomathi, G. Prabhakara Rao. Electrooxidation of alcohols and sugars catalysed on a nickel oxide modified glassy carbon electrode. J. Electroanal. Chem., 1995, 394: 267-270.
    [180] A. A. El-Shafei. Electrocatalytic oxidation of methanol at a nickel hydroxide/glassy carbon modified electrode in alkaline medium. J. Electroanal. Chem., 1999,471:89-95.
    [181] M. Jafarian, M. G. Mahjani, H. Heli, et al. Electrocatalytic oxidation of methane at nickel hydroxide modified nickel electrode in alkaline solution. Electrochem. Commun., 2003, 5: 184-188.
    [182] Y. L. Chen, T. C. Chou. Kinetics and mechanism of anodic oxidation of n-butanol by nickel peroxide. Ind. Eng. Chem. Res., 1996, 35: 2172-2176.
    [183] A. Kowal, S. N. Port, R. J. Nichols. Nickel hydroxide electrocatalysts for alcohol oxidation reactions: An evaluation by infrared spectroscopy and electrochemical methods. Catal. Today, 1997, 38: 483-492.
    [184] 黄令,许书楷,周绍民.碱性介质中高择优取向(220)镍电极上丙醇的电氧化.高等学校化学学报,1997,18:932-937.
    [185] 黄令,许书楷,汤皎宁.Ni-Mo-PTFE复合电极的制备及其对甲醇电氧化的催化性能.应用化学,1997,14:21-24.
    [186] Y. Zeng, S. C. Yu, Z. L. Li. Kinetic model of ethanol oxidation on Ni-Mo alloy electrode. Acta Physico-Chimica Sinica, 2000, 16: 1013-1021.
    [187] G. Rostonek, J. Taraszewska. Electrocatalytic oxidation of alcohols on glassy carbon electrodes electrochemically modified with nickel tetraazamacrocyclic complexes:Mechanism off.J.Electroanal.Chem.,1992,325:285-300.
    [188]A.Cizewski,G Milczarek.Electrocatalytic oxidation of alcohols on glassy carbon electrodes electrochemically modified by conductive polymeric nickel(Ⅱ) tetrakis(3-methoxy-4-hydroxyphenyl) porphyrin film.J.Electroanal.Chem.,1996,413:137-142.
    [189]A.Cizewski,G Milczarek.Glassy carbon electrode modified by conductive,polymeric nickel(Ⅱ) porphyrin complex as a 3D homogeneous catalytic system for methanol oxidation in basic media.J.Electroanal.Chem.,1997,426:125-130.
    [190]A.Cizewski,G Milczarek.Kinetics of electrocatalytic oxidation of formaldehyde on a nickel porphyrin-based glassy carbon electrode.J.Electroanal.Chem.,1999,469:18-26.
    [191]S.J.Liu.Kinetics of methanol oxidation on poly(NiII-tetramethyldibenzotetraaza[14]annulene)-modified electrodes.Electrochim.Acta,2004,49:3235-3241.
    [192]B.S.Hui,C.O.Huber.Amperometric detection of amines and amino acides in flow injection systems with a nickel oxide electrode.Anal.Chim.Acta,1982,134:211-218.
    [193]I.G Casella,E.Desimoni,T.R.I.Cataldi.Study of a nickel-catalysed glassy carbon electrode for detection of carbohydrates in liquid chromatography and flow injection analysis.Anal.Chim.Acta,1991,248:117-125.
    [194]I.G Casella,E.Desimoni,A.M.Salvi.Chemically modified electrode for the detection of carbohydrates.Anal.Chim.Acta,1991,243:61-63.
    [195]P.Luo,F.Zhang,R.P.Baldwin.Comparison of metallic electrodes for constant-potential amperometric detection of carbohydrates,amino acids and related compounds in flow systems.Anal.Chim.Acta,1991,244:169-178.
    [196]J.M.Marioli,P.F.Luo,T.Kuwana.Nickel-chromium alloy electrodes as a carbohydrates detector for liquid chromatography.Anal.Chim.Acta,1993,282:571-580.
    [197]J.M.Marioli,T.Kuwana.Electrochemical detection of carbohydrates at nickel-copper and nickel-chromium-iron alloy electrodes.Electroanalysis,1993,5:11-15.
    [198]S.Maximovitch,G Bronoel.Oxidation of methanol on nickel-zinc catalysts.Electrochim.Acta,1981,26:1331-1338.
    [199] M. Amjad, D. Pletcher, C. Smith. The oxidation of alcohols at a nickel anode in alkaline t-butanol/water mixtures. J. Electrochem. Soc., 1977, 124: 203-206.
    [200] G. V(?)rtes, G. Hor(?)nyi. Some problems of the kinetics of the oxidation of organic compounds at oxide-covered nickel electrodes. J. Electroanal. Chem., 1974, 52: 47-53.
    [201] P. Luo, F. Zhang, R. P. Baldwin. Constant potential amperometric detection of underivatized amino acids and peptides at a copper electrode. Anal. Chem., 1991, 63: 1702-1707.
    [202] P. Luo, R. P. Baldwin. LCEC of underivatized polypeptides and proteins at copper electrodes. Electroanalysis, 1992, 4: 393-401.
    [203] M. Z. Luo, R. P. Baldwin. Characterization of carbohydrate oxidation at copper electrodes. J. Electroanal. Chem., 1995, 387: 87-94.
    [204] I. H. Yeo, D. C. Johnson. Electrochemical response of small organic molecules at nickel-copper alloy electrodes. J. Electroanal. Chem., 2001, 495: 110-119.
    [205] S. Mho, D. C. Dennis. Electrocatalytic response of amino acids at Cu-Mn alloy electrodes. J. Electroanal. Chem., 2001,495: 152-159.
