低鱼粉饲料中添加微胶囊蛋氨酸或晶体蛋氨酸对军曹鱼和凡纳滨对虾生长性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文比较研究了低鱼粉饲料中添加微胶囊蛋氨酸或晶体蛋氨酸对军曹鱼和凡纳滨对虾生长性能的影响,揭示军曹鱼和凡纳滨对虾在摄食低鱼粉饲料的条件下对不同形式的蛋氨酸的利用效果。实验内容主要分为三部分:1)微胶囊蛋氨酸制备技术相关工艺参数的筛选及性能检测;2)微胶囊或晶体蛋氨酸在军曹鱼低鱼粉饲料中应用效果;3)微胶囊或晶体蛋氨酸在凡纳滨对虾低鱼粉饲料中的应用效果。实验结果如下:
     1)应用化学复相乳化法和物理流化床法对蛋氨酸进行微胶囊工艺参数的筛选和制备。经均匀设计实验表明,复相乳化法制备的明胶微胶囊蛋氨酸粒径较大,最高载药量为46.94%;流化床法中以邻苯二甲酸醋酸纤维素(CAP)、棕榈酸三酰甘油酯(TPA)和丙烯酸树脂(RES)为主要壁材,分别进行微胶囊蛋氨酸的制备,通过对进出风温度、蠕动泵流速、包被时间和雾化压力等指标的调整控制,得出载药量在60-70%之间、颗粒大小均匀、外表光滑的微胶囊产品。
     以载药量为依据,选取流化床法制备的微胶囊进行产品溶失性能的评估。配制五组等氮等能饲料,蛋氨酸的添加形式分别为:晶体蛋氨酸(MET)、羟基蛋氨酸(MHA)、邻苯二甲酸醋酸纤维素微胶囊蛋氨酸(CAP)、树脂微胶囊蛋氨酸(RES)和棕榈酸甘油酯微胶囊蛋氨酸(TPA)。将各处理的饲料投入海水后,分别于10min、20min、30min、60min及90min测定饲料蛋氨酸的溶失率和海水pH值的变化。结果表明,饲料中蛋氨酸的溶失率随着浸泡时间的延长呈上升趋势,RES组的溶失率显著低于MET组,海水pH值随着浸泡时间的增加呈下降趋势,CAP和RES组下降缓慢,蛋氨酸溶失率与海水pH值直接呈明显的负相关。上述研究表明,RES微胶囊蛋氨酸能够有效减缓蛋氨酸的溶失。
     2)将鱼粉组和低鱼粉后蛋氨酸缺乏组分别设为正、负对照组,试验组饲料在负对照组的基础上分别添加晶体蛋氨酸(MET)、羟基蛋氨酸(MHA)、邻苯二甲酸醋酸纤维素微胶囊蛋氨酸(CAP)、丙烯酸树脂微胶囊蛋氨酸(RES)和棕榈酸甘油酯微胶囊蛋氨酸(TPA),共七组等氮等能饲料,比较研究军曹鱼幼鱼对微胶囊蛋氨酸和晶体蛋氨酸的利用效率。每个处理设三个重复,每个重复放养20尾鱼(初重5.40±0.07g),流水养殖8周,水温为29-31℃。结果表明RES组的增重率和特定生长率在各蛋氨酸添加组中最高,分别显著高出负对照组23.64%和7.99% (P < 0.05), MET组蛋白质效率显著高于负对照组和其他几个蛋氨酸组,而饲料系数显著低于其他组(P < 0.05)。蛋氨酸组的肥满度和正对照组相比差异不显著(P>0.05);微胶囊蛋氨酸和晶体蛋氨酸组的肌肉粗蛋白含量以及蛋氨酸与必需氨基酸(A/E)的比值与正对照组相比差异不显著(P>0.05);微胶囊蛋氨酸组的军曹鱼肠道胰蛋白酶活性显著高于正对照组和MET组(P<0.05),RES组胃蛋白酶和正对照无显著差异,但是显著高于其他组(P<0.05);MET组军曹鱼幼鱼摄食后0.5h肠道Na+,K+-ATP酶活性显著高于其他各组(P<0.05),摄食3h后正对照组和RES组Na+,K+-ATP酶活性上升显著高于CAP和MHA组(P<0.05);摄食8h后正对照组和微胶囊蛋氨酸组显著高于MHA和MET组(P<0.05)。
     为进一步验证军曹鱼幼鱼对蛋氨酸的吸收速度,探讨晶体蛋氨酸、RES微胶囊蛋氨酸和蛋白结合态氨基酸(鱼粉对照组)在吸收上的差异,设置日投饲频率分别为2(0800和1600 hours)、3 (0800, 1200和1600 hours)、4 (0800, 1100, 1400和1600 hours)和5次(0800, 1000, 1200, 1400和1600 hours)的处理组,其中鱼粉组只投喂2次,每个处理设三个重复,每个重复放养20尾鱼(初重5.40±0.07 g),流水养殖4周,水温为29-31℃。结果表明,随投喂次数的增加各试验组增重率有增加的趋势,投喂5次的RES组增重率显著高于其他组(P<0.05),投喂3次以上各组和投喂2次的RES组的肥满度与对照组差异不显著(P>0.05);投喂3次的MET组肝脏总蛋白酶活性显著高于其他各组(P<0.05),投喂3次的RES组肠道淀粉酶活性显著高于其他各组,投喂2次和5次时,MET组胃蛋白酶活性显著高于RES组(P<0.05),随投喂次数的增加MET组的GOT/GPT显著升高,投喂4次的RES组GOT/GPT显著高于其它各处理(P<0.05)。
     3)设置五组低鱼粉蛋氨酸缺乏的等氮等能饲料,分别添加晶体蛋氨酸(MET)、羟基蛋氨酸(MHA)、邻苯二甲酸醋酸纤维素微胶囊蛋氨酸(CAP)、树脂微胶囊蛋氨酸(RES)和棕榈酸甘油酯微胶囊蛋氨酸(TPA),饲喂凡纳滨对虾养殖7周,测定其在养殖第28d和50d时的生长性能,饲料利用率以及第14、28和50d时的消化酶活性。五个处理各设三个重复,每个重复放养40尾虾(初重0.81±0.01g)。溶失率实验表明RES能够更有效的减缓饲料中晶体蛋氨酸的溶出。第28d时,MET组的饲料系数显著低于CAP组和MHA组,而增重率、蛋白质效率(PER)和特定生长率(SGR)则显著高于CAP组和MHA组(P<0.05)。MET数值上高出RES组;第50d时,MET和RES的增重率显著高于其他组(P<0.05),RES组的增重率、PER和SGR分别高出MET组3.56%、8.63%和2.19%,但无显著差异(P>0.05),RES组的FCR显著低于其余各组(P<0.05);试验第28d和50d时,RES组全虾粗蛋白含量显著高于MET组(P<0.05),RES组50d时的对虾肌肉蛋氨酸含量显著高于MET组(P<0.05);第28d时,摄食后0.5h时CAP组的肝胰腺MAT活性最高,TPA组在0.5h和1h时保持较低水平,3h时开始上升,MET组在0.5h、3h和6h时MAT活性均较低但是在12h时骤然升高,第50d时,摄食1h时三个微胶囊组的MAT活性与0.5h相比有所上升,RES组上升较缓慢而MET组下降,3h时RES组MAT活力达最大;与第28d相比第50d时总蛋白酶活力均有所回升,TPA组显著高于RES组(P<0.05),MET组脂肪酶活力均显著高于其它处理组(P<0.05),淀粉酶活力在数值上均低于微胶囊组(P<0.05);第28d时,MET组的凡纳滨对虾对饲料蛋白质的表观消化率显著高出其它各组(P<0.05),在第50d时低于RES组,但是差异不显著(P>0.05),在第28d和50d时RES组粗脂肪的消化率显著高于MET组(P<0.05)。
     为进一步验证凡纳滨对虾对蛋氨酸的吸收速度,探讨晶体蛋氨酸、RES微胶囊蛋氨酸和蛋白结合态氨基酸在吸收上的差异,设置日投饲频率分别为2 (0700和2100 hours), 4 (0700, 1200, 1800和2100 hours),和6次(0700, 0930, 1200, 1500, 1800和2100 hours)的实验,其中正对照组(鱼粉组)和负对照组(蛋氨酸缺乏)只投喂4次。每个处理设三个重复,每个重复放养30尾虾(初重1.27±0.01 g),养殖5周,水温为29-30℃。结果表明,投喂次数相同时, RES组增重率、特定生长率和蛋白质效率比在数值上均高于MET组,摄食率和饲料系数则均低于MET组,但是未见显著性差异(P>0.05);RES组在投喂6次时增重率和正对照组差异不显著(P>0.05);RES组在投喂4次时总蛋白酶活性达最高,与正对照组差异不显著(P>0.05)。
     综上所述,添加蛋氨酸有助于改善军曹鱼幼鱼和凡纳滨对虾对饲料中豆粕和肉骨粉的利用率,促进生长。以增重率为参考指标,显示军曹鱼幼鱼和凡纳滨对虾在短期的养殖试验中均能够利用晶体蛋氨酸用于生长,而蛋白质代谢酶指标则显示RES微胶囊在降低溶失率的同时在消化道内有较好的缓释作用,可以提高蛋氨酸的利用率,促进蛋白质的合成。今后研究中,有必要进一步改善RES微胶囊工艺,选择适宜的鱼粉和其它蛋白源的替代比例以满足动物最大生长。
The present study was conducted to compare the effects of microcapsule methionine with crystalline methionine in diets with low fish meal on growth performance, protein metabolism and digestive enzyme activities of cobia (Rachycentron canadum) and Pacific white shrimp (Litopenaeus vannamei). The study contained three sections: 1. Processing and technique for microcapsule methionine. 2. Effects of supplementation microcapsule or crystalline methionine on growth performance in diets with low fish meal of cobia. 3. Effects of supplementation microcapsule or crystalline methionine on growth performanc of Pacific white shrimp in dietw with low fish meal. The results were presented as follows:
     1. The methionine microcapsules were prepared with emulsification and fluid bed (Wurster). Uniform design experimentation was used to filtration the correlative parameters of emulsification method. Drug loading of gelatin microcapsule by this method was 46.94% and the pellets diameter was bigger. Cellulose-acetate- phthalate (CAP), acrylic resin (RES) and tripalmitin (TPA), as the main wall materials, respectively, were used in fluid bed (Wurster) method. Drug loading of the microcapsules with smooth wall and uniformity diameter was between 60-70% by regulating air temperature of input and output, velocity of peristaltic pump, coating time and pulverization press and so on.
