体外扩增过程中造血细胞生理状态和遗传稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
体外扩增技术是解决新鲜脐血中造血干/祖细胞数量稀少问题的有效策略,而扩增后细胞的质量和安全性是影响其临床应用的重要因素。本文以脐血CD34+细胞为对象,分别采用有或无血清培养体系,对体外培养细胞的生理状态、遗传稳定性、染色体核型和克隆形成能力进行了系统的分析,获得下列结果:(1)无论细胞培养基有无血清,细胞的比生长速率、S/G2/M期细胞比例、以及细胞内端粒酶活性均有相似的变化趋势,存在一定的相关性;(2)与CD34-细胞相比,在培养过程中CD34+细胞的凋亡率始终维持在较低水平上,低于新鲜分离的CD34+细胞中的凋亡率,表明CD34+细胞具有很强的抗凋亡特性;(3)在细胞培养过程中,与遗传稳定性相关基因Bmil、hTERT和Survivin mRNA的表达水平随培养时间延长均有不同程度的上调,但与K562细胞中的稳定高表达不同,提示细胞培养没有产生细胞恶化的信号;(4)6个脐血样本用含血清培养体系扩增,染色体核型异常比例较高,达2/3。但是这些异常的发生不具有定向性和稳定遗传性,且未表现出异常增殖的特征,提示有血清培养体系扩增的脐血造血干/祖细胞可能有临床安全性风险,但没有足够证据显示培养细胞出现了恶性转化。这些研究对确保培养细胞移植的安全性与有效性具有重要意义。
It has been demonstrated that ex vivo expansion is a feasible strategy which could overcome the cell dose limitation in fresh cord blood (CB). However the quality and safety of expanded cells are critical for their clinical application. In this research, physiological parameters and genetic stability of CB CD34+ cells cultured with media at present of or absence of serum were examined extensively, producing following results:(1) Cell specific growth rate, S/G2/M phase cell proportion and telomerase activity had a similar variation tendency during culture with or without serum, suggesting the parameters were correlated each other to some extent. (2) The apoptosis of expanded CD34+ cells was much lower than cultured CD34- cells or freshly isolated CD34+ cells, sugggesting that cultured CD34+ cells are of anti-apoptosis. (3) The expression of Bmil, hTERT and Survivin genes related to cell genetic stability were upregulated differently in cultured CD34+ cells than those in freshly isolated CD34+ cells, although the expressions were not as efficient as those in K562 cells. Thus, the expresson pattern of these genes could not indicate neoplastic transformation occurs during the culturing. (4) Although high proportion of chromosomal alterations exsisted in cultured CD34+ cells cells in serum originated from 6 CB samples, the expanded cells with altered chromosomes could not proliferate neoplastically. Therefore, malignant transformation seems unlikely when expanded CD34+cells in serum were applied clinically, although potential risks were not excluded completely. These efforts were of importance for clinical transplantation efficiently and safely with expanded cells.
引文
[1]Rubinstein P, Carrier C, Scaradavou A, et al. Outcomes among 562 recipients of placental-blood transplants from unrelated donors[J]. New England Journal of Medicine,1998,339(22):1565-1570.
    [2]Laughlin M, Eapen M, Rubinstein P, et al. Outcomes after transplantation of cord blood or bone marrow from unrelated donors in adults with leukemia[J], New England Journal of Medicine,2004,351(22):2265-2269.
    [3]Jaroscak J, Goltry K, Smith A, et al. Augmentation of umbilical cord blood (UCB) transplantation with ex vivo-expanded UCB cells:results of a phase 1 trial using the AastromReplicell System[J]. Blood,2003,101(12):5061-5067.
    [4]Jean M. Mutant stem cells may seed cancer[J]. Science,2003,301(5638): 1308-1310.
    [5]Rubio D, Garcia-Castro J, Martin M, et al. Spontaneous human adult stem cell transformation[J]. Cancer Research,2005,65(8):3035-3042.