    [206] S. Mho, D. C. Johnson. Electrocatalytic response of carbohydrates at copper-alloy electrodes. J. Electroanal. Chem., 2001, 500: 524-532.
    [207] R. F. Melka, G. Olsen, L. Beavers, et al. The kinetics of oscillating reactions: Laboratory experiment for physical chemistry. J. Chem. Educ, 1992, 69: 596-598.
    [208] J. L. Hudson, T. T. Tsotsis. Electrochemical reaction dynamics: A review. Chem. Eng. Sci., 1994, 49: 1493-1572.
    [209] 徐远航.电化学振荡现象.化学通报,1993,(1):13-17.
    [210] 雷惊雷,蔡生民,杨迈之等.电化学振荡研究概况.北京大学学报,2001,37:880-888.
    [211] T. Z. Fahidy, Z. H. Gu, Recent advances in the study of the dynamics of electrode processes. In: R. E. White, J. O. Bockris, B. E. Conway (Ed.). Modern aspects of electrochemistry. New York: Plenum, 1995, vol. 27, p. 383-409.
    [212] M. T. M. Koper. Oscillations and complex dynamical bifurcations in electrochemical systems. In: I. Prigogine, S. A. Rice (Ed.). Advances in chemical physics. New York: Wiley, 1996, vol. 92, p. 161-298.
    [213] K. Krischer. Nonlinear dynamics in electrochemical systems. In: R. C. Alkire, D. M. Kolb (Ed.). Advances in electrochemical science and engineering. Weinheim: Wiley-VCH,2003,vol.8,p.89-208.
    [214]J.L.Hudson,M.R.Bassett.Oscillatory electrodissolution of metals.Chem.Eng.,1991,7:109-170.
    [215]M.Clarke,J.A.Bernie.Abnormal high throwing power and cathode passivity in acid tin plating baths.Electrochim.Acta,1967,12:205-212.
    [216]R.M.Suter,P.Z.Wong.Nonlinear oscillations in the electrochemical growth of Zn dendrites.Phys.Rev.B,1989,39:4536-4540.
    [217]M.Wang,N.B.Ming.Concentration field oscillation in front of a dendrite tip in electrochemical deposition.Phys.Rev.A,1992,45:2493-2498.
    [218]R.De Levie,A.A.Husovsky.On the negative faradic admittance in the region of the polarographic minimum of In(Ⅲ) in aqueous NaSCN.J.Electroanal.Chem.,1969,22:29-48.
    [219]R.De Levie,L.Popisil.On the coupling of interfacial and diffusional impedances and on the equivalent circuit of an electrochemical cell.J.Electroanal.Chem.,1969,22:277-290.
    [220]R.De Levie.On the electrochemical oscillator.J.Electroanal.Chem.,1970,25:257-273.
    [221]F.W.Schlitter,G.Eichkorn,H.Fischer.Rhythmisch lamellares Kristallwachstum bei der elektrolytischen Kupfera bscheidung.Electrochim.Acta,1958,13:2063-2075.
    [222]H.Jehring,U.Kuerschner.Electrochemical oscillations in the inhibition of copper deposition at the mercury electrode.J.Electroanal.Chem.,1977,75:799-808.
    [223]R.Saliba,C.Mingotaud,F.Argoul,et al.Spontaneous oscillations in gold Electrodeposition.Electrochem.Commun.,2002,4:629-632.
    [224]A.Franczak,J.Matysik,M.Korolcauk.Investigations on the current oscillations during the electrolytic reduction of dichromates in acetic solutions.J.Electroanal.Chem.,1980,107:189-192.
    [225]I.N.Karnaukhov,A.I.Karasevskii,N.D.Ivanova,et al.Self-organization phenomena in polyvalent metal electroreduction processes:Experiment and theory.J.Electroanal.Chem.,1990,288:35-44.
    [226]M.E.De Almerdi Lima,J.Bouteillon,J.P.Diard.Study of the electrochemical reduction of PbCl_2 on a liquid Pb electrode in NaCl-KCl melt.J.Appl.Electrochem.,1992,22:577-580.
    [227]K.Norio,N.Hiroyuki,S.Naoyuki.Potential oscillations during the electrocrystallization of cadmium from alkaline cyanide solutions under galvanostatic conditions.J.Electroanal.Chem.,1998,252:371-381.
    [228]I.Bakos,G Horanyi.Galvanostatic potential oscillations during the electrodeposition of rhenium.J.Electroanal.Chem.,1994,375:387-390.
    [229]I.Kristev,M.Nikolova,I.Nakada.Spiral structures in electrodeposited silver-antimony alloys.Electrochim.Acta,1989,34:1219-1223.
    [230]G.Mattsson,L.NyholmL,M.Peter.Electrocrystallization,stripping and photoelectrochemical properties of HgSe/Se films on mercury electrodes.J.Electroanal.Chem.,1993,347:303-326.
    [231]A.Survila,Z.Mockus,R.Ju(?)k(?)nas.Current oscillations observed during codeposition of copper and tin from sulfate solutions containing Laprol 2402C.Electrochim.Acta,1998,43:909-917.
    [232]H.D.Dorfler,E.Müller.The analysis of current oscillations on the basis of retardation of electrode processes by different surfactants.J.Electroanal.Chem.,1982,135:37-53.
    [233]G.Horanyi,G Inzelt,E.Szetey.Open circuit potential oscillations of platinum electrodes immersed in solutions of organic fuels and redox systems.Imitation of galvanostatic potential oscillations observed in the course of electrooxidation of organic fuels.J.Electroanal.Chem.,1977,81:395-401.
