超声辐照微泡介导双自杀基因系统对裸鼠乳腺癌体内抑瘤作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     乳腺癌是女性最常见的恶性肿瘤之一,已严重威胁女性健康。随着对肿瘤发病机制认识的不断深入,以及分子生物学等学科的迅速发展,基因治疗成已为一种全新的肿瘤治疗模式,其中自杀基因治疗作为一种颇具临床应用潜力的治疗策略,是近年来肿瘤基因治疗的研究热点。
     自杀基因疗法主要通过直接杀伤作用和旁观者效应来杀伤肿瘤细胞。目前应用最广泛的是单纯疱疹病毒胸苷激酶/更昔洛韦(HSV-TK/GCV)和胞嘧啶脱氨基酶/5-氟胞嘧啶(CD/5-Fc)两大自杀基因体系,联合应用不仅可以提高疗效、扩大肿瘤治疗谱,还能抑制继发性耐药的产生。
     而利用肿瘤特异性调控元件(启动子或增强子)以驱动自杀基因选择性表达于特定的靶细胞中,能准确杀伤肿瘤细胞,保护正常组织,减少毒副作用,这也是自杀基因临床应用的主要优势。因此,以KDR启动子(KDRp)驱动自杀基因,可使自杀基因在肿瘤血管内皮细胞及肿瘤细胞特异性表达,达到双重靶向治疗作用。
     近年来,微泡造影剂作为一种新型的基因载体,在超声波的辐照下不仅能将裸质粒导入靶细胞,还能提高转染效率,被认为是今后非病毒载体发展的重要方向。
     本项目拟应用VEGF启动子驱动时CD/TK双自杀基因系统对乳腺癌细胞MCF-7的作用研究,联合使用超声辐照微泡,观察该系统在乳腺癌中的应用效果,为进一步开展自杀基因靶向治疗乳腺癌的研究提供实验依据。
     目的
     1.构建乳腺癌移植瘤裸鼠模型(MCF-7体内模型)。
     2.超声辐照微泡介导pEGFP-KDRp-CD/TK质粒转染乳腺癌裸鼠模型,观察该治疗系统对乳腺癌的体内抑瘤作用。方法
     建立乳腺癌移植瘤裸鼠模型,将20只荷瘤裸鼠随机分成4组,每组5只。I组:空白对照组,仅给予前药5-FC与GCV;II组:仅注射裸质粒与前药5-FC与GCV;Ⅲ组:注射裸质粒与前药5-FC与GCV,并予超声辐照;Ⅳ组:注射靶向超声造影剂与前药5-FC与GCV,并予超声辐照。从处理开始当天起,每3天测量肿瘤大小,计算肿瘤的体积,观察不同处理组的肿瘤生长情况;处理结束后5天处死裸鼠,剥除肿瘤并称重,计算各处理组与空白对照组相比较的抑瘤率;使用倒置荧光显微镜观察目的基因体内转染情况,并据此计算基因转染率;RT-PCR法检测目的基因的表达;免疫组化法计数肿瘤的微血管密度。根据以上指标了解肿瘤的生长情况和目的基因的体内转染情况,从而评估超声辐照微泡介导双自杀基因转染对裸鼠乳腺癌移植瘤的体内抑瘤作用。
     结果
     1.Ⅱ、Ⅲ、Ⅳ组处理组的抑瘤率分别为3.72%、21.40%、47.13%,同空白对照组(Ⅰ组)比较,裸质粒组(Ⅱ组)的肿瘤大小较之I组没有明显的差异(P>0.05),而超声辐照组(Ⅲ组)和超声微泡联合辐照组(Ⅳ组)的肿瘤大小较之Ⅰ组均有明显的差异(P<0.05),尤其以超声微泡联合辐照组的肿瘤的体积抑制最为显著。
     2.Ⅳ组在超声微泡的联合作用下,其基因转染的效率要明显高于Ⅲ组超声组,两者比较有显著的统计学差异(P<0.001);超声组与裸质粒组比较,基因转染效率稍高,但其差异没有统计学意义(P>0.05)。
     3.Ⅲ组(超声组)、Ⅳ组(超声微泡组)的肿瘤组织中均出现了2415bp的CD/TK基因阳性片段,而在Ⅰ组(空白对照组)、II组(裸质粒组)的肿瘤组织中未出现该阳性片段。
     4.Ⅳ组在超声微泡的联合作用下,其对肿瘤血管的抑制作用要明显高于Ⅲ组超声组,两者比较有明显的统计学差异(P<0.05);Ⅲ组(超声组)、Ⅳ组(超声微泡组)与空白对照组相比较,其差异均有统计学意义(P<0.05);裸质粒组与空白对照组比较,MVD计数稍低,但其差异没有统计学意义(P>0.05)。结论:
     1.皮下接种法建立裸鼠乳腺癌移植瘤动物模型具有操作简单、模型稳定、成功率高等优点,并且该模型能保持人乳腺癌肿瘤细胞的部分病理学特点及生物学特性;
     2.应用MCF-7能成功的建立乳腺癌移植瘤裸鼠动物模型,并能方便地观测移植瘤的生长情况;
     3.超声辐照可提高裸鼠移植瘤组织的微血管通透性,促进基因转染物质进入细胞,超声辐照微泡则能更有效的介导目的基因转染,提高基因转染率;
     4.重组质粒转基因,荷瘤动物肿瘤组织内可以表达CD/TK融合基因的产物,联合超声辐照微泡,可以更有效的介导目的基因在肿瘤组织中表达,使该治疗系统具有满意的体内抑瘤作用,表现为对肿瘤生长的抑制和肿瘤微血管密度的下降;
     5.超声辐照微泡介导双自杀基因系统是较理想的乳腺癌基因治疗策略。
Background
     Breast cancer is one of the most common malignant tumor, threatening the health of women. With the knowledge improvement of tumorous pathogenesis, and the rapid development of molecular biology, gene therapy represents a novel treatment model in cancer therapy. And the suicide gene therapy as a potential strategy for clinical application, is the hotspot of tumor gene therapy in recent years.