    [6]Corselli M, Parodi A, Mogni M, et al. Clinical scale ex vivo expansion of cord blood-derived outgrowth endothelial progenitor cells is associated with high incidence of karyotype aberrations[J]. Experimental Hematology,2008,36(3): 340-349.
    [7]Ng Y, Bloem A, van Kessel B, et al. Selective in vitro expansion and efficient retroviral transduction of human CD34+ CD38- haematopoietic stem cells[J]. British journal of haematology,2002,117(1):226-237.
    [8]Verstegen M, van Hennik P, Terpstra W, et al Transplantation of human umbilical cord blood cells in macrophage-depleted SCID mice:evidence for accessory cell involvement in expansion of immature CD34+ CD38- cells[J]. Blood,1998,91(6):1966-1971.
    [9]Gluckman E, Broxmeyer H, Auerbach A, et al. Hematopoietic reconstitution in a patient with Fanconi's anemia by means of umbilical-cord blood from an HLA-identical sibling[J]. The New England journal of medicine,1989, 321(17):1174-1180.
    [10]Gluckman E. Current status of umbilical cord blood hematopoietic stem cell transplantation[J]. Experimental Hematology,2000,28(11):1197-1205.
    [11]Cohen S, Gluckman E. Cord blood characteristics:role in stem cell transplantation[M]. Informa HealthCare,2000.
    [12]Gunetti M, Ferrero I, Rustichelli D, et al. Refreezing of cord blood hematopoietic stem cells for allogenic transplantation:in vitro and in vivo validation of a clinical phase Ⅰ/Ⅱ protocol in European and Italian Good Manufacturing Practice conditions[J]. Experimental Hematology,2008,36(2): 235-243.
    [13]Rogers I, Yamanaka N, Casper R. A simplified procedure for hematopoietic stem cell amplification using a serum-free, feeder cell-free culture system[J]. Biology of Blood and Marrow Transplantation,2008,14(8):927-937.
    [14]Levac K, Karanu F, Bhatia M. Identification of growth factor conditions that reduce ex vivo cord blood progenitor expansion but do not alter human repopulating cell function in vivo[J]. Haematologica,2005,90(2):166-173.
    [15]Luens K, Travis M, Chen B, et al. Thrombopoietin, kit ligand, and fik2/flt3 ligand together induce increased numbers of primitive hematopoietic progenitors from human CD34+ Thy-1+ Lin- cells with preserved ability to engraft SCID-hu bone[J]. Blood,1998,91(4):1206-1266.
    [16]Piacibello W, Sanavio F, Garetto L, et al. Differential growth factor requirement of primitive cord blood hematopoietic stem cell for self-renewal and amplification vs proliferation and differentiation [J]. Leukemia:official journal of the Leukemia Society of America, Leukemia Research Fund, UK, 1998,12(5):718-725.
    [17]Brandt J, Briddell R, Srour E, et al. Role of c-kit ligand in the expansion of human hematopoietic progenitor cells[J]. Blood,1992,79(3):634-640.
    [18]Young J, Bruno E, Luens K, et al. Thrombopoietin stimulates megakaryocytopoiesis, myelopoiesis, and expansion of CD34+ progenitor cells from single CD34+ Thy-1+ Lin- primitive progenitor cells[J]. Blood,1996, 88(5):1619-1625.
    [19]Rusten L, Lyman S, Veiby O, et al. The FLT3 ligand is a direct and potent stimulator of the growth of primitive and committed human CD34+ bone marrow progenitor cells in vitro[J]. Blood,1996,87(4):1317-1323.
    [20]Yang S, Cai H, Jin H, et al. Hematopoietic reconstitution of CD34+ cells derived from short-term cultured cord blood mononuclear cells[J]. Biotechnology and Bioprocess Engineering,2009,14(4):429-435.
    [21]Kusadasi N, Van Soest P, Mayen A, et al. Successful short-term ex vivo expansion of NOD/SCID repopulating ability and CAFC week 6 from umbilical cord blood[J]. Leukemia:official journal of the Leukemia Society of America, Leukemia Research Fund, UK,2000,14(11):1944-1950.