    [234]G.Horanyi,G Inzelt.Periodical changes in the adsorption of chloride ions accompanying the potential oscillations produced in the course of galvanostatic electrooxidation.J.Electroanal.Chem.,1978,87:423-427.
    [235]G.Horanyi,G Inzelt,E.M.Rizmayer.Radiotracer study of the adsorption of urea on platinized platinum electrodes in the presence of different ions and organic compounds.J.Electroanal.Chem.,1979,98:105-117.
    [236]M.Hachkar,B.Beden,C.Lamy.Oscillating electrocatalytic systems:Part Ⅰ.Survey of systems involving the oxidation of organics and detailed electrochemical investigation of formaldehyde oxidation on rhodium electrodes.J.Electroanal.Chem.,1990,287:81-98.
    [237]M.Hachkar,M.Choy de Martinez,A.Rakotondrainibe.Oscillating electrocatalytic systems:Part Ⅱ."In situ" UV-visible reflectance spectroscopic investigation of formaldehyde oxidation on rhodium in alkaline medium.J.Electroanal.Chem.,1991,302:173-189.
    [238]Y Honda,M.B.Song,M.Ito.Current oscillations during the oxidation of formic acid on Pt(100) as studied by in situ time-resolved infrared reflection absorption spectroscopy.Chem.Phys.Lett.,1997,273:141-146.
    [239]S.L.Chen,M.Schell.A comparison of multistability in the electrocatalyzed oxidations of methanol and ethanol in acid and alkaline solutions.J.Electroanal.Chem.,1999,478:108-117.
    [240]T.J.Schmidt,B.N.Grgur,N.M.Markovic.Oscillatory behavior in the electrochemical oxidation of formic acid on Pt(100):Rotation and temperature effects.J.Electroanal.Chem.,2001,500:36-43.
    [241]M.T.M.Koper,T.J.Schmidt,N.M.Markovic,et al.Potential oscillations and S-shaped polarization curve in the continuous electro-oxidation of CO on Platinum single-crystal electrodes.J.Phys.Chem.B,2001,105:8381-8386.
    [242]J.Lee,C.Eickes,M.Eiswirth,et al.Electrochemical oscillations in the methanol oxidation on Pt.Electrochim.Acta,2002,47:2297-2301.
    [243]E.Mishina,A.Karantonis,Q.K.Yu,et al.Optical second harmonic generation during the electrocatalytic oxidation of formaldehyde on Pt(111):Potentiostatic regime versus galvanostatic potential oscillations.J.Phys.Chem.B,2002,106:10199-10204.
    [244]T.Matsuda,H.Hommura,Y.Mukouyama,et al.New current and potential oscillations for reduction reactions on platinum electrodes in acid solutions containing high concentration hydrogen peroxide.J.Electrochem.Soc,1997,144:1988-1994.
    [245]S.Nakanishi,Y.Mukouyama,K.Karasumi,et al.Appearance of an oscillation through the autocatalytic mechanism by control of the atomic-level structure of electrode surfaces in electrochemical H2O2 reduction at Pt electrodes.J.Phys.Chem.B,2000,104:4181-4188.
    [246]Y.Mukouyama,S.Nakanishi,T.Chiba,et al.Mechanisms of two electrochemical oscillations of different types,observed for H_2O_2 reduction on a Pt Electrode in the presence of a small amount of halide ions.J.Phys.Chem.B,2001,105:7246-7253.
    [247]N.A.Hampson,R.Piercy.Note of oscillation of potential observed during the reduction of the nitrate ion at solid indium.J.Electroanal.Chem.,1973,45:326-329.
    [248]G Hor(?)nyi,E.M.Rizmayer.Role of adsorption phenomena in the electrocatalytic reduction of nitric acid at a platinized platinum electrode.J.Electroanal.Chem.,1982,140:347-366.
    [249]E.V.Radkov,L.G.Ljutov.Oscillations during electrolysis of alkaline iodide + iodate solutions.J.Electroanal.Chem.,1988,241:349-351.
    [250]A.Olexova,L.Treindl.Electrochemical oscillations on the stationary mercury electrode in bromate solutions.Electrochim.Acta,1990,35:1095-1098.
    [251]A.Wolf,J.Ye,M.Purgand,M.Eiswirth,et al.Modelling the oscillating electrochemical reduction of peroxodisulfate.Ber.Bunsen-Ges.Phys.Chem.,1992,96:1797-1804.
    [252]Z.L.Li,J.L.Cai,S.M.Zhou.Potential oscillations during the reduction of Fe(CN)_6~(3-) ions with convection feedback.J.Electroanal.Chem.,1997,432:111-116.
    [253]H.Varela,K.Krischer.Nonlinear phenomena during electrochemical oxidation of hydrogen on platinum electrodes.Catalysis Today,2001,70:411-425.
    [254]Z.L.Li,B.Ren,X.M.Xiao,et al.Further insight into the origin of potential oscillations during the iodate reduction in alkaline solution with mass transfer.J.Phys.Chem.A,2002,106:6570-6573.
    [255]Z.L.Li,Z.J.Niu,T.H.Wu,et al.In situ monitoring of potential oscillations in the reduction of IO_3~- by electrochemical quartz crystal microbalance.Electrochem.Commun.,2003,5:297-300.
    [256]A.Chen,B.Miller.Potential oscillations during the electrocatalytic oxidation of sulfide on a microstructured Ti/Ta_2O_5-IrO_2 electrode.J.Phys.Chem.B,2004,108:2245-2251.
    [257]H.Tributsch,T.Sakata,T.Kawai.Photoinduced layer phenomenon caused by iodine formation in MoSe_2:electrolyte (iodide) junctions.Electrochim.Acta,1981,26:21-31.