     According to drug loading, methionine microcapsules made by fluid bed were evaluated for leaching loss. One experiment was conducted to investigate the leaching loss of diets supplied coated methionine and crystalline methionine and soaked in seawater and pH value of seawater at 10min, 20min, 30min, 60min and 90min, respectively. Five experiment diets were designed with methionine supplementation in the forms of L-methionine (MET, as control), Methionine hydroxy analogue (MHA), cellulose-acetate-phthalate (CAP), tripalmitin-polyvinyl alcohol (TPA) and acrylic resin (RES) coated L-methionine, respectively. The results showed leaching loss of methionine increased with increasing soaking time. Leaching loss of methionine of RES group was significantly lower than that of MET group. The pH value descended with increasing soaking time. CAP and RES groups dropped slowly in pH value. Leaching loss of methionine had negative correlation with pH value of seawater. In conclusion, acrylic resin was the better wall material than the others to retard leaching loss of methionine.
     2. Seven iso-nitrogen and iso-energy diets, including fish meal (positive control), low fish meal (negative control) and five methionine supplemented with MET, MHA, CAP, RES and TPA, respectively, were prepared to investigate utilization of coated and crystalline methionine in intestine of juvenile cobia. Each treatment was randomly assigned to triplicate groups of 20 fish (initial weight 5.40±0.07 g) per aquarium. Fish were maintained in flow-through aquaria for 8 weeks at water temperature ranged from 29 to 31℃.The results showed that weight gain and specific growth rate of fish fed RES was the highest in methionine supplementation groups and significantly higher 23.64% and 7.99% than that of negative group (P<0.05). Protein efficiency ratio of fish fed MET was significantly higher than negative control and the other methionine supplementation groups (P<0.05), and that feed conversion ratio of fish fed MET was significantly lower than that of the others (P<0.05). Condition factor of fish fed methionine had no significant difference with positive control (P>0.05). Crude protein contents and rate of methionine to essential amino acid (A/E) in muscle of fish fed microcapsule and crystalline methionine groups had no significant difference with positive control (P>0.05). Trypsin activities of intestine of fish fed microcapsule methionine were significantly higher than that of fed crystalline methionine and the positive control (P<0.05). Compared to positive group, fish fed the diet with RES had no significant difference in pepsin activities, whereas significantly higher than other groups (P<0.05). After feeding 0.5h, Na+, K+-ATP activities in intestine of fish fed MET were significantly higher than that of the other groups (P<0.05). After feeding 3h, Na+, K+-ATP activities of fish fed RES and positive control ascended and was higher than that of fish fed CAP and MHA, and that activities of fish fed positive control and microcapsule methionine were significantly higher than that of MHA and MET after feeding 8h(P<0.05).
     One feeding frequency trial was conducted in order to validate the rates of absorption in intestine of juvenile cobia and explore the difference in absorption of crystalline methionine, RES microcapsule and amino acid of intact protein (Control). Cobia were fed a commercial pelleted feed in feeding frequency 2 (at 0800 and 1600 hours), 3 (at 0800, 1200 and 1600 hours), 4 (at 0800, 1100, 1400 and 1600 hours), and 5 times day-1 (at 0800, 1000, 1200, 1400 and 1600 hours), respectively, the control was fed 2 timesday-1 only. Each treatment was randomly assigned to triplicate groups of 20 fish (initial weight 5.40±0.07g) per aquarium. Fish were maintained in flow- through aquaria for 4 weeks at water temperature ranged from 29 to 31℃. Weight gain was increased with increasing feeding frequency. Fish fed with RES 5 times day-1 was significantly higher than the others (P<0.05). Condition factor of fish fed 3 times day-1and fed RES 2 times day-1 were not different from the control (P>0.05). Total protease activities in liver of fish fed MET 3 times day-1 and amylase activities in intestine of fish fed RES 3 times day-1 were significantly higher than the others (P<0.05). Pepsin activities of fish fed MET were significantly higher than RES with 2 times day-1 and 5 timesday-1 (P<0.05). GOT/GPT of fish fed MET ascended with increasing feeding frequency, whereas GOT/GPT of fish fed RES 4 times day-1 was higher than the others (P<0.05).
     3. This study was conducted to evaluate the effects of methionine supplementation form in diets of Pacific white shrimp (Litopenaeus vannamei) on growth performance, feed utilization and digestive enzyme activities at day 14, 28 and 50. Five iso-nitrogen and iso-energy diets were prepared in which three diets were supplemented with cellulose-acetate-phthalate (CAP), tripalmitin-polyvinyl alcohol (TPA) and resin (RES) coated L-methionine, respectively. Hydroxyl-methionine calcium (MHA) was supplemented as the fourth diet and crystalline L-methionine diet (MET) was used as the control. Five triplicate groups of shrimp (0.81±0.01g in initial body weight) were fed each test diets for 7 weeks. Leaching test showed that RES coating had the better effects in reducing leaching loss of crystalline methionine in feed. Protein efficiency ratio, weight gain and specific growth rate of shrimp fed MET and RES were significantly higher than CAP and MHA (P<0.05) and MET was higher than RES without difference (P>0.05). Feed conversion ratio (FCR) of shrimp fed MET were significantly lower than CAP and MHA (P<0.05) at day 28. At day 50, weight gain of shrimp fed MET and RES were significantly higher than that of the others (P<0.05), while FCR of shrimp fed RES was significantly lower than the others (P<0.05). Weight gain, PER and SGR of shrimp fed RES were found.56%, 8.63% and 2.19% than without significant differences with the others. Crude protein of shrimp body in RES and TPA was markedly higher than the others (p<0.05). Methionine contents in muscle of RES and MHA groups were significantly higher than those of MET group, which had the lowest lysine contents (p<0.05). At day 28, after fed 0.5h, MAT activity in hepatopancrease of shrimp fed CAP was the highest, MAT activity of shrimp fed TPA was constantly low level after feeding 0.5h and 1h and rose after fed 3h. MAT activity of shrimp fed MET was low at 0.5h, 3h and 6h, but rose the highest at 12h. At day 50, MAT activities at 1h of shrimp fed microcapsule methionine climbed compared with 0.5h, at the same time, climb of MAT activity of shrimp fed RES was slowness, whereas MET dropped. After feeding 3h, MAT activity of shrimp fed RES was the highest. Total protease activity was increased at day 50 compared with day 28, and shrimp fed TPA was significantly higher than RES (p<0.05). Shrimp fed MET had significantly higher lipase activity than the others (p<0.05) and lower amylase than microcapsule methionine groups without difference (P>0.05). Apparently digestibility for protein of shrimp fed MET was significantly higher than the others at day 28, however, lower than RES without difference. Apparently digestibility for lipid of shrimp fed RES was significantly higher than that of shrimp fed MET (P<0.05).