    [22]Robetamanith T, Bug M, Klenner K, et al. Interleukin 3 improves the ex vivo expansion of primitive human cord blood progenitor cells and maintains the engraftment potential of scid repopulating cells[J]. Stem Cells,2001,19(4):
    [23]Yonemura Y, Ku H, Hirayama F, et al. Interleukin 3 or interleukin 1 abrogates the reconstituting ability of hematopoietic stem cells[J]. Proceedings of the National Academy of Sciences of the United States of America,1996,93(9): 4040-4048.
    [24]Yao C, Feng Y, Lin X, et al. Characterization of serum-free ex vivo-expanded hematopoietic stem cells derived from human umbilical cord blood CD133+ cells[J]. Stem Cells and Development,2006,15(1):70-78.
    [25]Liu C, Wu M, Hwang S. Optimization of serum free medium for cord blood mesenchymal stem cells[J]. Biochemical Engineering Journal,2007,33(1): 1-9.
    [26]McNiece I, Briddell R. Ex vivo expansion of hematopoietic progenitor cells and mature cells[J]. Experimental Hematology,2001,29(1):3-11.
    [27]Devine S, Lazarus H, Emerson S. Clinical application of hematopoietic progenitor cell expansion:current status and future prospects[J]. Bone marrow transplantation,2003,31(4):241-252.
    [28]Allsopp R, Cheshier S, Weissman I. Telomere shortening accompanies increased cell cycle activity during serial transplantation of hematopoietic stem cells[J]. Journal of Experimental Medicine,2001,193(8):917.
    [29]Izadpanah R, Kaushal D, Kriedt C, et al. Long-term in vitro expansion alters the biology of adult mesenchymal stem cells[J]. Cancer Research,2008, 68(11):4229-4236.
    [30]Fleming W, Alpern E, Uchida N, et al. Functional heterogeneity is associated with the cell cycle status of murine hematopoietic stem cells[J]. Journal of Cell Biology,1993,122(4):897-902.
    [31]Murray A. The cell cycle[J]. Integrative and Comparative Biology,1989,29(2): 511-517.
    [32]Morgan D. Principles of CDK regulation[J]. Nature,1995,374(6518): 131-134.
    [33]Eilers M, Schirm S, Bishop J. The MYC protein activates transcription of the alpha-prothymosin gene[J]. The EMBO Journal,1991,10(1):133-139.
    [34]Gewirtz A, Calabretta B. A c-myb antisense oligodeoxynucleotide inhibits normal human hematopoiesis in vitro[J]. Science,1988,242(4883): 1303-1311.
    [35]Mastino A, Favalli C, Camilli A, et al. Umbilical cord blood:the role of apoptosis in the control of CD34+ cell counts[J]. Placenta,2003,24(1): 113-115.
    [36]Huang H, Li J, Hsieh Y, et al. Optimal proliferation of a hematopoietic progenitor cell line requires either costimulation with stem cell factor or increase of receptor expression that can be replaced by overexpression of Bcl-2[J]. Blood,1999,93(8):2569-2577.
    [37]Carson D, Ribeiro J. Apoptosis and disease[J]. The Lancet,1993,341(8855): 1251-1254.
    [38]Golstein P. Controlling cell death[J]. Science,1997,275(5303):1081-1088.
    [39]Blasco M. Telomeres and human disease:ageing, cancer and beyond[J]. Nature Reviews Genetics,2005,6(8):611-622.
    [40]Lingner J, Hughes T, Shevchenko A, et al. Reverse transcriptase motifs in the catalytic subunit of telomerase[J]. Science,1997,276(5312):561-567.
    [41]Hiyama K, Hirai Y, Kyoizumi S, et al. Activation of telomerase in human lymphocytes and hematopoietic progenitor cells[J]. The Journal of Immunology,1995,155(8):3711-3718.
    [42]Vaziri H, Dragowska W, Allsopp R, et al. Evidence for a mitotic clock in human hematopoietic stem cells:loss of telomeric DNA with age[J]. Proceedings of the National Academy of Sciences of the United States of America,1994,91(21):9857-9863.