    [258]R.L.Van Meirhaeghe,F.Cardon,W.P.Gomes.Photocurrent oscillations at the n-GaAs/electrolyte interface.Electrochim.Acta,1979,24:1047-1049.
    [259]O.Nast,S.Rauscher,H.Jungblut.Micromorphology changes of silicon oxide on Si(111) during current oscillations:A comparative in situ AFM and FTIR study.J.Electroanal.Chem.,1998,442:169-174.
    [260]H.J.Lewerenz.Spatial and temporal oscillation at Si(111) electrodes in aqueous fluoride-containing.J.Phys.Chem.B,1997,101:2421-2425.
    [261]徐群杰,邓薰南.电沉积CuInSe_2上H_2O_2阴极还原时的电化学振荡.化学 学报,1995,53:1076-1081.
    [262]G.Neher,P.Ludwig,T.Helmut.Mixed-mode-oscillations,self-similarity,and time-transient chaotic behavior in the (photo-) electrochemical system p-CuInSe_2/H_2O_2.J.Phys.Chem.,1995,99:17763-17771.
    [263]R.Larter.Oscillations and spatial nonuniformities in membranes.Chem.Rev.,1990,90:355-381.
    [264]K.Arai,S.Fukuyama,F.Kusu.Role of a surfactant in the electrical potential oscillation across a liquid membrane.Electrochim.Acta,1995,40:2913-2920.
    [265]M.Iseki,M.Ikematsu,Y.Sugiyama.A new type of current oscillation in polypyrrole membranes produced by electrochemical potential control.J.Electroanal.Chem.,1995,386:253-256.
    [266]贺占博,阎喜龙,聂玉敏等.新型液膜振荡器.物理化学学报,1999,4:370-374.
    [267]M.T.M.Koper.Stability study and categorization of electrochemical Oscillations by Impedance Spectroscopy.J.Electroanal.Chem.,1996,409:175-182.
    [268]P.Strasser,M.Eiswirth,M.T.M.Koper.Mechanistic classification of electrochemical oscillators-an operational experimental strategy.J.Electroanal.Chem.,1999,478:50-66.
    [269]Z.L.Li,Y.Yu,H.Liao,et al.A universal topology in nonlinear electrochemical systems.Chem.Lett.,2000,330-331.
    [270]Z.L.Li,B.Ren,Z.J.Niu,et al.On the criteria of instability for electrochemical systems.Chin.J.Chem.,2002,20:657-662.
    [271]L.T.Tsitsopoulos,T.T.Tsotsis,I.A.Webster.An ellipsometric investigation of reaction rate oscillations during the electrochemical anodization of Cu in H_3PO_4 solutions.Some preliminary results.Surf.Sci.,1987,191:225-238.
    [272]L.T.Tsitsopoulos,I.A.Webster,T.T.Tsotsis.Reaction rate oscillations during the electrochemical anodization of Cu in H_3PO_4 solutions.XPS and SEM studies.Surf.Sci.,1987,220:391-406.
    [273]B.Beden,A.Bewick.Oscillatory kinetics in the electrochemical oxidation of formate ions during the deposition of rhodium electrode:Part I.Experimental observation.J.Electroanal.Chem.,1980,107:127-145.
    [274]B.Beden,C.Lamy,A.Bewick.Oscillatory kinetics in the electrochemical oxidation of formations during the deposition of rhodium electrode:Part Ⅱ. Mechanistic considerations. J. Electroanal. Chem., 1981, 121: 115-124.
    [275] D. J. Blackwood, A. Borazio, R. Greef, et al. Electrochemical and optical studies of silicon dissolution in ammonium fluoride solutions. Electrochim. Acta, 1992, 37: 889-896.
    [276] N. A. Anastasijevic, H. Baltruschat, J. Heitbaum. DEMS as a tool for the investigation of dynamic processes: Galvanostatic formic acid oxidation on a Pt electrode. J. Electroanal. Chem., 1989,272: 89-100.
    [277] G. Inzelt. Oscillations of the EQCM frequency response in the course of open-circuit copper dissolution in aqueous solutions of H_2SO_4 and CUSO_4. J. Electroanal. Chem., 1993, 348: 465-471.
    [278] G. Inzelt, V. Kert(?)sz. Experimental evidence for the periodical changes of the amount of chemisorbed species accompanying the potential oscillations produced in the course of galvanostatic oxidation of formic acid on platinum. Electrochim. Acta, 1993, 38: 2385-2386.
    [279] G. Inzelt, V. Kert(?)sz, G. L(?)ng. Simultaneous oscillations of the surface mass and potential in the course of the galvanostatic oxidation of 2-propanol. J. Phys. Chem., 1993, 97: 6104-6106.
    [280] E. W. Bohannan, L. Y. Huang, F. S. Miller, et al. In situ electrochemical quartz crystal microbalance study of potential oscillations during the electrodeposition of Cu/Cu_2O Layered nanostructures. Langmuir, 1999, 15: 813-818.
    [281] M. T. M. Koper, M. Hachkar, B. Beden. Investigation of the oscillatory electro-oxidation of formaldehyde on Pt and Rh electrodes by cyclic voltammetry, impedance spectroscopy and the electrochemical quartz crystal microbalance. J. Chem. Soc, Faraday Trans., 1996, 92: 3975-3982.
    [282] B. W. Mao, B. Ren, X. W. Cai, et al. Electrochemical oscillatory behavior under a scanning electrochemical microscopic configuration. J. Electroanal. Chem., 1995, 394:155-160.
    [283] 王超,陈慎豪.磁场作用下铁/硫酸体系阳极过程全息显微研究.腐蚀科学与防护技术,1999,11:13-23.