     One feeding frequency trial was conduted in order to validate the rates of absorption in hepatopancrease of Pacific white shrimp and explore the difference in absorption of crystalline methionine, RES microcapsule and amino acid of intact protein (positive control, fish meal group and negative control, methionine deficiency). Shrimp were fed a commercial pelleted feed, fed in feeding frequency 2 (at 0700 and 2100 hours), 4 (at 0700, 1200, 1800 and 2100 hours), and 6 timesday-1 (at 0700, 0930, 1200, 1500, 1800 and 2100 hours), the positive control and negative control were fed 4 times day-1 only. Each treatment was randomly assigned to triplicate groups of 30 shrimps (initial weight 1.27±0.01 g) per aquarium. Shrimps were maintained in aquaria for 5 weeks at water temperature ranged from 29 to 30℃. Shrimp fed MET or RES had no different differencs in weight gain, SGR and PER with the same feeding frequency. Weight gain of shrimp fed RES 6 times day-1 had no difference with positive control (P>0.05). FR and FCR of shrimp fed RES was lower than MET (P>0.05) at the same feeding frequency. Crude protein contents of shrimp body of shrimp fed MET 6 times day-1 were significantly higher than that 4 times day-1 (P<0.05). Total protease activities of shrimp fed RES 4 times day-1 were the highest, which was no difference with positive control (P>0.05). GOT activities of shrimp fed MET 2 times day-1were significantly higher than 4 and 6 times day-1, and that significantly lower than positive control (P<0.05).
     In conclusion, supplementation methionine in diets with low fish meal could improve utilization of soybean meal and meat and bone meal and promot growth of juvenile cobia and Pacific white shrimp. On the basis of weight gain, free methionine could be used for growth for juvenile cobia and Pacific white shrimp in short term, however, on the basis of metabolize enzyme activities, RES microcapsule not only had the better delay release in alimentary tract but also reduced leaching loss in seawater, which enhanced methionine utilization and protein synthesis. It is necessary to improve processing and technique of RES microcapsule further and choose feasible substituted ratio between fish meal and other protein sources for the best growth of fish and shrimp.
引文
陈丙爱,冷向军,李小勤,等.晶体或包膜氨基酸对鲤鱼的作用效果研究.水生生物学报,2008.32(5):774~778
    陈熠,贺建华.蛋氨酸羟基类似物的主要作用及其生物学效价探讨.饲料广角,2007,15: 29~33.
    程宗佳.在豆粕型饲料中添加蛋氨酸羟基类似物(MHA)对虹鳟鱼生产性能的影响[J].饲料广角,2004,13:30~32.
    邓君明.动植物蛋白源对牙鲆摄食、生长和蛋白质及脂肪代谢的影响.博士论文.青岛:中国海洋大学.2006
    方开泰.均匀设计与均匀设计实验表.北京:科学出版社,1994,35~49
    郭玉琴.蛋氨酸和赖氨酸过瘤胃保护及其效果评价研究.[博士学位论文]北京:中国农业科学院.2006.12
    韩阿寿,梁亚全,高淳仁,等.斑节对虾的精氨酸、蛋氨酸、苯丙氨酸、色氨酸的需求量研究.中国水产科学.1995,2(2):7~14
    何利君,谢小军,艾庆辉.饲喂频率对南方鲇的摄食率!生长和饲料转化效率的影响.水生生物学报.2003,27(4):434~436.
    冷向军,王冠.投饲频率对异育银鲫饲料中添加晶体氨基酸的影响.饲料研究. 2005, 12: 50~52
    冷向军,王冠,李小勤,等.饲料中添加晶体或包膜氨基酸对异育银卿生长和血清游离氨基酸水平的影响[J].水产学报,2007,31(6):743~748.
    刘立鹤,候永清,郑石轩,等.不同饲料中氮和磷溶失率的比较研究[J].饲料研究,2006,12:57~60
    刘永坚,刘栋辉,田丽霞,等.草鱼饲料中结晶和包膜赖氨酸的生物效应[J].水产学报, 1999,23增刊:51~56.
    刘永坚,田丽霞,刘栋辉,等.实用饲料补充结晶或包膜赖氨酸对草鱼生长、血清游离氨基酸和肌肉蛋白质合成率的影响[J].水产学报, 2002, 26(3): 252~258.
    刘玉梅,朱谨钊.中国对虾幼体和仔虾消化酶活力及氨基酸组成的研究.海洋与湖沼,1991,22(6):571~575
    梁治齐.微胶囊技术及其应用.北京:中国轻工业出版社,1994
    楼宝,毛国民,骆季安,等.饲喂频率对黑鲷生长及体生化成分的影响.海洋水产研究.2006,27(6):19~24
    陆扬.明胶微球的研究进展.明胶科学与技术,2006.26(2)57~68
    麦康森,李爱杰,尹左芬.对虾对饵料蛋白质及氨基酸吸收利用的研究.海洋学报. 1987, 9 (4): 489~495
    麦康森.放射性同位素标记法测定虾类饵料的消化率.饲料研究. 1988, (8):13~15
    邝雪梅,叶元土,蔡春芳,等.离体草鱼肠道对亮氨酸和酪氨酸的吸收与利用[J].水生生物学报,2005,29(4):424~429.
    潘鲁青,王克行.中国对虾幼体消化酶活力的实验研究.水产学报,1997, 21(3):26~31.
    帅柯.蛋氨酸对幼建鲤消化功能和免疫功能的影响. [硕士论文].雅安:四川农业大学.2006.
    宋健、陈磊、李效军.微胶囊化技术及应用.北京:化学工业出版社,2001
    涂永锋,叶元土,宋代军,等.游离异亮氨酸对鲫鱼的促生长作用.渔业致富指南, 2004, 18: 59~63.
    王方国.对虾养殖水质与饵料关系的研究.东海海洋, 1995, 13(2):9~15
    王冠,冷向军,李小勤,等.饲料中添加包膜氨基酸对异育银鲫生长和体成分的影响.上海水产大学学报,2006,15(3):365~369
    伍一军.氨基酸对鲫鱼、泥鳅的诱食活性.水产学报,1993,17(4):337~339
    吴志强,姜国良,李立德.十足目动物消化系统及消化生理研究概况.海洋科学.2004,28(3):50~54
    向军涛,蒋琳兰.丙烯酸系列树脂在药物剂型中的应用.医药导报2006,25(11):1175~1177
    许培玉,周洪琪.小肽制品对凡纳滨对虾蛋白酶和淀粉酶活力的影响.上海水产科学,2005, 14(2):133~137
    阎军,杨子龙,刘春海,等.缓释赖氨酸在鲤鱼饲料中的应用.饲料研究, 2004, 7: 36~37
    闫征,过世东.蛋氨酸微胶囊的制备及其释放效果的研究.粮食与饲料工业.2006,(1):36~37
    杨爱华,宋泽运,李林.红霉素肠溶片包衣处方工艺.中国医院药学杂志.2003,23(12):715~716
    叶乐,林黑着,李卓佳,等.投喂频率对凡纳滨对虾生长和水质的影响.2005.南方水产,1(4):55~59
    占秀安,刘平,王永侠.对虾的氨基酸营养研究进展水产科学.2007,2(3):175~178
    张满隆,邓理.蛋氨酸在鲫鱼饲料中的作用.饲料研究,2001,5:26~27.
    赵春蓉.赖氨酸对幼建鲤消化能力和免疫功能的影响.[硕士学位论文].雅安:四川农业大学.2005.6
    郑俊民.药用高分子材料学.第一版.北京:中国医药科技出版社.1992
    中华人民共和国国家标准GB/T17810-1999,饲料级DL-蛋氨酸.北京:中国标准出版社,1999.
    周歧存,郑石轩,高雷,等.投喂频率对南美白对虾(Penaeus vannamei Boone)生长、饲料利用及虾体组成影响的初步研究.海洋湖沼通报.2003,2.64~68
    Adeloa, O., Lawrence, B. V., Cline, T. R. Avilability of amino acids for 10- to 20- kilogram pigs: lysine and threonine in soybean meal. J. Anim. Sci., 1994, 72:2061~2067
    Aires, Oliva-Teles., Paula, Gon?alves. Partial replacement of fishmeal by brewers yeast (Saccaromyces cerevisae) in diets for sea bass (Dicentrarchus labrax) juveniles. Aquaculture, 2001, 202:269~278
    Akiyama, D. M. The use of soybean meal to replace white fish meal in commercially processed Penaeus monodon Fabricius feeds in Taiwan. In: Takeda, M., Watanabe, T. Eds., Proc. 3rd Int. Symp. On Feeding and Nutrition In Fish: The Current Status of Fish Nutrition in Aquaculture, Aug. 28. 1, Toba, Japan. 1989, 289~299
    Alam, M. S., Teshima, S., Koshio, S., et al. Effects of dietary arginine and lysine levels on growthperformance and biochemical parameters of juvenile Japanese flounder Paralichthys olivaceus. Fisheries Science, 2002a, 68: 509~606.
    Alam, M. S., Teshima, S., I., shikawa M, et al. Dietary amino acid profiles and growth performance in juvenile kumma prawn. Comparative Biochemistry and Physiology Part B. Biochemistry and Molecular Biology, 2002b, 133:289~297.