    [43]Cristofari G, Lingner J. Telomere length homeostasis requires that telomerase levels are limiting[J]. The EMBO Journal,2006,25(3):565-573.
    [44]Cong Y, Wright W, Shay J. Human telomerase and its regulation[J]. Microbiology and molecular biology reviews,2002,66(3):407-415.
    [45]Dudognon C, Pendino F, Hillion J, et al. Death receptor signaling regulatory function for telomerase:hTERT abolishes TRAIL-induced apoptosis, independently of telomere maintenance[J]. Oncogene,2004,23(45): 7469-7474.
    [46]Engelhardt M, Kumar R, Albanell J, et al. Telomerase regulation, cell cycle, and telomere stability in primitive hematopoietic cells[J]. Blood,1997,90(1): 182-188.
    [47]Ju Z, Jiang H, Jaworski M, et al. Telomere dysfunction induces environmental alterations limiting hematopoietic stem cell function and engraftment[J]. Nature medicine,2007,13(6):742-747.
    [48]Dalerba P, Cho R, Clarke M. Cancer stem cells:models and concepts[J].2007, 58(1):267-284.
    [49]Ailles L, Weissman I. Cancer stem cells in solid tumors[J]. Current opinion in biotechnology,2007,18(5):460-466.
    [50]Griffin J, Lowenberg B. Clonogenic cells in acute myeloblastic leukemia[J]. Blood,1986,68(6):1185-1192.
    [51]McCulloch E, Till J. Blast cells in acute myeloblastic leukemia:a model[J]. Blood cells,1981,7(1):63-70.
    [52]Bonnet D, Dick J. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell[J]. Nature medicine,1997, 3(7):730-737.
    [53]Lessard J, Sauvageau G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells[J]. Nature,2003,423(6937):255-260.
    [54]Yilmaz H, Valdez R, Theisen B, et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells[J]. Nature,2006, 441(7092):475-482.
    [55]Blair A, Hogge D, Ailles L, et al. Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo[J]. Blood,1997,89(9):3104-3112.
    [56]Jordan C, Upchurch D, Szilvassy S, et al. The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells[J]. Leukemia:official journal of the Leukemia Society of America, Leukemia Research Fund, UK,2000,14(10):1777-1783.
    [57]Reya T, Duncan A, Ailles L, et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells[J]. Nature,2003,423(6938):409-414.
    [58]Wetmore C. Sonic hedgehog in normal and neoplastic proliferation:insight gained from human tumors and animal models[J]. Current opinion in genetics & development,2003,13(1):34-42.
    [59]Varnum-Finney B, Xu L, Brashem-Stein C, et al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notchl signaling[J]. Nature medicine,2000,6(11):1278-1281.
    [60]Di Cristofano A, Pandolfi P. The multiple roles of PTEN in tumor suppression[J]. Cell,2000,100(4):387-390.
    [61]Chin L, Artandi S, Shen Q, et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis[J]. Cell,1999,97(4):527-538.
    [62]Raaphorst F, Otte A, Meijer C. Polycomb-group genes as regulators of mammalian lymphopoiesis[J]. Trends in immunology,2001,22(12):682-690.
    [63]Muyrers-Chen I, Paro R. Epigenetics:unforeseen regulators in cancer[J]. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer,2001,1552(1): 15-26.
    [64]Orlando V. Polycomb, epigenomes, and control of cell identity[J]. Cell,2003, 112(5):599-606.
    [65]Park I, Qian D, Kiel M, et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells[J]. Nature,2003,423(6937): 302-305.
    [66]Van der Lugt N, Domen J, Linders K, et al. Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the bmi-1 proto-oncogene[J]. Genes & development,1994, 8(7):757-764.
    [67]Reya T, Morrison S, Clarke M, et al. Stem cells, cancer, and cancer stem cells[J]. Nature,2001,414(6859):105-111.
