银杏叶次生代谢产物的环境诱导机制及其调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了干旱胁迫、光强处理和光质处理条件下2年生银杏苗生长规律和根、茎、叶中黄酮和萜内酯含量的年动态变化,同步测定了叶中次生代谢关键酶PAL活性,采用RT-PCR方法分析黄酮和萜内酯代谢过程中14个关键酶基因表达情况,从终产物、蛋白质、核酸3个水平探讨银杏应对环境变化的过程和分子机制,主要结论如下:
     1、干旱胁迫抑制银杏苗生长。干旱胁迫对叶中黄酮和萜内酯代谢影响较大,对茎和根内含量影响较小。银杏叶黄酮和萜内酯含量年动态变化呈双峰曲线,PAL酶活性与银杏叶黄酮含量变化趋势相似。中度干旱条件下叶中总黄酮醇苷含量最大,黄酮代谢途径上游PAL、C4H、CHS基因表达与黄酮含量升高的趋势相对应,下游F3H、FLS、ANS、ANR基因表达与黄酮含量同步变化。轻度干旱有利于叶和根中萜内酯积累,萜内酯代谢MVA途径中HMGR、MVD基因协同调控白果内酯BB代谢,MEP途径中DXS、DXR、MECT、MECPs基因调控总二萜内酯的合成,下游GGPPs基因表达与总萜内酯含量的变化趋势一致。
     2、轻度遮阴有利于银杏生长。银杏叶黄酮和萜内酯含量年动态变化呈单峰曲线,不同光强条件下银杏叶PAL活性与黄酮含量变化并不对应。轻度遮阴条件下,叶中总黄酮醇苷含量最大,其代谢途径下游基因表达与黄酮代谢关系紧密。重度遮阴有利于叶中萜内酯积累,其MVA代谢途径中基因表达与白果内酯BB含量变化趋势完全相符,而MEP代谢途径中仅有MECT和MECPs基因表达与二萜类物质含量变化趋势基本一致,下游GGPPs基因表达与总萜内酯代谢同步变化。
     3、红光处理促进银杏苗地上部分生长,而蓝光有利于地下部分生长。银杏叶黄酮和萜内酯含量年动态变化呈双峰曲线,PAL活性与黄酮含量变化并不对应。红光有利于总黄酮醇苷含量的积累,黄酮代谢下游关键酶基因表达与含量变化趋势基本相同。蓝光有利于萜内酯积累,萜内酯MVA代谢途径中关键酶基因表达与白果内酯BB含量变化趋势不同步,MEP代谢途径中关键酶基因和GGPPs基因表达与总萜内酯含量变化相一致。
This dissertation presented the study on the growth and main medicinal compositions of Ginkgo seedlings of two years under drought stress, light intensity and light quality, and the annual dynamic variations of the total flavonoids, terpene lactones in leaves, roots and stems from April to November. Meanwhile, the study also determined PAL activity of the key enzyme in secondary metabolism in leaves and analyzed the expression of 14 key enzyme genes in the metabolistic process of flavonoids, terpene lactones by RT-PCR. Then, it discessed the process of adaptation to the enviornment and its molecular mechanism from the perspectives of products, protein and nucleic acid of Gingko biloba. The main results were showed as following:
     1. Drought stress inhibited the growth of Ginkgo seedlings. It exerted greater influence on the metabolism of flavonoids, terpene lactones in leaves than their contents in stems and roots. Contents of flavonoids and terpene lactones in leaves were correlated significantly with drought stress. The content variation of flavonoids and terpene lactones in leaves displayed a double peaks curve and PAL activity and flavonoids content shared a similar changing pattern. Flavonoids reached its highest level in moderate drought. In the early stage of flavonoids metabolism, expressions of PAL, C4H and CHS genes corresponded with the ascending content of flavonoids, and those of F3H、FLS、ANS、ANR genes in later stage of flavonoid metabolism were entirely the same as changes of flavonoid content. Light drought helped in the accumulation of terpene lactones in leaves and roots. In the metabolism of terpene lactones through MVA , genes HMGR and MVD jointly regulated the metabolism of bilobalide, while genes DXS, DXR, MECT and MECPs in the metabolism of terpene lactones through MEP controled synthesis of diterpene lactones, and the experession of gene GGPPs corresponded with the content of total terpene .
     2. Light shade facilitated the growth of Ginkgo biloba. The variation of flavonoids and terpene lactones in the leaves showed a single-peak curve, and PAL activity and flavonoids content in the leaves didn’t correspond to each other under different light intensity. In light shade treatment, flavonoids reached its peak in content, in whose later stage of metabolism, genetic expression and flavonoids mebabolism remained close relationship; Severe shade faciliated the accumulation of terpene lactones in leaves, in the metabolistic channel of which the genetic expression of MVA was entirely corresponding with the variation of bilobalide content, while in the metabolistic channel of MEP the expression of genes MECT and MECPs basically agreed with the variation of diterpene lactones content, and the experession of gene GGPPs in later matabolistic stage varied with the metabolism of total terpene lactones.