     Suicide gene system kills tumor cells by direct cytotoxic effect and bystander effect. Currently the most widely used systems are herpes simplex virus thymidine kinase/ganciclovir (HSV-TK/GCV) and cytosine deaminas/5-fluorocytosine (CD/5-Fc). Combined using of them has several advantages, such as improving anti-tumor effect, avoiding drug resistance, etc.
     The specific expression of suicide genes in the tumor cells so as to selectively damage tumor cells could be realized by taking advantage of some tumor specific transcription modulating elements(promoter or enhanser). So, the anti-tumor effect is quite satisfied with mild side-effects. It is the main dominance of suicide gene therapy in clinic application. So that KDR promoter (KDRp) could make genes of interest over-express in tumor cells and its vascular endothelial cells.
     In recent years, microbubble contrast agent is a novel gene vector, with the ultrasound irradiation it can not only transfect naked plasmid into target cells, but also enhance the transfection efficiency of liposome, considering the important part of non-viral vectors research.
     The project planed to apply CD/TK fusion suicide gene system driven by VEGF promoter to MCF-7 tumor cells, transfecting by ultrasound mediated microbubble destruction. Then, the effect of the system therapy for breast cancer was observed. So, the study Was carried out to provide further experimental evidences to treat the breast cancer with double suicide genes.
     Objective
     1.Construction of nude mice model bearing human breast cancer (MCF-7 in vivo).
     2.To transfect the pEGFP-KDRp-CD/TK into breast cancer model in nude mice by ultrasound mediated microbubble, and then investigate the anti-tumor effect of the treatment system on breast cancer in vivo.
     Methods
     Construction of nude mice model bearing human breast cancer,20 nude mice were randomly divided into 4 groups (n=5). GroupⅠ(control group):only injection of 5-FC and GCV. GroupⅡ:injection of naked plasmid,5-FC and GCV. GroupⅢ:injection of naked plasmid,5-FC and GCV, ultrasonic irradiation was given at the same time. GroupⅣ: injection of targeted ultrasound contrast agents,5-FC and GCV, ultrasonic irradiation was given at the same time. Measurement of tumor size from the day of treatment every 3 days to calculate the tumor' s size and observe the tumor growth of different groups. The nide mice were killed after end of the treatment, the tumor were removed and weighted to calculate the inhibition rate compared with the control group. The target gene transfer situation in vivo was observed by inverted fluorescence microscope to calculate the gene transfer rate. Target gene expression was detected by RT-PCR. Microvessel density was counted by immunohistochemistry. The growth of tumor and target gene transfection in vivo were observed by indicators above to assess the tumor inhibitory effection of the tumor in nude mice by ultrasound microbubble mediated double suicide gene transfer.
     Results
     1.The inhibition rate of groupⅡ, groupⅢ, groupⅣis 3.72%, 21.40%,47.13%, the tumor size between groupⅡand groupⅠshowed no statistically significant difference(P>0.05). The tumor size of groupⅢand groupⅣshowed statistically significant difference compared with groupⅠ(P<0.05). The inhibition of tumor size of groupⅣwas most significant.
     2. The gene transfection rate of group IV mediated microbubble was higher than that of groupⅢ, and there was statistically significant difference the two group (P<0.001). The gene transfection rate of group Ⅲwas higher than that of groupⅡ, but there was no statistically significant difference the two group (P>0.05)
     3. CD/TK expressed in the tumor of groupⅢand groupⅣ, but not expressed in the tumor of groupⅠand groupⅡ.
     4.The tumor angiogenesis inhibition of group IV mediated microbubble was higher than that of groupⅢ, and there was statistically significant difference the two group (P<0.05). That of groupⅢand groupⅣcompared with control group, there were statistically difference (P<0.05). The MVD count of groupⅡwas lower than that of control group, but there was no statistically significant difference the two group (P>0.05).
     Conclusions
     1. Construction of nude mice model bearing human breast cancer with subcutaneous inoculation has the advantages of simply operation, stability, high success rate. The model is able to maintain some of the human breast tumor' s biological characteristics and pathological features.
     2. Construction of nude mice model bearing human breast cancer with MCF-7 cells, the growth of transplanted tumor could be observed conveniently.
     3.Ultrasonic irradiation can increase the microvascular permeability of transplanted tumor and promot transfection of genetic material into cells. Ultrasound mediated microbubble can transfer target gene more efficiently to enhance gene transfer rate.
     4. Ultrasound mediated microbubble can transfer target gene expressed in tumor tissue, which making a satisfactory tumor inhibition by the treatment system showed the inhibition of tumor growth and decline in tumor MVD.
     5.Ultrasound irradiate microbubble mediated double suicide gene system is a perfect strategy of gene therapy for breast cancer.
引文
[1]Bieche I, Tozlu S, Girault I, et al. Identitlcation of a three gene expression signature of poor prognosis breast carcinoma[J]. Mol Cancer,2004,3(1):37.
    [2]刘丽萍,王智彪. Sono VueTM——一种新型超声对比剂的研究进展.国外医学生物医学工程分册,2005,28(1):40-42.