    [284] 赵世勇,张波,马厚义等.按逆向而行的思路研究硫酸中铁的电化学振荡.化学学报,2000,58:1670-1673.
    [285] Z. L. Li, T. H. Wu, Z. J. Niu. In situ Raman spectroscopic studies on the current oscillations during gold electrodissolution in HC1 solution. Electrochem. Commun., 2004, 6: 44-48.
    [286]W.Huang,Z.L.Li,Y.D.Peng,et al.Transition of oscillatory mechanism for methanol electro-oxidation on nano-structured nickel hydroxide film (NNHF) electrode.Chem.Commun.,2004,380-1381.
    [287]W.Huang,Z.L.Li,Y D.Peng,et al.Oscillatory electrocatalytic oxidation of methanol on an Ni(OH)_2 film electrode.J.Solid State Electrochem.,2005,9:284-289.
    [288]Z.L.Li,Q.H.Yuan,B.Ren,et al.A new experimental method to distinguish two different mechanisms for a category of oscillators involving mass transfer.Electrochem.Commun.,2001,3:654-658.
    [289]R.Szamocki,S.Reculusa,S.Ravaine,et al.Tailored mesostructuring and biofunctionalization of gold for increased electroactivity.Angew.Chem.Int.Ed.,2006,45:1317-1321.
    [290]Y.Ding,M.W.Chen,J.Erlebacher.Metallic Mesoporous nanocomposites for electrocatalysis.J.Am.Chem.Soc,2004,126:6876-6877.
    [291]J.Biener,G W.Nyce,A.M.Hodge,et al.Nanoporous plasmonic metamaterials.Adv.Mater.,2008,20:1211-1217.
    [292]M.C.Dixon,T.A.Daniel,M.Hieda,et al.Preparation,structure,and optical properties of nanoporous gold thin films.Langmuir,2007,23:2414-2422.
    [293]M.E.Abdelsalam,P.N.Bartlett,T.Kelf,et al.Wetting of regularly structured gold surfaces.Langmuir,2005,21:1753-1757.
    [294]P.N.Bartlett,J.J.Baumberg,P.R.Birkin,et al.Highly ordered macroporous gold and platinum films formed by electrochemical deposition through templates assembled from submicron diameter monodisperse polystyrene spheres.Chem.Mater.,2002,14:2199-2208.
    [295]P.Jiang,J.Cizeron,J.F.Bertone,et al.Preparation of macroporous metal films from colloidal crystals.J.Am.Chem.Soc,1999,121:7957-7958.
    [296]O.D.Velev,P.M.Tessier,A.M.Lenhoff,et al.Materials A class of porous metallic nanostructures.Nature,1999,401:548-548.
    [297]R.H.W.Au,R.J.Puddephatt.Highly ordered macroporous gold film formed by CVD using monodisperse polystyrene spheres as templates.Chem.Vap.Deposition,2007,13:20-22.
    [298]M.H.Kim,X.M.Lu,B.Wiley,et al.Morphological evolution of single-crystal Ag nanospheres during the galvanic replacement reaction with HAuCl_4.J.Phys.Chem.C,7872 2008,112:7872-7876.
    [299]W.Zhao,J.J.Xu,C.G.Shi,et al.Fabrication,characterization and application of gold nano-structured film.Electrochem.Commun.,2006,8:773-778.
    [300]V.Prokopec,J.Cejkova,P.Matejka,et al.Preparation of SERS-active substrates with large surface area for Raman spectral mapping and testing of their surface nanostructure.Surf.Interface Anal.,2008,40:601-607.
    [301]Y.D.Peng,Z.J.Niu,W.Huang,et al.Surface-enhanced Raman scattering studies of 1,10-phenanthroline adsorption and its surface complexes on a gold electrode.J.Phys.Chem.B,2005,109:10880-10885.
    [302]S.Trasatti,O.A.Petrii.Real surface area measurements in electrochemistry.PureAppl.Chem.,1991,63:711-734.
    [303]L.D.Burke,V.J.Cunnane,B.H.J.Lee.Unusual postmonolayer oxide behavior of gold electrodes in base.J.Electrochem.Soc,1992,139:399-406.
    [304]L.D.Burke,P.F.Nugent.The electrochemistry of gold:I the redox behaviour of the metal in aqueous media.Gold Bull.,1997,30:43-53.
    [305]L.D.Burke,M.E.G Lyons.In:R.E.White,J.O'M.Bockris,B.E.Conway (Ed.).Modern Aspects of Electrochemistry.New York:Plenum Press,1986,Vol.18,Ch.4.
    [306]B.E.Conway.Electrochemical oxide film formation at noble metals as a surface-chemical Process.Prog.Surf.Sci.,1995,49,331-452.
    [307]L.D.Burke,M.McRann.Thick oxide growth on gold in base.J.Electroanal.Chem.,1981,125,387-399.
    [308]L.D.Burke,T.G Ryan.The role of incipient hydrous oxides in the oxidation of glucose and some of its derivatives in aqueous media.Electrochim.Acta,1992,37:1363-1370.
    [309]S.P.Mulvaney,C.D.Keating.Raman spectroscopy.Anal.Chem.,2000,72:145R-157R.
    [310]Z.Q.Tian,B.Ren.Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman Spectroscopy.Annu.Rev.Phys.Chem.,2004,55:197-229.
    [311]L.M.Tong,T.Zhu,Z.F.Liu.Atomic force microscope manipulation of gold nanoparticles for controlled Raman enhancement.Appl.Phys.Lett.,2008,92:023109.
    [312]L.D.Qin,S.L.Zou,C.Xue,et al.Designing,fabricating,and imaging Raman hot spots.Proc.Natl.Acad.Sci.U.S.A.,2006,103:13300-13303.