    Alam, M.S., Teshima, S., Koshio, S., et al. Arginine requirement of juvenile Japanese flounder Paralichthys olivaceus estimated by growth and biochemical parameters. Aquaculture, 2002c, 205:127~140
    Alam, M. S., Teshima S, Koshio S. Effects of supplementation of coated crystalline amino acids on growth performance and body composition of juvenile kuruma shrimp Marsupenaeus japonicus. Aqua. Nutri., 2004,10:309~316
    Alam, M. S., Teshima, S., Koshio, S., et al., Supplemental effects of coated methionine and/or lysine to soy protein isolate diet for juvenile kuruma shrimp, Marsupenaeus japonicus. Aquaculture, 2005, 248:13~19
    Ambardekar, A. A., Reigh, R.C., Williams, M.B. Absorption of amino acids from intact dietary proteins and purified amino acid supplements follows different time-courses in channel catfish (Ictalurus punctatus). Aquaculture, In Press
    Andrews, J.W., Page, J.W., The effects of frequency of feeding on culture of catfish. Trans. Am. Fish. Soc. 1975.104:317~321
    AOAC Association of 7 Official Analytical Chemists. In: Official Methods of Analysis of AOAC, 15th edn (Helric, K. ed.). Association of Official Analytical Chemists Inc., Arlington, VA, USA. 1990
    Aoe, H., Masuda, I., Abe, I., et al. Nutrition of protein in young carp: I. Nutritive value of free amino acids. Bull. Jpn. Soc. Sci. Fish., 1970.36: 407~413
    Arag?o, C., Conceic??o, L.E.C., Dias, J., et al. Soy protein concentrate as a protein source for Senegalese sole (Solea senegalensis Kaup 1858) diets: effects on growth and amino acid metabolism of postlarvae. Aquacult. Res., 2003, 34: 1443~1452
    Applebaum, S. L., R?nnestad, I. Absorption, assimilation and catabolism of individual free amino acids by larval Atlantic halibut (Hippoglossus hippoglossus). Aquaculture, 2004, 230:313–322
    Bai, S. C., Gatlin, D. M. III. Effect of L-lysine supplementation of diets with different protein levels and sources on channel catfish Ictalurus punctatus Rafinesque. Aquacult. Fish. Manage., 1994. 25: 465~474
    Baker, D. H. Utilization of precursors for L-amino acids. In: D’Mello J P F. Ed., Amino Acids in Farm Animal Nutrition. CAB International, Wallingford, 1994. 37~61
    Bakke-McKellep, A. M., Nordrum, S., Krogdahl, ?, et al. Regional differences in in vitro intestinal uptake of glucose, amino acids, and peptides in Atlantic salmon (Salmo salar L.). Fish Physiol. Biochem., 2000, 22: 33~44
    Balocco, C., Bogé, G., Roche, H. Neutral amino acid transport by marine fish intestine: role of theside chain. J. Comp. Physiol. B, 1993.163:340~347
    Batterham, E. S., Murison, R. D., Lewis, C. E. Availability of lysine in protein concentrates as determined by the slope-ratio assay with growing pigs and rats and by chemical techniques. Br.J. Nutr., 1979, 41:383~391.
    Batterham, E. S., Andersen, L. M., Baigent, D. R., Darnell, R. E., Taverner, M. R. A comparison of the availability and ileal digestibility of lysine in cottonseed and soybean meals for grower/finisher pigs. Br.J.Nutr., 1990, 64:663~677
    Batterham, E. S., Bayley, H. S. Effect of frequency of feeding of diets containing free or protein-bound lysine on the oxidation of [14C] lysine or [14C] phenylanine by growing pigs. Br. J. Nutr., 1989, 62:647~655
    Bautista, M. N. Subosa P.F. Changes in shrimp feed quality and effects on growth and survival of Penaeus vannamei juveniles. Aquaculture. 1997, 151:121~129.
    Berge, G. E., Sveier, H., Lied, E. Effects of feeding Atlantic salmon (Salmo salar L.) imbalanced levels of lysine and arginine. Aquac. Nutr. 2002.7:1~10
    Berge, G. E., Sveier, H., Lied, E. Nutrition of Atlantic salmon (Salmo salar); the requirement and metabolic effect of lysine. Comp. Biochem. Physiol. Part A. 1998. 120:477~485
    Berge, G. E., Goodman, M., Espe, M.,et al. Intestinal absorption of amino acids in fish: kinetics and interaction of the in vitro uptake of L-methionine in Atlantic salmon (Salmo salar L.). Aquaculture. 2004, 229:265~273
    Berge, G.E., Bakke-McKellep, A. M., Lied, E. In vitro uptake and interaction between arginine and lysine in the intestine of Atlantic salmon (Salmo salar). Aquaculture. 1999, 179:181~193
    Berge, G.E., Lied, E., Espe, M. Absorption and incorporation of dietary free and protein bound (U14C)-lysine in Atlantic cod (Gadus morhua). Comp. Biochem. Physiol. Part A. 1994, 109: 681~ 688
    Bernfeld, P. Amylase. In: Colowick, S.P., Kaplan, N.O. (Eds.), Methods in Enzymology. Academic Press, New York. 1955, 149~158
    Biesiot, P. M., Capuzzop, J. M. Changes in digestive enzyme activities during early development of the American lobster Hpmarus americanus, Mar. Biol.Ecol.1990,136: 107~122
    Bogé, G., Roche, H., Pérès, G. Role of chloride ions in glycine transport in a sea fish the bass Dicentrarchus labrax. Biochim. Biophys. Acta., 1985, 820:122~130
    Bogé, G., Roche, H., Balocco, C. Amino acid transport by intestinal brush border vesicles of a marine fish, Boops salpa. Comp.Biochem. Physiol. Part B., 2002, 131:19~26
    Bowland, J. P. Addition of lysine and/or tranquilizer to low protein soybean meal supplemented rations for growing bacon pigs. J Anim. Sci. 1962, 21:852~856
    Bradford, M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem., 1976. 72, 248~254
    Burford, M. A., Williams, K. C. The fate of nitrogenous waste from shrimp feeding. Aquaculture, 2001, 198: 79~93
    Cahu, C.L., Zambonino Infante, J.L. Substitution of live food by formulated diets in marine fish larvae.Aquaculture, 2001. 200: 161~180
    Cahu, C.L., R?nnestad, I., Grangier, V.,et al. Expression and activities of pancreatic enzymes in developing sea bass larvae (Dicentrarchus labrax) in relation to intact and hydrolysed dietary protein; involvement of cholecystokinin. Aquaculture, 2004. 238:295~308
    Chen, B.A., Leng, X.J., Li, X.Q.et al. Study on the effect of crystalline or coated amino acid for cyprinus carpio. Acta hydrobiologica sinica. 2008. 32: 774~778
    Chen, H. Y., Leu, Y. T., Roelants, I. Effective supplementation of arginine in the diets of juvenile marine shrimp, Penaeus monodon. Aquaculture. 1992, 108: 87~95
    Cheng, Z.J., Hardy, R.W., Usry, J.L. Effects of lysine supplementation in plant protein-based diets on the performance of rainbow trout (Oncorhynchus mykiss) and apparent digestibility coefficients of nutrients. Aquaculture 2003a, 215: 255~265
    Cheng, Z.J., Hardy, R.W. Effects of extrusion and expelling processing, and microbial phytase supplementation in apparent digestibility coefficients of nutrients in full-fat soybean for rainbow trout (Oncorhynchus mykiss). Aquaculture, 2003b, 218: 501~514
    Cheng, Z. J., Hardy, R. W., Usry, J. L. Plant protein ingredients with lysine supplementation reduce dietary protein level in rainbow trout (Oncorhynchus mykiss) diets, and reduce ammonia nitrogen and soluble phosphorus excretion. Aquaculture, 2003c. 218: 553~565
    Chiji, H., Harayama, K., Kiriyama, S. Effects of feeding rats low protein diets containing casein or soy protein isolate supplemented with methionine or oligo-L-methionine. J. Nutr. 1990, 120: 166~171
    Concei??o, L. E. C., R?nnestad, I, Tonheim, S.K.Metabolic budgets for lysine and glutamate in unfed herring (Clupea harengus) larvae. Aquaculture. 2002. 206: 305~312