    [3]Wei K, Skyba DM, Firschke C, et al. Interactions between microbubbles and ultrasound: in vitro and in vivo observations. J Am Coll Cardiol,1997,29(5): 1081-1088.
    [4]Miller DL, Pislaru SV, Greenleaf JE. Sonoporation:mechanical DNA delivery by ultrasonic cavitation. Somat Cell MolGenet,2002,27(126):115-134.
    [5]Skyba DM, Price RJ, Linka AZ, et al. Direct In Vivo Visualization of Intravascular Destruction of Microbubbles by Ultrasound and its Local Effects on Tissue. Circulation,1998,98(4):290-293.
    [6]冉海涛,任红,王志刚,等.超声波空化效应对体外培养细胞细胞膜作用的实验研究.中华超声影像学杂志,2003,12(8):499-501.
    [7]Portsmouth D, Hlavaty J, Rennet M. Suicide genes for cancertherapy[j]. Mol Aspects Med,2007,28(1):4-41.
    [8]Kerr JE,Wyllie AH, Currie AR. Apoptois: a basic biological phenomenon with Wide-ranging implications in tissue kinetics. Br J Cancer,1972,26(4):239-257.
    [9]Li E Altieri DC. Transcfiptional analysis of human survivin gene expression. Bionchem J,1999,344(2):305-311.
    [10]Ferrara K, Pollard R, Borden M. Ultrasound microbubble contrast agents: Fundamentals and application to gene and drug delivery. Annual Review of Biomedical Engineering,2004,9:415-447.
    [11]Mayer CR, Geis NA, Katus HA, et al. Ultrasound targeted microbubble destruction for drug and gene delivery. Expert Opinion on Drug Delivery,2008,5(10): 1121-1138.
    [12]Reed JC. Dysrcgulation ofapoptosis in cancer. J Clin Oncol,1999,17:2941-2953.
    [13]Shangara Lal, Ulrich M. Lauer, Dietrich Niethammer, et al. Suicide genes: past, present and future perspectives. Immunology Today,2000,21(1):48-54.
    [14]Kan QC, Yu ZJ, Lei YC, et al. Lethiferous effects of a recombinant vector carrying thymidine kinase suicide gene on 2.2.15 cells via a self-modulating mechanism. world j gastroenterol,2003,9(10):2216-2220.
    [15]Dayton PA, Ferrara KW. Targeted imaging using ultrasound. J Magn Reson Imaging,2002,16(4):362-377.
    [16]陈少敏,宾建平.靶向超声微泡构建的策略和选择.心血管病学进展,2008,29(3):393-396.
    [17]Yah C, Wen-Chao L, Hong-Yan Q, et al. A new targeting approach for breast cancer gene therapy using the human fatty acid synthase promoter[J]. Acta Oncd.2007,46(6):773-81.
    [18]Guo X, Evans TR,Somamth S, et al. In vitro evaluation of cancer-specific NF-kappaB-CEA enhancer-promoter system for 5-fluorouracil prodrug gene therapy in colon cancer cell lines[J]. Br J Cancer,2007,97(6):745-54.
    [19]Willhauck MJ, Sharif BR,Klutz K, et al. Alpha-fetoprotein promoter-targeted sodium iodide symporter gene therapy of hepatocellular carcinoma[J]. Gene Ther,2008,15(3):214-23.
    [20]Bilsland AE, Merron A, Vassaux G, et al. Modulation of Telomerase Promoter Tumor Selectivity in the Context of Oncolytic Adeno viruses [J]. Cancer Res, 2007,67(3):1299-307.
    [21]Murata N, Takashima Y, Toyoshima K,et al. Anti-tumor effects of anti-VEGF siRNA encapsulated with PLGA microspheres in mice[J]. J Control Release,2008, 126(3):246-54.
    [22]Porter TR, Iversen PL, Li S, et al. Interaction of diagnostic ultrasound with synthetic oligonucleotide-labeled perfluorocarbon-exposed sonicated dextrose albumin microbubbles. J Ultrasound Med,1996,15(8):577-584.
    [23]Greenleaf WJ, Bolander ME, Sarkar G, et al. Artificial cavitation nuclei significantly enhance acoustically induced cell transfection. Ultrasound Med Bio, 1998,24(4):587-595.
    [24]Lawrie A, Brisken AF, Francis SE, et al. Microbubble-enhanced ultrasound for vascular gene delivery Nonviral Transfer Technology. Gene Therapy,2000,7(23): 2023-2027.
    [25]Sonoda S, Tachibana K, Uchino E, et al. Gene transfer to corneal epithelium and keratocytes medimed by ultrasound with microbubbles. Invest Ophthalmol Vis Sci, 2006,47(2):558-564.
    [26]Hashiya N, Aoki M, Tachibana K, et al. Local delivery of E2F decoy oligodeoxynucleotides using ultrasound with microbubble agent(Optison) inhibits intimal hyperplasia after balloon injury in rat carotid artery model. Biochemical and Biophysical Research Communications,2004,317(2):508-514.
    [27]Kodama T, Tan PH, Offiah I, et al. Delivery of oligodeoxynucleotides into human saphenous veins and the adjunct effect of ultrasound and microbubbles. Ultrasound Med Biol,2005,31(12):1683-1691.
    [28]Koch S, Pohl P, Cobet U, et al. Ultrasound enhancement of liposeme-mediated cell transfection is caused by cavitation effects. Ultrasound Med Biol,2000,26(5): 897-903.
    [29]Ren JL, Wang ZG, Zhang Y, et al. Transfection Efficiency of TDL Compound in HUVEC Enhanced by Ultrasound-Targeted Microbubble Destruction Ultrasound Med Biol,2008,13(11):1857-1867.