    [68]Leung C, Lingbeek M, Shakhova O, et al. Bmil is essential for cerebellar development and is overexpressed in human medulloblastomas[J]. Nature, 2004,428(6980):337-341.
    [69]Dukers D, Van Galen J, Giroth C, et al. Unique polycomb gene expression pattern in Hodgkin's lymphoma and Hodgkin's lymphoma-derived cell lines[J]. American Journal of Pathology,2004,164(3):873-880.
    [70]Mihara K, Chowdhury M, Nakaju N, et al. Bmi-1 is useful as a novel molecular marker for predicting progression of myelodysplastic syndrome and patient prognosis[J]. Blood,2006,107(1):305-312.
    [71]Altieri D. Survivin, cancer networks and pathway-directed drug discovery[J]. Nature Reviews Cancer,2008,8:61-70.
    [72]Ambrosini G, Adida C, Altieri D. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma[J]. Nature medicine,1997,3(8):917-921.
    [73]Fukuda S, Pelus L. Regulation of the inhibitor-of-apoptosis family member survivin in normal cord blood and bone marrow CD34+ cells by hematopoietic growth factors:implication of survivin expression in normal hematopoiesis[J]. Blood,2001,98(7):2091-2097.
    [74]Altieri D. Validating survivin as a cancer therapeutic target[J]. Nature Reviews Cancer,2003,3(1):46-54.
    [75]Li F. Survivin study:what is the next wave?[J]. Journal of cellular physiology, 2003,197(1):8-29.
    [76]Li F, Ambrosini G, Chu E, et al Control of apoptosis and mitotic spindle checkpoint by survivin[J]. EMBO J,1995,14:5258-5270.
    [77]Carter B, Milella M, Altieri D, et al Cytokine-regulated expression of survivin in myeloid leukemia[J]. Blood,2001,97(9):2784-2791.
    [78]Kawakami H, Tomita M, Matsuda T, et al Transcriptional activation of survivin through the NF-κB pathway by human T-cell leukemia virus type I tax[J]. International Journal of Cancer,2005,115(6):967-974.
    [79]Nowell C. The minute chromosome (Ph 1) in chronic granulocytic leukemia[J]. Annals of Hematology,1962,8(2):65-66.
    [80]Chen T, Hwang S, Chu I. Characterization and transplantation of induced megakaryocytes from hematopoietic stem cells for rapid platelet recovery by a two-step serum-free procedure[J]. Experimental Hematology,2009,37(11): 1330-1339.
    [81]Laughlin M, Barker J, Bambach B, et al Hematopoietic engraftment and survival in adult recipients of umbilical-cord blood from unrelated donors[J]. The New England journal of medicine,2001,344(24):1815-1822.
    [82]Barrett A, Ringden O, Zhang M, et al Effect of nucleated marrow cell dose on relapse and survival in identical twin bone marrow transplants for leukemia[J]. Blood,2000,95(11):3323-3329.
    [83]Drouet M, Herodin F, Norol F, et al Cell Cycle Activation of Peripheral Blood Stem and Progenitor Cells Expanded Ex Vivo with SCF, FLT-3 Ligand, TPO, and IL-3 Results in Accelerated Granulocyte Recovery in a Baboon Model of Autologous Transplantation but G0/G1 and S/G2/M Graft Cell Content Does Not Correlate with Tranplantability[J]. Stem Cells,2001,19(5): 436-442.
    [84]Hiyama E, Hiyama K. Telomere and telomerase in stem cells[J]. British journal of cancer,2007,96(7):1020-1027.
    [85]Flores I, Benetti R, Blasco M. Telomerase regulation and stem cell behaviour[J]. Current opinion in cell biology,2006,18(3):254-260.
    [86]Mundle S, Venugopal P, Shetty V, et al. The relative extent and propensity of CD34+ vs. CD34- cells to undergo apoptosis in myelodysplastic marrows[J]. Int J Hematol,1999,69(3):152-159.
    [87]Duffy M, O'Donovan N, Brennan D, et al. Survivin:a promising tumor biomarker[J]. Cancer letters,2007,249(1):49-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700