    Concei??o, L. E. C., Grasdalen, H., R?nnestad, I. Amino acid requirements of fish larvae and post-larvae: new tools and recent findings. Aquaculture. 2003, 227: 221–232
    Cowey, C. B., Walton, M. J. Intermediary metabolism. In: Halver, J. E. Ed., Fish Nutrition, 2nd Ed. Academic Press, New York, 1989, 259~329
    Cowey, C. B. Amino acid requirements of fish: a critical appraisal of present values. Aquaculture. 1994,124: 1~11
    Cowey, C. B., Luquet, P. Physiological basis of protein requirements of fishes. Critical analysis of allowances. In: M. Arnal, R. Pion and D. Bonin, Editors, Protein Metabolism and Nutrition vol. I, INRA, Paris, France. 1983, 365~384
    Cowey, C. B., Sargent, J. R. Nutrition. In: Fish Physiology, Vol.ⅧBioenergetics and Growth (Hoar. W.S., Randall. D.J., & Brett, J. R. eds), Academic Press Inc. New York, NY. 1979, 1~69 Craig, S.R., Gatlin, D.M. III. Dietary lysine requirement of red drum (Sciaenops ocellatus). J. World Maricult. Soc. 1992, 23: 133~137
    Crane, R. K. The gradient hypothesis and other models of carrier-mediated active transport. Rev. Physiol. Biochem. Pharmacol, 1977, 78: 99~159
    Dabrowski, K., Lee, K.-J., Rinchard, J., The smallest vertebrate, teleost fish, can utilize synthetic dipeptide-based diets. J. Nutr. 2003. 133:4225~4229
    Daghir, N. J. Effect of lysine and methionine supplementation of low protein roaster diets fed after six weeks of age. Poult Sci. 1983, 62: 1572~1575
    Davenport, J., Kj?rsvik, E., Haug, T., Appetite, gut transit, oxygen uptake and nitrogen excretion in captive Atlantic halibut, Hippoglossus hippoglossus L. and lemon sole, Microstomus kitt (Walbaum). Aquaculture. 1990. 90:267–277
    Day, O.J., Plascencia González, H.G. Soybean protein concentrate as a protein source for turbot Scophthalmus maximus L. Aquaculture Nutrition, 2000, 6: 221~228
    De la. Higuera, M. Effects of nutritional factors and feed characteristics on feed intake. In: Houlihan, D., Boujard, T., Jobling, M. (Eds.), Food Intake in Fish. Blackwell Science-COST Action 827, Oxford, 2001. 250~268
    De la Higuera, M., Garzón,A.,Hidalgo,M.C.,et al. Influence of temperature and dietary-protein supplementation either with free or coated lysine on the fractional protein-turnover rates in the white muscle of carp. Fish Physiology and Biochemistry, 1998, 18: 85~95
    Del Mar, E.G., Largman, C., Brodrick, J.W.,et al. A sensitive new substrate for chymotrypsin. Anal. Biochem. 1979. 99: 316~320
    Deng, J.M., Mai, K.S., Ai, Q.H.,et al. Effects of replacing fish meal with soy protein concentrate on feed intake and growth of juvenile Japanese flounder, Paralichthys olivaceus. Aquaculture. 2006, 258:503~513
    Dibner, J.J., Knight, C.D. Conversion of 2-hydroxy-4-(methylthio) butanoic acid to l-methionine in the chick: astereospecific pathway. J. Nutr., 1984. 114:1716~1723
    Dwyer,K.S., Brown,J.A., Parrish,C.,et al. Feeding frequency affects food consumption, feeding pattern and growth of juvenile yellowtail flounder (Limanda ferruginea). Aquaculture. 2002. 213:279~292
    El-dahhar, A. A., El-shazly, K. Effect of essential amino acids (methionine and lysine) and treated oil in fish diet on growth performance and feed utilization of Nile tilipia, Tilapia nilotica(L.). Aquaculture and fisheries management, 1993. 24:731~739
    Encarna??o, P., de Langea, C., Rodehutscordb, M., et al. Diet digestible energy content affects lysine utilization, but not dietary lysine requirements of rainbow trout (Oncorhynchus mykiss) for maximum growth. Aquaculture. 2004, 235: 569~586
    Eric, A.T. F., Robert, C. B., Paul, B. B. The effects of soybean-based diets, with and without amino acid supplementation, on growth and biochemical composition of juvenile American lobster, Homarus americanus. Aquaculture, 2000, 189: 211–235
    Espe, M., Hevr?y, E. M., Liaset,B.,et al. Methionine intake affect hepatic sulphur metabolism in Atlantic salmon, Salmo salar .Aquaculture. 2008,274:132~141
    Espe, M., Lied, E., Torrissen, K.R. Changes in plasma and muscle free amino acids in Atlantic salmon (Salmo salar) during absorption of diets containing different amounts of hydrolysedcod muscle protein. Comp. Biochem. Physiol. Part A, 1993. 105: 555~562
    Espe, M., Sveier, H., H?g?y, I. et al. Nutrient absorption and growth of Atlantic salmon (Salmo salar L.) fed fish protein concentrate. Aquaculture, 1999. 174: 119~137
    Fauconneau, B., Basseres, A., Kaushik, S. J. Oxidation of phenylalanine and threonine in response to dietary arginine supply in rainbow trout (Salmo gairdnerii R.). Comp. Biochem. Physiol. Part A, 1992, 101: 395~401
    Fernández-Díaz, C., Kopecka,J., Ca?avate,J. P., et al. Variations on development and stress defences in Solea senegalensis larvae fed on live and microencapsulated diets.Aquaculture. 2006, 251: 573– 584
    Fernández-Díaz, C., Yúfera M. Capacity of gilthead seabream, Sparus aurata L., larvae to break down dietary microcapsules. Aquaculture. 1995. 134:269~278
    Fernández-Díaz, C., Yúfera M. Detecting growth in gilthead seabream, Sparus aurata L. larvae fed microcapsules. Aquaculture. 1997.153: 93~102
    Fontagné, S., Robin, J., Corraze, G., et al, 2000. Growth and survival of European sea bass (Dicentrarchus labrax) larvae fed from first feeding on compound diets containing medium-chain triacylglycerols. Aquaculture. 190: 261–271
    Fox, J. M., Lawrence, A. L. & Li-Chan, E. (1995a) Dietary requirement for lysine by juvenile Penaeus vannamei using intact and free amino acid sources. Aquaculture, 131, 279-290.
    Fox, J. M., Li-Chan, E. & Lawrence, A. L. (1995b) Carbodiimidemediated covalent attachement of lysine to wheat gluten and its apparent bioavailability to penaeid shrimp. Journal of Agriculture and Food Chemistry, 43, 735-737.
    Fox, J. M., Davis, D. A., Wilson, M. Current status of Amino acid requirement research with marine Penaeid shrimp. Avances en Nutricion AcuicolaⅧ. Mexico:Universidad Autonama de Nuevo Leon, 2006, 182~196
    Galgani, M.L., Benyamin, Y., Ceccaldi, H.J., Identification of digestive proteinases of Penaeus kerathurus Forskal.: a comparison with Penaeus japonicus. Comp. Biochem. Physiol. Part B. 1984. 78: 355~361
    Galgani, M.L., Benyamin, Y., Van Wormhoudt, A. Purification, properties and immunoassays of trypsin from the shrimp Penaeus japonicus. Comp. Biochem. Physiol. Part B. 1985, 81: 447~ 452
    Garcr?-Carreňo, F.L., 1992. The digestive proteases of langostilla Pleuroncodes planipes, decapoda: their partial characterization, and the effect of feed on their composition. Comp. Biochem. Physiol.Part B, 103:575~578
    Gaylord, T.G. Barrows, F.T. Multiple amino acid supplementations to reduce dietary protein in plant-based rainbow trout, Oncorhynchus mykiss, feeds. Aquaculture. 2009, 287:180~184
    Gholamreza, R., Che, R. S. Nutrient cycle and sludge production during different stages of red tilapia (Oreochromis sp.)growth in a recirculation aquaculture system. Aquaculture. 2005, 244: 109~118
    Goff, J. B. , Gatlin III, D. M. Evaluation of different sulfur amino acid compounds in the diet of red drum, Sciaenops ocellatus, and sparing value of cystine for methionine. Aquaculture. 2004, 241:465~477
    Halver, E. J., Hardy, R. W. Fish Nutrition. Academic Press. 3rd Edition. 2002.162.