    [30]陈智毅,谢明星,王新房,等.超声靶向微泡破裂联合PEI增强小鼠EGFP基因心肌转染.中国医学影像技术,2009,25(1):25-28.
    [31]Zheng XZ, Wu Y, Li HL, et al. Comparative analysis of the effects of ultrasound-targeted microbubble destruction on recombinant adeno-associated virus-and plasmid-mediated transgene expression in human retinal pigment epithelium cells. Molecular Medicine Reports,2009,2(6):937-942.
    [32]Vargo-Gogola T, Rosen JM. Modelling breast Cancer: one size does not fit all [J]. Nat Rev Cancer,2007,7(9):659-72.
    [33]Shoji M, Sun A, Kisiel W, et al. Targeting tissue factor-expressing tumor angiogenesis and tumors with EF24 conjugated to factor Ⅶa [J]. J Drug Target,2008, 16(3):185-97.
    [34]Weidner N. Semple JP,Welch wlL et ai. Tumor angiogenesis and metastasis-correlation in inwsive breast carcinoma. N Engl J Med,1991; 324:1-8.
    [35]汪朝霞,王志刚.超声微泡造影剂携基因或药物治疗研究.中国介入影像与治疗学,2006,3(4):306-308.
    [36]Alter J. Sennoga CA, Lopes DM, et al. Microbubble stability is a major determinant of the efficiency of ultrasound and microbubble mediated in vivo gene transfer. Ultrasound Med Biol,2009,35(6):976-984.
    [37]Miller DL. Overview of experimental studies of biological effects of medical ultrasound caused by gas body activation and inertial cavitation. Prog Biophys Mol Biol,2007,93(1-3):314-330.
    [38]Shen ZP, Brayman AA, Chen L, et al. Ultrasound with microbubbles enhances gene expression of plasmid DNA in the liver via intraportal delivery. Gene Ther, 2008,15(16):1147-1155.
    [39]Chomas JE, Dayton P, Allen J, Morgan K, Ferrara KW. Mechanisms of contrast agent destruction. IEEE. Trans Ultrason Ferroelectr Freq Control,2001,48:232-248.
    [40]Chomas JE, Dayton P, May D, Ferrara K. Threshold of fragmentation for ultrasonic contrast agents. J Biomed Opt,2001,6:141-150.
    [41]Kipshidze NN, Kim HS, Iversen P, Yazdi HA, Bhargava B, New G, et al. Intramural coronary delivery of advanced antisense oligonucleotides reduces neointimal formation in the porcine stent restenocis model. J Am Coll Cardio,2002, 39:1686-1691.
    [42]Nakase M, Inui M, Okunmm K, et al. p53 gene therapy of human osteosarcoma using a transferrin-modified cationic liposome [J]. Mol Cancer Ther,2005,4(4): 625-31.
    [43]Sundaresan G Yazaki PJ, Shively JE, et al.1241-labeled engineered anti-CEA minibodies and diabodies allow high-contrast,antigen-specific small-animal PET imaging of xenografts in athymic mice [J]. J Nucl Med,2003,44 (12):1962-9.
    [44]成海恩,张溢,张翠莉等.沉默HPV16 E6基因对人宫颈癌裸鼠移植瘤的抑制作用[J].第三军医大学学报,2007,29(6):486-9.
    [1]Postema M. Bubbles and ultrasound. Appl Acoust.2009,70:1305.
    [2]Gmmiak R, Shah PM. Echocardiography of the aortic root[J]. Invest Radiol,1968, 3(5):356-366.
    [3]Meltzer RS, Tickner EG, Sahines TP, et al. The source of ultrasound contrast effect. JCU,1980,8:121.
    [4]Feinstein SB, Ten Cate FJ, Zwehl W, et al. Two-dimensional contrast echocardiography. I.In vitro development and quantitative analysis of echo contrast agents[J]. J Am Coll CardiOl.1984; 3(1):14-20.
    [5]Kim AY, Kim SH, Kim YJ, et al. contrast-enhanced power doppler sonography for the differentiation of cystic renal lesions: preliminary study[J]. J Ultrasound Med, 1999,18:5810-588.
    [6]Schneider M, SonoVue. A new ultrasound contrast agent[J]. Eur Radiol,1999, 9(3):347-348.
    [7]Ophir J, Parker KJ. Contrast agents in diagnostic ultrasound。 Ultrasound Med, Biol,1990,15:319-333.
    [8]Frinking PJA, Bounkaz A, Kirkhorn J, et al.Ultrasound contrast imaging: current and new potential methods. Ultrasound in Med Biol,2000,26:965-975.
    [9]李莉,万明习,程敬之.包膜超声造影剂线性散射与视频强度动态特性研究.中国生物医学工程学报,2000,19(2):131-137.
    [10]Btomley MJK, Albrecht T, Cosgrove DO, et al. Improved imaging of 1 iver metastases with Stimulated acousgic emission in the late phase of enhancement with the US contrast agent SHU508A: early experience. Radiology,1999,210:409-416.
    [11]Forsberg F, Ji-Bin Liu, Burns PN, et al. Artifacts in ultrasonic contrast agent studies. J Ultrasound Med,1994,13:357-365.
    [12]Burns PN, Wilson SR, Simpson DH. Pulse inversion imaging of liver blood flow: improved method for characterizing focal focal masses with microbubble contrast. Investigative Radiology,2000,35(1):58-71.
    [13]陆兆龄,陈常佩.新型超声对比造影剂和成像方法在心脏以外领域的应用.中国医学影像技术,2001,17(9):866-869。
    [14]Phillips PJ. Contrast pulse sequences(CPS): imaging nonlinear microbubbles. IEEE ultrasonics symposium,2001,1729-1745.