    [313]Z.Q.Tian,Z.L.Yang,B.Ren,et al.Surface-enhanced Raman scattering from transition metals with special surface morphology and nanoparticle shape.Faraday Discuss.,2006,132:159-170.
    [314]S.O.Kucheyev,J.R.Hayes,J.Biener,et al.Surface-enhanced Raman scattering on nanoporous Au.Appl.Phys.Lett.,2006,89:053102.
    [315]L.H.Qian,A.Inoue,M.W.Chen.Large surface enhanced Raman scattering enhancements from fracture surfaces of nanoporous gold.Appl.Phys.Lett.,2008,92:093113.
    [316]Q.Luo,Z.J.Liu,L.Li,et al.Creating highly ordered metal,alloy,and semiconductor macrostructures by electrodeposition,ion spraying,and laser spraying.Adv.Mater.,2001,13:286-289.
    [317]P.N.Bartlett,P.R.Birkin,M.A.Ghanem.Electrochemical deposition of macroporous platinum,palladium and cobalt films using polystyrene latex sphere templates.Chem.Commun.,2000,1671-1672.
    [318]M.Kim,G.H.Jeong,K.Y.Lee,et al.Fabrication of nanoporous superstructures through hierarchical self-assembly of nanoparticles.J.Mater.Chem.,2008,18:2208-2212.
    [319]G W.Qin,J.C.Liu,T.Balaji,et al.A facile and template-free method to prepare mesoporous gold sponge and its pore size control.J.Phys.Chem.C,2008,112:10352-10358.
    [320]F.Moreau,G C.Bond,A.O.Taylor.Gold on titania catalysts for the oxidation of carbon monoxide:Control of pH during preparation with various gold contents.J.Catal.,2005,231:105-114.
    [321]H.A.Droll,B.P.Block,W.Conard Fernelius.Studies on coordination compounds.XV.Formation constants for chloride and acetylacetonate complexes of palladium(Ⅱ).J.Phys.Chem.,1957,61:1000-1004.
    [322]D.A.J.Rand,R.Woods.The nature of adsorbed oxygen on rhodium,palladium and gold electrodes.J.Electroanal.Chem.,1971,31:29-38.
    [323]M.Lukaszewski,A.Czerwinski.Electrochemical behavior of palladium-gold alloys.Electrochim.Acta,2003,48:2435-2445.
    [324]H.Zhang,J.J.Xu,H.Y.Chen.Shape-controlled gold nanoarchitectures:Synthesis,superhydrophobicity,and electrocatalytic properties.J.Phys.Chem.C,2008,112:13886-13892.
    [325]R.Le Penven,W.Levason,D.Pletcher.Studies of the electrodeposition of palladium from baths based on [Pd(NH3)2X2]salts.I.[Pd(NH_3)_2Cl_2]baths.J.Appl.Electrochem.,1990,20:399-404.
    [326]T.Sehayek,T.Bendikov,A.Vaskevich,et al.Au-Pd alloy gradients prepared by laterally controlled template synthesis.Adv.Funct.Mater.,2006,16:693-698.
    [327]W.L.Tsai,P.C.Hsu,Y.Hwu,et al.Electrochemistry:Building on bubbles in metal electrodeposition.Nature,2002,417:139-139.
    [328]V.S.J.Craig,B.W.Ninham,R.M.Pashley.Effect of electrolytes on bubble coalescence.Nature,1993,364:317-319.
    [329]X.W.Teng,Q.Wang,P.Liu,et al.Formation of Pd/Au nanostructures from Pd nanowires via galvanic replacement reaction.J.Am.Chem.Soc,2008,130:1093-1101.
    [330]M.Grden,M.Lukaszewski,G Jerkiewicz,et al.Electrochemical behaviour of palladium electrode:Oxidation,electrodissolution and ionic adsorption.Electrochim.Acta,2008,53:7583-7598.
    [331]A.E.Bolzan.Phenomenological aspects related to the electrochemical behaviour of smooth palladium electrodes in alkaline solutions.J.Electroanal.Chem.,1995,380:127-138.
    [332]L.N.Lewis.Chemical catalysis by colloids and clusters.Chem.Rev.,1993,93:2693-2730.
    [333]A.Roucoux,J.Schulz,H.Patin.Reduced transition metal colloids:A novel family of reusable catalysts? Chem.Rev.,2002,102:3757-3778.
    [334]C.N.R.Rao,P.J.Thomas,G.U.Kulkarni (Ed.).Nanocrystals:Synthesis,Properties and Applications.Berlin:Springer,2007,Ch.2.
    [335]B.L.Cushing,V.L.Kolesnichenko,C.J.O'Connor.Recent advances in the liquid-phase syntheses of inorganic nanoparticles.Chem.Rev.,2004,104:3893-3946.
    [336]T.Biegler,D.A.J.Rand,R.Woods.Limiting oxygen coverage on platinized platinum;Relevance to determination of real platinum area by hydrogen adsorption.J.Electroanal.Chem.,1971,29:269-277.
    [337]T.Teranishi,M.Hosoe,T.Tanaka,et al.Size control of monodispersed Pt nanoparticles and their 2D organization by electrophoretic deposition.J.Phys.Chem.B,1999,103:3818-3827.
    [338]G Horanyi.Adsorption of primary amino compounds at platinum electrodes (A survey of radiotracer studies).Electrochim.Acta,1990,35:919-928.
    [339] D. G. Marangoni, I. G. N. Wylie, S. G. Roscoe. Surface electrochemistry of the oxidation reactions of α- and β-alanine at a platinum electrode. Bioelectrochem. Bioenerg., 1991, 25: 269-284.