    Holmgren, S., Grove, D.J., Fletcher, D.J., Digestion and control of gastrointestinal motility. In: Rankin, J.C., Pitcher, T.J., Dugan, R.T. (Eds.), Control Processes in Fish Physiology. Wiley, New York, NY, USA, 1983. 23~40
    Hu, M., Wang, Y., Wang, Q. ,et al. Replacement of fish meal by rendered animal protein ingredients with lysine and methionine supplementation to practical diets for gibel carp, Carassius auratus gibelio. Aquaculture, 2008, 275:260~265
    Jaime, B., Galindo, J.,álvarez, J.S., et al. La frecuencia de alimentación y su efecto sobre el crecimiento de juveniles de Penaeus schimitti. Rev. Cuba. Investig. Pesq. 1996, 20:3~5
    Jones, D.A., Kumlu,M. Le Vay, L. , et al.The digestive physiology of herbivorous, omnivorous and carnivorous crustacean larvae: a review. Aquaculture. 1997,155:285~295
    Kamarudin, M. S., Jones, D. A., Le Vay, L., et al.Ontogeneticchange in digestive enzyme activity during larval development of Mucrobrachium rosenbergii. Aquaculture, 1994. 123:323 ~333
    Kaushik, S. J., Luquet, P. Influence of bacterial protein incorporation and of sulphur amino acid supplementation to such diets on growth of rainbow trout. Aquaculture, 1980,19:163~175
    Keembiyehetty, C. N., Gatlin, D. M.Ⅲ. Evaluation of different sulfur compounds in the diet of juvenile sunshine bass (Morine chrysops♀×M. saxatilis♂). Comp. Biochem. Physiol. Part A, 1995, 112:155~159
    Kerpert,S., Melegari, P.Preparation and Characterization Of Oilcontaining Microparticles. Drug Development And Industrial Pharmacy, 1993, 19: 603~621
    Kim, K. I., Kayes, T. B., Amundson, C. H. Effects of dietary tryptophan levels on growth, feed/gain, carcass composition and liver glutamate dehydrogenase activity in rainbow trout (Salmo gairdneri). Comp. Biochem. Physiol. Part B, 1987, 88: 737~741
    Knauer, J., Southgate, P.C. Assimilation of gelatin-acacia microencapsulated lipid by Pacific oyster (Crassostrea gigas) spat. Aquaculture, 1997. 153:291~300
    Knight, C. D., Dibner, J. J. Comparative absorption of 2-hydroxy-4-methylthiobutanoic acid and L-methionine in the broiler chick.J Nutr.1984.114:2179~2186
    Koenig, K.M., Rode, L.M., Knight, C.D., et al. Ruminal escape, gastrointestinal absorption, and response of serum methionine to supplementation of liquid methionine hydroxyl analog in dairy cows. J.Dairy Sci. 1998, 82: 355~361
    Koven, W., Kolkovski, S., Hadas, E.,et al. Advances in the development of microdiets for gilthead seabream, Sparus aurata: a review. Aquaculture. 2001. 194:107~121
    Kurokawa, T., Suzuki, T., Andoh, T. Development of cholecystokinin and pancreatic polypeptide endocrine systems during the larval stage of Japanese flounder, Paralichthys olivaceus. Gen. Comp. Endocrinol., 2000.120: 8~16
    Lall, S.P., Kaushik, S.J., Le Bail, P.Y. et al. Quantitative arginine requirement of Atlantic salmon (Salmo salar) reared in sea water. Aquaculture, 1994. 124:13~25
    Lazo, J.P., Dinis, M.T., Holt, G.J., et al. Co-feeding microparticulate diets with algae: towards eliminating the need of zooplankton at first feeding in larval red drum (Sciaenops ocellatus). Aquaculture. 2000.188, 339~351
    Lee, S., Hwang, U., Cho, S.H. Effects of feeding frequency and dietary moisture content on growth, body composition and gastric evacuation of juvenile Korean rockfish (Sebastes schlegeli). Aquaculture. 2000. 187:399~ 409
    Lewis, A. J., Bayley, H. S. Amino acid bioavailability. In:Bioavailability of Nutrients for Animals:Amino Acids,Minerals, and Vitamins (Ammerman, C. A.,Baker,D. H., Lewis,A. J. eds), Academic Press, Inc., San Diego,CA. 1995.35~65
    Li, M.H., Robinson, E.H. Effects of supplemental lysine and methionine in low protein diets on weight gain and body composition of young channel catfish Ictalurus punctatus. Aquaculture, 1998.163:295~305
    Lim, C. Effect of dietary PH on amino acid utilization by shrimp (Penarus vannamei). Aquaculture. 1993, 114:293~303
    Lim, C., Dominy, W. Evaluation of soybean meal as a replacement for marine animal protein in diets for shrimp, Penaeus vannamei. Aquaculture. 1990, 87: 53~63
    Lim, S. R., Choi, S. M., Wang, X. J., et al. Effects of dehulled soybean meal as a fish meal replacer in diets for fingerling and growing Korean rockfish Sebastes schlegeli. Aquaculture. 2004, 231: 457~468
    Liu, F.G., Liao, C.I., Effect of feeding regimen on the food consumption, growth and body composition in hybrid striped bass Morone saxitilis×M. chrysops. Fish Sci. 1999. 64: 513~519
    López-Alvarado, J., Langdon, C.J., Teshima, S.I.,et al. Effects of coating and encapsulation of crystalline amino acids on leaching in larval feeds. Aquaculture. 1994. 122:335~346
    Lovell, T. Nutrition of aquaculture species. J. Anim. Sci., 1991, 69: 4193~4200
    Lovell, T. Nutrition and Feeding of Fish. New York: Van Nostrand-Reinhold, 1989. 260 Lumbard, L. M., Reigh, R. C. Growth of palmetto bass (Morone saxatilis♀×M. chrysops♂) fed lysine supplemented practical diets. Aquaculture. 1998, 161:143~144
    Maenz, D. D. Engele-Schaan, C. M. Methionine and 2-hydroxy-4-methylthiobutanic acid are transported by distinct Na+-dependent and H+-dependent system in the brush border membrane of the chick intestinal epithelium.J Nutr.1996, 126:529~536
    Mahnken, C. V. W., Spinelli, J., Waknitz, F. W. Evaluation of an alkane yeast Candida sp. as a substitute for fish meal in oregon moist pellet: feeding trials with coho salmon Oncorhynchus kisutch and rainbow trout Salmo gairdneri. Aquaculture. 1980, 20: 41~56
    Mai, K., Li, A., Yin, Z. Studies on the absorption and utilization of amino acids in the lysine requirement of fingerling channel catifish. J Nutr. 1988, 107:166~170
    Mailliard, E., Stevens, B. R., Mann, G. E. Amino acid transport by small intestinal, hepatic andpancreatic epithelia. Gastroenterology. 1995, 108: 888~910
    Mambrini, M., Roem, A.J., Cravedi, J.P. et al. Effects of replacing fishmeal with soy protein concentrate and of DL-methionine supplementation in high energy, extruded diets on the growth and nutrient utilization of rainbow trout, Oncorhynchus mykiss. J. Anim. Sci. 1999, 77: 2990~2999
    Marchetti, M., Tossani, N., Marchetti, S., et al. Leaching of crystalline and coated vitamins in pelleted and extruded feeds. Aquaculture. 1999, 171:83~91
    Martínez-Bebiá, M., Suárez, M.D., Sánchez, M.J., et al. Efecto de la alimentación sobre los ritmos de enzimas digestivos de lubina Dicentrarchus labrax. In: Castellóy, F., Calderer, A. (Eds.), Actas V Cong. Nac. Acuicultura, 10–13 de Mayo de. Pub. Univ. Barcelona, 1995, 558~563
    Mazid, M. A., Tanaka, Y., Katayama, T., et al. Metabolism of amino acids in aquatic species: III. Indispensable amino acids for Tilapia zillii. Bull. Jpn. Soc. Sci. Fish. 1978,44:739~742
    Médale, F., Boujard, T., Vallée, F., et al. Voluntary feed intake, nitrogen and phosphorus losses in rainbow trout (Oncorhynchus mykiss) fed increasing dietary levels of soy protein concentrate. Aquat. Living Resour. 1998, 11: 239~246
    Mente, E., Houlihan, D. F., Smith, K. Growth, feeding frequency, protein turnover, and amino acid metabolism in European Lobster Homarus gammarus L. journal of experimental of zoology. 2001, 289:419~432
    Millamena, O. M. Replacement of fish meal by animal by-product meals in a practical diet for grow-out culture of grouper Epinephelus coioides. Aquaculture. 2002, 204: 75~ 84
    Mundheim, H., Aksnes, A., Hope, B. Growth, feed efficiency and digestibility in salmon (Salmo salar L.) fed different dietary proportions of vegetable protein sources in combination with two fish meal qualities. Aquaculture, 2004. 237. 315~ 331
    Munsiri, P., Lovell, R.T. Comparison of satiate and restricted feeding of channel catfish with diets of varying protein quantity in production ponds. J. World Aquacult. Soc. 1993.24, 459~465
    Murai, T., Ogata, H., Hirasawa, Y., et al. Portal absorption and hepatic uptake of amino acids in rainbow trout force-fed complete diets containing casein or crystalline amino acids. Nippon Suisan Gakkaishi 1987, 53: 1847~ 1859
    Murai, T., Ogata, H., Takeuchi, T., Watanabe, T., Nose, T. Composition of free amino acid in excretion of carp fed amino acid diets and casein-gelatin diets. Bull. Jpn. Soc. Sci. Fish., 1984.50: 1957~1958