    [15]Hohmann J, Albrecht T, Oldenburg A, et al. Liver metastases in cancer:detection with contrast-enhanced ultrasonography. Abdom Imaging,2004,29:669-681.
    [16]周永昌,郭万学.超声医学[M].第三版.北京:科学技术文献出版社,1998,814-840.
    [17]唐杰,董宝玮.腹部和外周血管彩色多普勒诊断学.北京:人民卫生出版社,1999,194-195.
    [18]Quaia E,Calliada F,Bertolotto M,el al. Characterization offocal liver lesion with contrast-specific US modes and a sulfur hexafluoride-filled and confidence[J]. Rodiology,2004,232:420-430.
    [19]Jerome Borsboom,Chien Ting Chin, Nico de Jong,et al. Experimental evaluation of a Non-linear ceded excitation method for contrast imaging [J]. Ultrasonics,2004,42(9): 671-675.
    [20]Christoph F. Characterization of focal liver lesions with contrast enhanced uhrasonagraphy [J]. European Journal of Radiology,2004,41 (6):9-17.
    [21]Ding H,Wang WP,Huang BJ,et al. Imaging offocal liver lesiongs:low mechanical real-time ultrasonography with SonoVue[J]. Ultrasound Med,2005,24(22):285-297.
    [22]张不林,胡兵.超声造影在肝脏功能成像上的研究进展[J].临床超声医学杂志,2006,8(11):680-683.
    [23]于小玲,粱萍,唐杰,等.实时超声造影技术在诊断肝脏微小局灶性病变的价值[J].中国医学影像学杂志,2007,15(3):161—164.
    [24]王知力,唐杰,李俊来,等.肝脏局灶性病变超声造影误诊分析[J].中国超声医学杂志,2007,23(9):705-708.
    [25]Solbiati L,Cova L,Ierace T,et al.liver cancer imaging: the need for accurate detection of intrahepatie disease spread. J.of Computer Assisted Tomography,1999,
    23(Suppl.1):S29-S37.
    [26]Sotbiati L, Tonolini M, Cova L, et al. The role of contrast—enhanced ultrasound in the detection of focal livet lesions. Eur Radiol,2001, 11(suppl.3):15-26.
    [27]刘政,谢峰,李澎,等.肝脏VX2肿瘤声学造影的动态变化时相.中华超声影像学杂志,2000,9(6):367-369.
    [28]Catalano 0, Nunziata A, Lobianco R, et al. Real-time harmonic contrast material-specific US of focal liver lesions. RadioGraphics,2005,25:333-349.
    [29]刘复生,刘彤华主编肿瘤病理学.北京:北京医科大学中国协和医科大学联食出版社,1997,909-950,第二十五章,肝胆肿瘤.朱世能.
    [30]Kim MJ, Lim HK, Kim SH, et al. Evaluation of hepatic focal nodular hyperplasia with contrast-enhanced gray seale harmonic sonography.J Ultrasound Med,2004,23: 297-305.
    [31]Von Herbay A, Vogt C, Haussinger D. Late-phase pulse-inversion sonography using the contrast agent Levovist: differentiation between benign and malignant focal lesions of the livel. Am J Roentgenol,2002,179:1273-1279.
    [32]Brannigan M, Burns PN, Wilson SR. Blood flow patterns in focal lesions at microbubble-enhanced US. RadioGraphics,2004,24:921-935.
    [33]Lee JY, Kim TK, Choi BI, et al. Improved sonographic imaging of hepatic hemangioma with contrast-enhanced coded harmonic angiography: comparison with MR imaging. Ultrasound Med Biol,2002,28(3):287-295.
    [34]Dill-Macky MJ, Burns PN, Khalili K, et al. Focal hepatic masses: enhancement patterns with SHU508A and Pulse-Inversion US. Radiology,2002,222:95-102.
    [35]Ouaia E, Calliada F, Bertolotto M, et al. Characterization ofl focal liver lesions with contrast-specific US modes and a skllfur hexafluoride-filled microbubble contrast agent: diagnostic performance and confidenee, Radiology,2004,232(2): 420-430。
    [36]Torzilli G, Fabbro DD, Olivari N, et al. Contrast-enhanced ultrasonography during liver surgery. British Journal of Surgery,2004,91:1165-1167.
    [37]Nicolau C, Catala V, Bru C. Chacterization of focal liver lesions with contrast-enhanced ultrasound. Eur Radiol,2003,13(Suppl.3): N70-N78.
    [38]Hohmann J, Albrecht T, Oldenburg A, et al. Liver metastases in cancer: detection with contrast-enhanced ultrasonography. Abdom Imaging,2004,29:669-681.
    [39]Youk JH, Kim CS, Lee JM. Contrast-enhanced agent detection imaging: value in the characterization of focal hepatic lesions. J Ultrasound Med,2003,22:897-910.
    [40]王文平,丁红,齐青,等.动态灰阶超声造影在肝肿瘤鉴别诊断中的应用.中华超声影像学杂志,2003,12(2):101-104.
    [41]Kim JH, Kim TK, Kim BS, et al.Enhancement of hepatic hemangiomas with Levovist on coded harmonic angiographics ultrasonography. J Ultrasound Med, 2002,21:141-148.
    [42]丁红,王文平,远田弘一,等.肝占位性病变的超声造影双向脉冲谐频成像表现.中华超声影像学杂志,2002,11(7):396—399.
    [43]Bartolotta TV. Benign focal liver lesions. Eur Radiol,2004,14(supp].8):96-103.