    [340] I. G. N. Wylie, S. G. Roscoe. A comparative study of the surface electrochemical oxidation reactions of α-, β-, and γ-aminobutyric acid at platinum. Bioelectrochem. Bioenerg., 1992, 28: 367-386.
    [341] R. S(?)ojkowska, M. Jurkiewicz-Herbich. Adsorption study of amino acids on a polycrystalline gold electrode. Colloids Surf. A: Physicochem. Eng. Aspects, 2001, 178: 325-336.
    [342] A. Salimi, M. Roushani. Electrocatalytic oxidation of sulfur containing amino acids at renewable Ni-powder doped carbon ceramic electrode: Application to amperometric detection L-cystine, L-cysteine and L-methionine. Electroanalysis, 2006, 18: 2129-2136.
    [343] K. Sato, J. Y. Jin, T. Takeuchi, et al. Nickel-titanium alloy electrodes for stable amperometric detection of underivatized amino acids in anion-exchange chromatography. Talanta, 2000, 53: 1037-1044.
    [344] G. Boschloo, A. Hagfeldt. Spectroelectrochemistry of nanostructured NiO. J. Phys. Chem. B, 2001, 105: 3039-3044.
    [345] 黄炜.有机小分子在纳米氢氧化镍膜电极上催化氧化的非线性动力学行为研究.浙江师范大学,2005.
    [346] Y. L. Lo, B. J. Hwang. In situ Raman studies on cathodically deposited nickel hydroxide films and electroless Ni-P electrodes in 1 M KOH solution. Langmuir, 1998, 14: 944-950.
    [347] R. H. Bisby, S. A. Johnson, A. W. Parker, et al. Time-resolved resonance Raman spectroscopy of the carbonate radical. J. Chem. Soc., Faraday Trans., 1998, 94: 2069-2072.
    [348] N. Dello Russo, R. K. Khanna. Laboratory infrared spectroscopic studies of crystalline nitriles with relevance to outer planetary systems. Icarus, 1996, 123: 366-395.
    [349] J. M. Al(?)a, H. G. M. Edwards, J. Moore. Solvation of Ag~+ ions in some nitriles: A Fourier transform Raman spectroscopy study. Spectrochim. Acta Part A, 1995, 51:2039-2056.
    [350] P. A. Mosier-Boss. Spectroscopic studies of the interaction between crown ethers and organic nitriles. Spectrochim. Acta, Part A, 2005, 61: 527-534.
    [351]E.Goldstein,B.Ma,J.H.Lii,N.L.Allinger.Molecular mechanics calculations (MM3) on nitriles and alkynes.J.Phys.Org.Chem.,1996,9:191-202.
    [352]A.Capon,R.Parsons.The oxidation of formic acid at noble metal electrodes Ⅰ.Review of previous work.J.Electroanal.Chem.,1973,44:1-7.
    [353]A.Capon,R.Parsons.The oxidation of formic acid on noble metal electrodes Ⅱ.A comparison of the behaviour of pure electrodes.J.Electroanal.Chem.,1973,44:239-254.
    [354]A.Capon,R.Parsons.The oxidation of formic acid at noble metal electrodes Part Ⅲ.Intermediates and mechanism on platinum electrodes.J.Electroanal.Chem.,1973,45:205-231.
    [355]L.D.Burke,P.F.Nugent.The electrochemistry of gold:Ⅱ the electrocatalytic behaviour of the metal in aqueous media.Gold Bull.,1998,31:39-50.
    [356]T.Frelink,W.Visscher,J.A.R.van Veen.On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt.Surf.Sci.,1995,335:353-360.
    [357]Y.Y.Yang,S.G.Sun,Y.J Gu,et al.Surface modification and electrocatalytic properties of Pt(100),Pt(110),Pt(320) and Pt(331) electrodes with Sb towards HCOOH oxidation.Electrochim.Acta,2001,46:4339-4348.
    [358]Q.W.Zheng,C.J.Fan,C.H.Zhen,et al.Irreversible adsorption of Sn adatoms on basal planes of Pt single crystal and its impact on electrooxidation of ethanol.Electrochim.Acta,2008,53:6081-6088.
    [359]X.S.Peng,K.Koczkur,S.Nigro,et al.Fabrication and electrochemical properties of novel nanoporous platinum network electrodes.Chem.Commun.,2004,2872-2873.
    [360]K.Koczkur,Q.F.Yi,A.C.Chen.Nanoporous Pt-Ru networks and their electrocatalytical properties.Adv.Mater.,2007,19:2648-2652.
    [361]Q.F.Yi,W.Huang,X.P.Liu,et al.Electroactivity of titanium-supported nanoporous Pd-Pt catalysts towards formic acid oxidation.J.Electroanal.Chem.,2008,619-620:197-205.
    [362]J.P.Wang,P.Holt-Hindle,D.MacDonald,et al.Synthesis and electrochemical study of Pt-based nanoporous materials.Electrochim.Acta,2008,53:6944-6952.
    [363]H.Okamoto,W.Kon,Y.Mukouyama.Five current peaks in voltammograms for oxidations of formic acid,formaldehyde,and methanol on platinum.J.Phys. Chem.B,2005,109:15659-15666.
    [364]N.M.Markovic,H.A.Gasteiger,P.N.Ross,et al.Electro-oxidation mechanisms of methanol and formic acid on Pt-Ru alloy surfaces.Electrochim.Acta,1995,40:91-98.
    [365]J.Wang,Y.Lin.Electrocatalytic flow detection of amino acids at ruthenium dioxide-modified carbon electrodes.Electroanalysis,1994,6:125-129.
    [366]R.P.Deo,N.S.Lawrence,J.Wang.Electrochemical detection of amino acids at carbon nanotube and nickel-carbon nanotube modified electrodes.Analyst,2004,129:1076-1081.