    Murai, T., Hirasawa, Y., Akiyama, T. et al. Effects of dietary pH and electrolyte concentration on utilization of crystalline amino acids by fingerling carp. Bull. Jpn. Soc. Sci. Fish. 1983, 49: 1377~1380
    Murai, T., Akiyama, T.,Nose, T. Use of crystalline amino acid coated with ccasein in diets for carp. Bull.Jpn.Soc.Sci.Fish.1981. 47:523~527
    Murai, T., Akiyama, T., Nose, T. Effects of casein coating on utilization of dietary amino acids by fingerling carp and channel catfish. Bull. Jpn. Soc. Sci. Fish. 1982a, 48:787~792
    Murai, T., Ogata, H., Nose, T. Mthionine coated with various materials supplemented to soybean meal diet for fingerling carp Cyprinus carpio and channel catfish Ictalurus punctatus. Bull. Jpn. Soc. Sci. Fish. 1982b, 48:85~88
    Murray, A. P., Marchant, R. Nitrogen utilization in rainbow trout fingerlings Salmo gairdneri. Richardson fed mixed microbial biomass. Aquaculture. 1986, 54: 263~75
    Myrna, N. B., Armando, C. F., Shunsuke, S. K. Diet development and evaluation for juvenile abalone, Haliotis asinina: animal and plant protein sources. Aquaculture. 2003, 219: 645~653
    Ng, W., Hung, S., Herold, M. Poor utilization of dietary free amino acids by white sturgeon. Fish Physiol. Biochem. 1996. 15: 131~142
    Noeske-Hallin, T. A., Spieler, R.E., Parker,N.C.,et al. Feeding time differentially affects fattening and growth of Channel Catfish.J. Nutr. 1985.115:1228~1232
    Nordrum, S., Krogdahl, ?., R?sj?, C., et al. Effects of methionine, cysteine and medium chain triglycerides on nutrient digestibility, absorption of amino acids along the intestinal tract and nutrient retention in Atlantic salmon Salmo salar L. under pair-feeding regime. Aquaculture, 2000, 186: 341~360
    Nose, T., Arai, S., Lee, D. et al. A note on amino acids essential for growth of young carp. Bull.Jpn.Soc.Sci.Fish., 1974, 40:903~908
    NRC (National Research Council), Nutrient requirements of swine. National academy press.Washington,DC. 1988
    NRC (National Research Council). Nutrient requirements of poultry. National academy press.Washington,DC. 1994
    Oliva-Teles, A., Gon?alves, P. Partial replacement of fishmeal by brewers yeast (Saccaromyces cerevisae) in diets for sea bass (Dicentrarchus labrax) juveniles. Aquaculture, 2001. 202: 269~278
    Onal, U., Langdon, C. J. Characterization of lipid spray beads for delivery of glycine and tyrosine to early marine fish larvae. Aquaculture. 2004, 233:495~511
    Opstvedt, J., Aksnes, A., Hope,B., et al, Efficiency of feed utilization in Atlantic salmon (Salmo salar L.) fed diets with increasing substitution of fish meal with vegetable proteins. Aquaculture, 2003.221:365~379
    Ozkizilcik, S., Chu, F.L.E. Preparation and characterization of a complex microencapsulated diet for striped bass Morone saxatilis larvae. J. Microencapsulation. 1996. 13, 331~343
    Palacín, M., Estévez, R. L., Bertran, J. B., Zorzano, A. Molecular biology of mammalian plasma membrane amino acid. Physiol. Rev., 1998, :78 969~1054
    Pfeffer, E., Kinzinger, S., Rodehutscord, M. Influence of the proportion of poultry slaughter by-products and of untreated or hydrothermically treated legume seeds in diets for rainbow trout, Oncorhynchus mykiss (Walbaum), on apparent digestibilities of their energy and organic compounds. Aquacult. Nutr. 1995, 1:111–117
    Pongmaneerat, J., Watanabe, T., Takeushi, T, et al. Use of different protein meals as partial ortotal substitution for fish meal in carp diets. Bull. Jpn. Soc. Sci. Fish. 1987, 59:1249~1257
    Priestley, S.M., Stevenson,A.E., Alexander,L.G. The Influence of Feeding Frequency on Growth and Body Condition of the Common goldfish (Carassius auratus)J.Nutr.2006; 136,179~181
    Reigh, R.C., Production characteristics of pond-raised channel catfish Ictalurus punctatus fed diets with and without animal protein for three growing seasons. J. World Aquaculture Soc. 1999, 30: 154~160
    Robertson, L., Lawrence, A.L., Castille, F.L. Effect of feeding frequency and feeding time on growth of Penaeus vannamei (Boone). Aquac. Fish. Manage. 1993. 24: 1~6
    Robinson, E.H. Improvement of cottonseed meal protein with supplemental lysine in feeds for channel catfish. J. Appl. Aquacult., 1991.1:1~14
    Robinson, E.H., Wilson, R.P., Poe, W.E. Re-evaluation of the lysine requirement and lysine utilization by fingerling channel catfish. J. Nutr., 1980. 110: 2313~2316
    Robinson, E.H., Allen Jr., O.W., Poe, W.E., et al. Utilization of dietary sulfur compounds by fingerling channel catfish: l-methionine, dl-methionine, methionine hydroxyl analog, taurine and inorganic sulfate. J. Nutr., 1978. 108:1932~1936
    Robinson, E.H., Li, M.H. Use of plant proteins in catfish feeds: replacement of soybean meal with cottonseed meal and replacement of fish meal with soybean meal and cottonseed meal. J. World Aquaculture Soc. 1994, 25: 271~276
    Rodehutscord, M., Borchert, F., Gregus, Z.,et al. Availability and utilisation of free lysine in rainbow trout(Oncorhynchus mykiss)1. Effect of dietary crude protein level. Aquaculture, 2000a, 187: 163~176
    Rodehutscord, M., Borchert, F. Gregus, Z.,et al. Availability and utilisation of free lysine in rainbow trout (Oncorhynchus mykiss) 2. Comparison of L-lysine·HCl and L-lysine sulphate. Aquaculture. 2000b, 187:177~183
    Rodehutscord, M., Becker, A., Pack, M., et al. Response of rainbow trout(Oncorhynchus mykiss) to supplements of individual essential amino acids in a semipurified diet, including an estimate of the maintenance requirement for essential amino acids. J. Nutr. 1997.127:1166~1175
    Rodriguez, A., Le Vay, I., Mourente, G., et al. Biochemical composition and digestive enzyme activity in larvae and postlarvae of Penaeus japonicus during herbivorous and carnivorous feeding. Mar Biol, 1994. 118:45~51
    Rojas-García, C. R., R?nnestad, I. Assimilation of dietary free amino acids, peptides and protein in postlarval Atlantic halibut (Hippoglossus hippoglossus). Mar. Biol., 2003, 142: 801~808
    Rolls, B.A.,Porter,J.W.G.,Westgarth,D.R. The course of digestion of different food protein in the rat,3. The absorption of proteins given alone and with supplements of their limiting amino acids. Br. J. Nutr. 1972.28:283~293
    R?nnestad, I., Concei??o, L. E. C., Arag?o, C., et al. Free amino acids are absorbed faster and assimilated more efficiently than protein in postlarval Senegal sole (Solea senegalensis). J. Nutr. 2000, 130: 2809~2812
    R?nnestad, I., Concei??o, L. E. C., Arag?o, C., et al. Assimilation and catabolism of dispensable and indispensable free amino acids in post-larval Senegal sole (Solea senegalensis).Comparative Biochemistry and Physiology Part C. 2001, 130: 461~466
    Rovertson L., Lawence A., Castille F. The effect of feeding frequencyand feeding time on growth of Penaeus vannamei (Boone) .Aquac Fish Manag, 1993, 24 : 1~6
    Rumsey, G.L., Ketola, H.G. Amino acid supplementation of casein in diets of Atlantic salmon (Salmo salar) fry and of soybean meal for rainbow trout (Salmo gairdneri) fingerlings. J. Fish. Res. Board Can. 1975. 32: 422~426
    Rust, M.B. Quantitative aspects of nutrient assimilation in six species of fish larvae. [PhD Dissertation] Seattle: University of Washington, School of Fisheries, U.S., 1995
    Rust, M. B., Hardy, R. W., Stickney, R. R. A new method for force-feeding larval fish. Aquaculture, 1993. 116: 341~351
    Sánchez-Muros, M. J., Corchete, V., Suárez, M. D., et al. Effect of feeding method and protein source on Sparus aurata feeding patterns. Aquaculture. 2003, 224:89~103
    Sedgwick, R.W. Effect of ration size and feeding frequency on the growth and food conversion of juvenile Penaeus merguiensis de Man. Aquaculture. 1979.16:279~298
    Segovia-Quintero, M. A., Reigh, R. C. Coating crystalline methionine with tripalmitin-polyvinyl alcohol slows its absorption in the intestine of Nile tilapia, Oreochromis niloticus. Aquaculture 2004, 238:355~367
    Shahidi F., Han X. Q. Encapsulation of food ingredients. Critical Reviews in Food Science and Nutrition.1993,33:501~547