    [44]Catalano 0, Sandomenico P, Raso MM, et al. Low mechanical index contrast-enhanced sonographic findings of pyogenic hepatic abscesses.AJR,2004, 182:447-450.
    [45]Dietrich CF, Ignee A, Trojan J, et al. Improved characterisation of hi stologically proven liver tumours by cotltrast enhanced ultrasonography during the portal venous and specific late phase of SHU508A. Gut,2004,53:401-405.
    [46]Furuse J, Nagase M, Ishij H, et al. Contrast enhancement patterns of hepatic tumours during the vascular phase using coded harmonic imaging and Levovist to differentlate hepatocellular earcinoma from other focal lesions.The British Journal of Radiology,2003,76:385-392.
    [47]吕珂,姜玉新,朱庆莉,等.肝局灶性病变超声造影反向脉冲谐波显像的临床研究.中华超声影像学杂志,2003,12:351-354.
    [48]陈敏华,严昆,戴莹,等。灰阶超声造影新技术对肝肿瘤诊断及射频治疗的应用价值.中国医学影像技术,2004,20(3):326-330.
    [49]Baron RL, Oliver JH, Dodd GD, et al. Hepatocellular careinoma: evaiuation with biphasic, contrast-enhanced, helical CT.Radiology,1996,199:505-511.
    [50]唐杰,董宝玮,于晓玲,等.图像处理系统辅助肝脏超声造影测定.中华超声影像学杂志,1999,8(4):206-209.
    [51]Numata K, Isozaki T, Ozawa Y, et al.Pereutaneous ablation therapy guided by contrast-enhanced sonography for patients with hapatocellular carcinoma. AJR,2003, 180:143-149。
    [52]吴风林,刘红梅,崔忠林.经静脉脉冲反相谐波声学造影诊断小肝癌的初步研究.中倒超声医学杂志.2002,18(10):769-771.
    [53]Solbiati L, Tonolini M, Cova I.Hepatocellular careinoma and dysptastic lesions. In:Solobiati et al. Contrast-enhanced ultrasound of liver diseases. Spriger-Verlag,66-78.
    [54]Choi BI, Klm AY, Lee JY, et al.Hepatocellular careinoma:contrast enhancement with Levovist. J Ultrasound Med,2002,21:77-84.
    [55]Albrecht T, Oldenburg A, Hohmann J, et al. Imaging of liver metastases with contrast-specific low-MI real-time ultrasound and SonoVue. European Journal of Ultrasound,2003,13(Suppl.3):N79-N86.
    [56]吕明德,徐辉雄,谢晓燕,等.肝脏局灶性病变超声造影表现模式——低机械指数连续成像技术552例应用经验.第十五届西门子超声用户学术交流会论文摘要集.
    [57]Krix M, Kiessling F, Essig M, et al. Low mechanical index contrast-enhanced Ultrasound better reflects high arterial perfusion of 1 iver metastases than arterial phase computed tomography. Investigative Radiology,2004,39(4):216-222.
    [58]Nielsen MB,Bang N. Contrast enhanced ultrasound in liver imaging. European Journal of Radiology,2004,51S:S3-S8.
    [59]Herbay A von, Vogt C, Haussinger D. Late-phase pulse-inversion sonography using the contrast agent Levovist: differentiation between benign and malignant focal lesions of the liver. AJR,2002,179:1273-1279.
    [60]郝希山,王殿昌主编.腹部肿瘤学.北京:人民卫生出版社,576-800.
    [61]沈延政,黄敏,严禹,等.利声显超声造影在超声导向微波凝固治疗肿瘤前的应用研究.中国医学影像技术,2001,17(3):250-252.
    [62]齐青,王文平,徐智章,等.肝肿瘤超声造影的血流动力学诊断研究.中华超声影像学杂志,2001,10(4):216-218.
    [63]Solbiati L, Lerace T, Tonolini M, et al.6uidance and control of percutaneous treatments with contrast-enhanced ultrasound. EurRadiol,2003,13(Suppl.3): N87-N90.
    [64]Hotta N, Tagaya T, Maeno T, et al. Usefulness of contrast-enhanced ultrasonography with dynamic flow imaging to evaluate therapeutic effects for hepatoce]lular carcinoma. Hapato-Gastroenterology.2003,50:1867-1871.
    [65]Hotta N, Tagaya T, Maeno T, et al. Advanced dynamic flow with contrast-enhanced ultrasonography for the evaluation of tumor vascularity in liver tumors. Journal of Cl inical Imaging,2005,29:34-41.
    [66]Liu JB, Goldberg BB, Merton DA, et al. The role of contrast enhanced sonography for radiofrequency ablation of liver tumors. J Ultrasound Med,2001, 20:517-523.
    [67]Imari Y, Sakamoto S, Shiomichi S, et at. Hepatocellular carcinoma not detected with plain US: treatment with percutaneous ethanol injection under guidance with enhanced US. Radiology,1992,185:497-500.
    [68]Solbiati L, Ierace T, Tonolini M, et al. Guidance and monitoring of rad[ofrequency liver tumor ablation with contrast enhanced ultrasound. European Journal of Radiology,2004,51S:S19-S23.
    [69]丁红,工腾正俊,远田弘一,等.超声造影谐频成像与螺旋CT对肝癌非手术治疗后疗效的评价.中国医学影像技术,2002,18(8):785-787.
    [70]Meloni MF, Goldberg SN, Livraghi T, et al. Hepatocellular Carcinomar treated With radiofrequency ablation: comparison of pulse inversion contrast-enhanced harmonic sonography, contrast-enhanced power Doppler sonography, and helical CT. AJR,2001,177:375-380.