    [367]M.Zhou,J.Ding,L.P.Guo,et al.Electrochemical behavior of L-cysteine and its detection at ordered mesoporous carbon-modified glassy carbon electrode.Anal.Chem.,2007,79:5328-5335.
    [368]S.A.Wring,J.P.Hart.Voltammetric behaviour of ascorbic acid at a graphite-epoxy composite electrode chemically modified with cobalt phthalocyanine and its amperometric determination in multivitamin preparations.Anal.Chim.Acta,1990,229:63-70.
    [369]M.E.G Lyons,W.Breen,J.Cassidy.Ascorbic acid oxidation at polypyrrole-coated electrodes.J.Chem.Soc.Faraday Trans.,1991,87:115-123.
    [370]J.Premkumar,S.B.Khoo.Electrocatalytic oxidations of biological molecules (ascorbic acid and uric acids) at highly oxidized electrodes.J.Electroanal.Chem.,2005,576:105-112.
    [371]K.Foster,T.McCormac.Electrochemical properties of an osmium(Ⅱ) copolymer film and its electrocatalytic ability towards the oxidation of ascorbic acid in acidic and neutral pH.Electroanalysis,2006,18:1097-1104.
    [372]Y.Q.Xie,C.O.Huber.Electrocatalysis and amperometric detection using an electrode made of copper oxide and carbon paste.Anal.Chem.,1991,63:1714-1719.
    [373]T.Sotomura,T.Koga,I.Taniguchi.Batteries and Supercapacitors.In:G A.Nazri,E.Takeuchi,R.Koetz,B.Scrosati (Ed.).Electrochemical Society Series.Pennington:Electrochemical Society Inc,2003,p.807-817.
    [374]S.Park,H.Boo,T.D.Chung.Electrochemical non-enzymatic glucose sensors.Anal.Chim.Acta,2006,556:46-57.
    [375]C.Z.Zhao,C.L.Shao,M.H.Li,et al.Flow-injection analysis of glucose without enzyme based on electrocatalytic oxidation of glucose at a nickel electrode.Talanta,2007,71:1769-1773.
    [376]P.Schechner,E.Kroll,E.Bubis,et al.Silver-plated electrospun fibrous anode for glucose alkaline fuel cells.J.Electrochem.Soc,2007,154:B942-B948.
    [377]J.M.M.Droog,F.Huisman.Electrochemical formation and reduction of silver oxides in alkaline media.J.Electroanal.Chem.,1980,115:211-224.
    [378]M.L.Teijelo,J.R.Vilche,A.J.Arvia.Complex potentiodynamic response of silver in alkaline electrolytes in the potential range of the Ag/Ag20 couple.J.Electroanal.Chem.,1982,131:331-339.
    [379]T.P.Dirkse.A potentiostatic study of the electrolytic formation of AgO.Electrochim.Acta,1990,35:1445-1449.
    [380]S.S.Abd El Rehim,H.H.Hassan,M.A.M.Ibrahim,et al.Electrochemical Behaviour of a Silver Electrode in NaOH Solutions.Monatshefte fur Chemie,1998,129:1103-1117.
    [381]L.D.Burke,T.G.Ryan.The adatom/incipient hydrous oxide mediator model for reactions on silver in base.J.Appl.Electrochem.,1990,20:1053-1058.
    [382]L.C.Nagle,A.J.Ahern,L.D.Burke.Unusual features of the electrochemistry of silver in aqueous base.J.Solid State Electrochem.,2002,6:320-330.
    [383]G T.Burstein,R.C.Newman.Anodic behaviour of scratched silver electrodes in alkaline solution.Electrochim.Acta,1980,25:1009-1013.
    [384]B.Miller.Rotating ring-disk study of the silver electrode in alkaline solution.J.Electrochem.Soc,1970,117:491-499.
    [385]N.A.Hampson,J.B.Lee,J.R.Morley,et al.Oxidations involving silver-Ⅶ The oxidation of aliphatic secondary amines at silver electrodes in alkali.Tetrahedron,1970,26:1109-1114.
    [386]Elif Sanh,Hüseyin (?)elikkan,B.Zühtü Uysal,et al.Anodic behavior of Ag metal electrode in direct borohydride fuel cells.Int.J.Hydrogen Energy,2006,31:1920-1924.
    [387]G A.Ragoisha,V.S.Gurin,A.L.Rogach.Nanostructures self-assembling from nonequilibrium silver nanophase on conducting nonmetallic substrates.Microelectron.Eng.,1995,27:51-54.
    [388]G A.Ragoisha.Surface structures on non-metallic electrodes,catalysts of the oscillating anodic reactions.Surf.Sci.,1995,331-333:300-305.
    [389]A.T.Kuhn,P.M.Wright.A study of the passivation of bright platinum electrodes during chlorine evolution from concentrated sodium chloride solutions.J.Electroanal.Chem.,1972,38:291-311.
    [390]G.B.Alexandre,G Partrick,H.Garbriele.Investigation of the adsorption of L-cysteine on a polycrystalline silver electrode by surface-enhanced Raman scattering (SERS) and surface-enhance second harmomic gerneration (SESHG).J.Phys.Chem.B,2002,106:5982-5987.
    [391]Z.L.Li,J.L.Cai,S.M.Zhou.Current oscillations in the reduction or oxidation of some anions involving convection mass transfer.J.Electroanal.Chem.,1997,436:195-201.
    [392]M.Hepel,M.Tomkiewicz.Morphology of AgO crystallites deposited from alkaline solutions under potential step and stimulated pulse potentiostatic conditions.J.Electrochem.Soc,1986,133:468-475.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700