    Sharda, D.P., Mahan, D.C., Wilson, R. F. Limiting amino acids in low-protein corn soybean meal diet for growing-finishing swine. J Anim Sci. 1976, 42:1175~1181
    Shiau, S.Y. Nutrient requirements of penaeid shrimp. Aquaculture. 1998. 164:77~93
    Shipton, T. A., Britz, P. J., Walker, R. B. An assessment of the efficacy of two lysine micro- encapsulation techniques to determine the quantitative lysine requirement of the South African abalone, Haliotis midae L. Aquac. Nutr. 2002, 8:221~227
    Sierra, M. A. La encapsulación como estrategia para establecer las necesidades de metionina y la suplementación de proteína de soja. Consecuencias sobre el recambio proteico tisular y el crecimiento de la dorada Sparus aurata. [Doctoral thesis]. Universidad de Granada. Spain, 1995
    Smith, D. M., Tabrett, S. J., Irvin, S. J., et al. Response of the black tiger shrimp, Penaeus monodon to feed containing the lupin alkaloid, gramine. Aquaculture. 2007,272: 556~563
    Smith, D.M., Burford, M.A., Tabrett, S.J., et al. The effect of feeding frequency on water quality and growth of the black tiger shrimp (Penaeus monodon). Aquaculture. 2002. 207: 125~136
    Southgate, P. C., Lee, P. S., Nell, J. A. Preliminary assessment of a microencapsulated diet for larval culture of the Sydney rock oyster, Saccostrea commercialis (Iredale & Roughley). Aquaculture. 1992.105:345~352
    Southgate, P.C., Lou, D.C. Improving the n-3 HUFA composition of Artemia using microcapsulescontaining marine oils. Aquaculture. 1995, 134:91~99
    Stellmach, B. Best immungs methoden enzyme.(钱嘉渊,译).北京:中国轻工业出版社. 1992. 8: 329
    Stevens, C. E. Comparative physiology of the vertebrate digestive system. Cambridge University Press, Cambridge,UK. 1988
    Sugiura, S.H., Dong, F.M., Rathbone, C.K., et al. Apparent protein digestibility and mineral availabilities in various feed ingredients for salmonid feeds. Aquaculture. 1998, 159: 177~202
    Sveier, H., Nord?e, S., Berge, G.. E., et al. Dietary inclusion of crystalline D- and L-methionine: effects on growth, feed and protein utilization, and digestibility in small and large Atlantic salmon (Salmon salar L.) Aquac. Nutri., 2001, 7:169~181
    Tacon, A. G. J. Feed ingredients for warmwart fish: fish meal and other processed feedstuffs. 2nd ed. Cambridge University Press, New York, 1996.64
    Takagi,S., Shimeno, S., Hosokawa, H., Ukawa, M. Effect of lysine and methionine supplementation to a soy protein concentrate diet for red sea bream Pagrus major. Fisheries Science. 2001. 67: 1088~1096
    Tanaka N , Takino S & Utsumi I . A new oral gelatinized sustained - release dosage form. Pharm. Sci. 1963, 52 (7): 664~667
    Tantikitti, C., March, B.E. Dynamics of plasma free amino acids in rainbow trout(Oncorhynchus mykiss.)under variety of dietary conditions. Fish Physiol. Biochem. 1995.14:179~194
    Teshima, S. I., Ishikawa, M., Alam, M.S. Supplemental effects and metabolic fate of crystalline arginine in juvenile shrimp, Marsupenaeus japonicus. Comparative Biochemistry and Physiology Part B Biochemistry and Molecular Biology. 2004, 137:209~217
    Teshima, S., Kanazawa, A., Yamashita, M. Dietary value of several proteins and supplemental amino acids for larvae of the prawn (Penaeus japonicus). Aquaculture. 1986, 51:225~235
    Teshima,S.,Kanazawa, A., Koshio,S. Effects of methionine-enriched plastein supplemented to soybean-protein based diets on common carp Cyprinus carpio and tilapia Oreochromis niloticus. In: The Second Asian Fisheries Forum (Hirano, R., Hanyu, I.eds), Asian Fisheries Socity, Manila, Philippines. 1990. 279~282
    Teshima, S., Kanazawa, A., Koshio,S. Supplemental effects of methionine-enriched plastein in Penaeus japonicus diets. Aquaculture, 1992,101:85~93
    Tesser, M. B., Terjesen, B. F.,Zhang, Y., et al. Free- and peptide-based dietary arginine supplementation for the South American fish pacu (Piaractus mesopotamicus). Aquac. Nutri. 2005. 11:443~453
    Thu T. T. N., Parkouda, C., Saeger, S. de,et al. Comparison of the lysine utilization efficiency in different plant protein sources supplemented with L-lysine·HCl in rainbow trout (Oncorhynchus mykiss) fry. Aquaculture.2007.272:477~488
    Tsai, I.H., Chuang, K.L., Chuang, J.L. Chymotrypsins in digestive tracts of crustacean decapods (shrimps). Comp. Biochem. Physiol. 1986.85:235~240
    Velasco, M., Lawrence, A.L., Castille, F.L. Effect of variations in daily feeding frequency and ration size on growth of shrimp, Litopenaeus vannamei (Boone), in zero-water exchange culture tanks. Aquaculture. 1999.179: 141~148
    Villamar, D., Langdon, C.J.. Delivery of dietary components of larval shrimp (Penaeus vannamei) by means of complex micro capsules. Mar. Biol., 1993.115:635~642
    Viola, S., Angeoni, H., Lahav, E. Present limits of protein sparing by amino acid supplementation of practical carp and tilapia feeds. J. Aquac.-Bamidgeh. 1994, 46: 203~211
    Viola, S., Mokady, Y., Rappaport, U., et al. Partial and complete replacement of fishmeal by soybean meal in feed for intensive culture of carp. Aquaculture. 1982, 26: 223~236
    Walton, M. J. Aspects of amino acid metabolism in teleost fish. In: Cowey C B, Mackie A M, Bell ? J G. Eds., Nutrition and Feeding in Fish. Academic Press, London, 1985, 47~67.
    Wang, N. Hayward, R.S., Noltie, D. B. Effect of feeding frequency on food consumption, growth, size variation, and feeding pattern of age-0 hybrid sunfish. Aquaculture. 1998.165:261~267
    Watanabe, T., Aoki, H., Watanabe, K., Maita, M. Quality evaluation of different types of non-fish meal diets for yellowtail. Fish. Sci., 2001. 67:461~ 469
    Webb Jr., K. A., GatlinШ, D. M. Effects of dietary protein level and form on production characteristics and ammonia excretion of red drum Sciaenops ocellatus. Aquaculture. 2003.225: 17~26
    Webster, C.D., Tidwell, J.H., Goodgame, L.S., et al. Use of soybean meal and distillers grains with solubles as partial or total replacement of fish meal in diets for channel catfish (Ictalurus punctatus). Aquaculture.1992, 106: 301~309
    Williams, K., Barlow, C., Rodgers, L. Efficacy of crystalline and protein-bound amino acid enrichment of diets for barramundi/ Asian seabass (Lates calcarifer Bloch). Aquacult. Res. 2001, 32 (Suppl. 1):415~429
    Wilson, R.P., Harding, D. E., Garling Jr, D. L. Effect of dietary pH on amino acid utilization and the lysine requirement of fingerling Channel Catfish. Aquac. Nutri., 1977.107:166~170
    Yamada, S., Tanaka,Y., Katayama,T. Feeding experiments with carp fry fed an amino acid diet by increasing the number of feedings per day. Bull. Jpn. Soc. Sci. Fish. 1981. 47:1035~1040
    Yamamoto,T., Shima,T., Furuita, H., Suzuki, N. Influence of feeding diets with and without fish meal by hand and by self-feeders on feed intake, growth and nutrient utilization of juvenile rainbow trout (Oncorhynchus mykiss). Aquaculture. 2002, 214:289~305
    Yúfera, M., Kolkovski, S., Fernández-Díaz, C., et al. Free amino acid leaching from a protein-walled microencapsulated diet for fish larvae. Aquaculture. 2002. 214: 273~287
    Yúfera M., Pascual E., Fernández-Díaz, C. A highly efficient microencapsulated food for rearing early larvae of marine fish. Aquaculture. 1999, 177:249~256
    Yúfera M., Fernández-Díaz, C., Pascual E. Feeding tate of gilthead seabream, Sparus aurata L. larvae on microcapsules. Aquaculture.1995, 134:257~268
    Zambonino Infanta, J.L. Cahu, C. L. Dietary modulation of some digestive enzymes andMetabolic processes in developing marine fish: Applications to diet formulation. Aquaculture, 2007.268:98~105
    Zarate, D. D., Lovell, R. T. Free lysine(L-lysine·HCl)is utilized for growth less efficiently than protein-bound lysine (soybean meal) in practical diets by young channel catfish (Ictalurus punctatus). Aquaculture. 1997, 159:87~100
    Zarate, D. D., Lovell, R. T. Effects of feeding frequency and rate of stomach evacastion on utilization of dietary free and protein-bound lysin for growh by channel catfish Ictalurus punctatus.Aquac. Nutr.1999.5:17~22
    Zar, J. Biostatistical analysis, 4th edn. Prentice Hall, Englewood Cli, NJ, USA. 1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700