    [71]Ding H, Kudo M, Onda H, et al. Contrast-enhanced subtraction harmonic sonography for evaluating treatment response in patients with hepatocellular careinoma. AJR,2001,176:661-666.
    [72]Meuwly JY, Schnyder P, Gudinchet F, et al. Pulse-inversion harmonic imaging improves lesion conspicuity during US-guided biopsy. J Vasc Tnterv Radiol,2003, 14:335-341.
    [1]Skyba DM, Price RJ, Linka AZ, Skalak TC, Kaul S.Direct in vivo visualization of intravascular destruction of microbubbles by ultrasound and its local effects on tissue. Circulation,1998,98:290-293.
    [2]Price RJ, Skyba DM, KAUL S, Skalak TC. Delivery of colloidal particles and red blood cells to tissue through microvessel ruptures created by targeted microbubble destruction with ultrasound. Circulation,1998,98:1264-1267.
    [3]Porter TR, Iversen PL, Li S, Xie F.Interaction of diagnostic ultrasound with synthetic oligonucleotide labeled erfluorocarbon-exposed sonicated dextrose albumin microbubbles. J Ultrasound Med,1996,15:577-584.
    [4]Main ML, Grayburn PA.Clinical applications of transpul-monary contrast echocardiography. Am Heart J,1999,137:144-153.
    [5]Wei K, Skyba DM, Firschke C, Jayaweera AR, Lindner JR, Kaul S. Interactions between microbubbles and ultrasound: in vitro and in vivo observations. J Am Coll Cardiol,1997,29:1081-1088.
    [6]Unger EC, McCreery TP, Sweitzer RH, Caldwell VE, Wu Y. Acoustically active lipospheres containing paclitaxel: a new therapeutic ultrasound contrast agent. Invest Radiol,1998,33:886-892.
    [7]Taniyama Y, Tachibana K, Hiraoka K, Namba T, Yamasaki K, Hashiya N, et al. Local delivery of plasmid DNA into rat carotid artery using ultrasound. Circulation,2002,105:1233-1239.
    [8]Chen S, Shohet RV, Bekeredjian R, Frenkel P, Grayburn PA.Optimization of ultrasound parameters for cardiac gene delivery of adenoviral or plasmid deoxyribonucleic acid by ultrasound targeted microbubble destruction. J Am Coll Cardiol,2003,42:301-308.
    [9]Shohet RV, Chen S, Zhou YT, Wang Z, Meidell RS, Unger RH, et al. Echocardiographic destruction of albumin microbubbles directs gene delivery to the myocardium. Circulation,2000,101:2554-2556.
    [10]Mukherjee D, Wong J, Griffin B, Ellis SG, Porter T, Sen S, et al. Tenfold augmentation of endothelial uptake of vascular endothelial growth factor with ultrasound after systemic administration. J Am Coll Cardiol,2000,35:1678-1686.
    [11]Villanueva FS, Jankowski RJ, Manaugh C, Wagner WR. Albumin microbubble adherence to human coronary endothelium:implications for assessment of endothelial function using myocardial contrast echocardiography. J Am Coll Cardiol,1997, 30:689-693.
    [12]Miller MW. Gene transfection and drug delivery. Ultrasound Med Biol,2000,26 Suppl 1:S59-S62.
    [13]Unger EC, McCreery TP, Sweitzer RH, Caldwell VE, Wu Y. Acoustically active lipospheres containing paclitaxel:a new therapeutic ultrasound contrast agent. Invest Radiol,1998,33:886-892.
    [14]Fritz TA, Unger EC, Sutherland G, Sahn D. Phase I clinical trials of MRX-115.A new ultrasound contrast agent. Invest Radiol,1997,32:735-740.
    [15]Lindner JR, Song J, Christiansen J, Klibanov AL, Xu F, Ley K. Ultrasound assessment of inflammation and renal tissue injury with microbubbles targeted to P-selectin. Circulation,2001,104:2107-2112.
    [16]Weller GE, Lu E, Csikari MM, Klibanov AL, Fischer D, Wagner WR, et al. Ultrasound imaging of acute cardiac transplant rejection with microbubbles targeted to intercellular adhesion molecule-1. Circulation,2003,108:218-224.
    [17]Chomas JE, Dayton P, Allen J, Morgan K, Ferrara KW. Mechanisms of contrast agent destruction. IEEE. Trans Ultrason Ferroelectr Freq Control,2001,48:232-248.
    [18]Chomas JE, Dayton P, May D, Ferrara K. Threshold of fragmentation for ultrasonic contrast agents. J Biomed Opt,2001,6:141-150.
    [19]Song J, Chappell JC, Qi M, VanGieson EJ, Kaul S, Price RJ. Influence of injection site, microvascular pressure and ultrasound variables on microbubble-mediated delivery of microspheres to muscle. J Am Coll Cardiol,2002, 39:726-731.
    [20]Deng CX, Sieling F, Pan H, Cui J. Ultrasound-induced cell membrane porosity. Ultrasound Med Biol,2004,30:519-526.
    [21]Porter TR, Hiser WL, Kricsfeld D, Deligonui U, Xie F, Iversen P, et al. Inhibition of carotid artery neointimal formation with intravenous microbubbles. Ultrasound Med Biol,2001,27:259-265.
    [22]Porter TR, Knnap D, Venneri L, Oberdorfer J, Lof J, Iversen P, et al. Increased suppression of intracoronary c-myc protein synthesis within the stent or balloon injury site using an intravenous microbubble delivery system containing antisense to cmyc: comparison with direct intracoronary injection. J Am Coll Cardiol,2003,41:431 A.
    [23]Verma IM, Somia N. Gene therapy-promises, problems and prospects. Nature, 1997,389:239-242.
    [24]Newman KD, Dunn PF, Owens JW, Schulick AH, Virmani R, Sukhova G, et al. Adenovirus-mediated gene transfer into normal rabbit arteries results in prolonged vascular cell activation, inflammation, and neointimal hyperplasia. J Clin Invest,1995, 96:2955-2965.
    [25]Felgner PL. Nonviral strategies for gene therapy. Sci Am,1997,276:102-106.
    [26]Bao S, Thrall BD, Miller DL. Transfection of a reporter plasmid into cultured cells by sonoporation in vitro. Ultrasound Med Biol,1997,23:953-959.
    [27]Shi Y, Fard A, Galeo A, Hutchinson HG, Vermani P, Dodge GR, et al. Transcatheter delivery of c-myc antisense oligomers reduces neointimal formation in a procine model of coronary artery balloon injury. Circulation,1994,90:944-951.
    [28]Kipshidze NN, Kim HS, Iversen P, Yazdi HA, Bhargava B, New G, et al. Intramural coronary delivery of advanced antisense oligonucleotides reduces neointimal formation in the porcine stent restenocis model. J Am Coll Cardio,2002, 39:1686-1691.
    [29]Keller MW, Geddes L, Spotnitz W, Kaul S, Duling BR. Microcirculatory dysfunction following perfusion with hyperkalemic, hypothermic, cardioplegic solutions and blood reperfusion. Effects of adenosine. Circulation,1991, 84:2485-2494.
    [30]Xing D, Miller A, Novak L, Rocha R, Chen YF, Oparil S. Estradiol and progestins differentially modulate leukocyte infiltration after cascular injury. Circulation,2004,109:234-241.
    [31]Fisher NG, Christiansen JP, Klibanov A, Taylor RP, Kaul S, Lindner JR. Influence of Microbubble surface charge on capillary transit and myocardial contrast enhancement. J Am Coll Cardiol,2002,40:811-819.
    [32]Tsutsui JM, Xie F, Radio SJ, Phillips P, Chomas J, Lof J, et al. Non-invasive detection of carotid artery endothelial dysfunction due to hypertriglyceridemia and balloon injury with high frequency real time low mechanical index imaging of retained microbubbles. J Am Coll Cardiol,2004,44:1036-1046.
    [33]Lu QL, Liang HD, Partridge T, Blomley MJ. Microbubble ultrasound improves the efficiency of gene transduction in skeletal muscle in vivo with reduced tissue damage LU2003. Gene Ther,2003,10:396-405.
    [34]Zhou Z, Mukherjee D, Wang K, Zhou X, Tarakji K, Ellis K, et al. Induction of angiogenesis in a canine model of chronic myocardial ischemia with intravenous infusion of vascular endothelial growth factor (VRGF) combined with ultrasound energy and echo contrast agent. J Am Coll Cardiol,2003,39:396A.
    [35]ter Haar GR. Ultrasonic contrast agents:safety considerations reviewed. Eur J Radiol,2002,41:217-221.
    [36]Ay T, Havaux X, Van Camp G, Campanelli B, Gisellu G, Pasquet A, et al. Destruction of Contrast Microbubbles by Ultrasound: Effects on Myocardial Function, Coronary Perfusion Pressure, and Microvascular Integrity. Circulation,2001, 104:461-466.
    [37]Holland CK, Deng CS, Apfel RE, Alderman JL, Fernandez LA, Taylor KJ. Direct evidence of cavitation in vivo from diagnostic ultrasound. Ultrasound Med Biol,1996, 22:917-925.
    [38]Trubestein G, Engel C, Etzel F. Thrombolysis by ultrasound. Clin Sci Mol Med, 1976,51:697-698.
    [39]Everbach EC, Makin IR, Franic CW, et al. Effect of acoustic cavitation on platelets in the presence of an echo-contrast agent. Ultrasound Med Biol,1998,24(21): 129-136.
    [40]Rosenschein U, Furman V, Kerner E, et al. Ultrasound imaging-guided noninvasive ultrasound thrombolysis-Preclinical Circulation,2000,102(2):238-245.
    [41]Unger EC, Porter T, Culp W, et al. Therapeutic applications of lipid-coated microbubbles. Advanced Drug Delivery Reviews,2004,56(9):1291-1314.
    [42]Everbach EC, Francis CW. Cavitational mechanisms in ultrasound-accelerated thrombolysis at 1 MHz. Ultrasound Med Biol,2000,26(7):1153-1160.
    [43]Unger EC, Matsunaga TO, McCreery T, et al. Therapeutic applications of microbubbles. Eur J Radiol,2002,42(2):160-168.
    [44]Wu F, Wang ZB, Jin CB, et al. Circulating tumor cells in patients with solid malignancy treated by high-intiensity focused ultrasound. Ultrasound Med Biol,2004, 30(4):511-517.
    [45]Yuh EL, Shulman SG, Mehta SA, et al. Delivery of systemic chemotherapeutic agent to tumors by using focused ultrasound: study in a murine model. Radiology, 2005,234(2):431-437.
    [46]刘春梅,陈锦云,柯丹,等.脉冲高强度聚焦超声联合微泡非热损伤兔肝VX2移 植瘤的病理观察.中国超声医学杂志,2007,23(11):806-809.
    [47]Melodelima D, Chapelon JY, Theillere Y, et al. Combination of thermal and cavitation effects to generate deep lesions with an endocavitary applicator using a plane transducer: ex vivo studies. Ultrasound Med Biol,2004,30(1):103-111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700