     3. Red light helped in the growth of aboveground parts, while blue light the growth of underground parts. The variation of flavonoids content and terpene lactones displayed a double-peak curve, and PAL activity didn’t correspond with the variation of flavonoids content in the leaves. Red light was in favor of the flavonoids accumulation and the genetic expression of the key enzyme of later stage of flavonoids metabolism was basically in accordance with the variation of flavonoid contents. Blue light was favorable to the accumulation of terpene lactones in leaves and roots. The genetic expression of the key enzyme in the metabolism of MVA in terpene lactones was not in accordance with the variation of bilobalide contents but that of the key genes in MEP metabolism and GGPPs conformed with the content variation of terpene lactones in total.
引文
[1] Jacobs B, Browner W. Ginkgo biloba: a living fossil[J]. The American Journal of Medicine, 2000, 108(4): 341-342.
    [2]郁青,沈兆邦,陈祥.银杏叶内酯含量的变化规律研究[J].林产化学与工业, 1998, 18(4): 1-6.
    [3] Stromgaard K, Nakanishi K. Chemistry and biology of terpene trilactones from Ginkgo biloba [J]. Angew Chem Int Ed, 2004, 43:1640-1658.
    [4] Kuddus R, Oakes J, Sharp C, et al. Isolation of medically important fungi from Ginkgo biloba leaves and crude ginkgo supplements [J]. The Internet Journal of Microbiology, 2008, 5(2): 15-19.
    [5]吴坚,汪明亮.银杏叶中萜内酯的研究进展[J].药学实践杂志, 1999, 17(6): 356-360.
    [6]周维书.银杏叶挥发油化学成分的研究[J].中国药学杂志, 1999, 05:353
    [7] Nakanishi K, Habaguchi K, Nakadaira Y, et al. Structure of bilobalide, a rare tert-butyl containing sesquiterpenoid related to the C20-ginkgolides [J]. Journal of the American Chemical Society, 1971, 93(14): 3544-3546.
    [8] Bilia A. Ginkgo biloba L [J]. Fitoterapia, 2002, 73(3): 276-279.
    [9]刘万宏陈敏,廖志华,等.银杏内酯的生物合成途径及生物技术研究进展[J].中草药, 2007, 38(6): 941-945.
    [10]傅丰永,刘永龙,尚天民.黄酮类化合物在自然界其药用价值和新药的寻找[J].植物学报, 1980, (1):87-92.
    [11] Olsen K M, Lea U S, Slimestad R, et al. Differential expression of four Arabidopsis PAL genes; PAL1 and PAL2 have functional specialization in abiotic environmental-triggered flavonoid synthesis [J]. Journal of Plant Physiology, 2008, 165(14): 1491-1499.
    [12] Balen B, Pavokovic D, Peharec P, et al. Biochemical markers of morphogenesis in long term horseradish (Armoracia lapathifolia Gilib.) tissue culture [J]. Scientia Horticulturae, 2009, 119(2): 88-97.
    [13] Heredia J B, Cisneros-zevallos L. The effect of exogenous ethylene and methyl jasmonate on pal activity, phenolic profiles and antioxidant capacity of carrots (Daucus carota) under different wounding intensities [J]. Postharvest Biology and Technology, 2009, 51(2): 242-249.
    [14]程水源,陈昆松,刘卫红,等.植物苯丙氨酸解氨酶基因的表达调控与研究展望[J].果树学报, 2003, 20(5): 351-357.
    [15]李莉,赵越,马君兰.苯丙氨酸代谢途径关键酶:PAL,C4H,4CL研究新进展[J].生物信息学, 2006, 5(187-189.
    [16] Chapple C. Molecular-genetic analysis of plant cytochrome p450-dependent monooxygenases[J]. Annual Reviews in Plant Physiology and Plant Molecular Biology, 1998, 49(1): 311-343.
    [17] Koopmann E, Logemann E, Hahlbrock K. Regulation and functional expression of cinnamate 4-hydroxylase from parsley [J]. Plant Physiology, 1999, 119(1): 49.
    [18] Bell-lelong D, Cusumano J, Meyer K, et al. Cinnamate-4-Hydroxylase Expression in Arabidopsis (Regulation in Response to Development and the Environment) [M]. Am Soc Plant Biol. 1997:729-738.
    [19] Chakraborty M, Karun A, Mitra A. Accumulation of phenylpropanoid derivatives in chitosan-induced cell suspension culture of Cocos nucifera [J]. Journal of Plant Physiology, 2009, 166(1): 63-71.
    [20]邢智峰,张安世,徐存栓,等.毛白杨4cl基因启动子的克隆及初步功能分析[J].河南师范大学学报(自然科学版), 2007, 02:142-145.
    [21] Ehlting J, Buttner D, Wang Q, et al. Three 4-coumarate: coenzyme A ligases in Arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms [J]. The Plant Journal, 1999, 19(1): 9-20.
    [22] Lindermayr C, M Llers B, Fliegmann J, et al. Divergent members of a soybean (Glycine max L.) 4-coumarate: coenzyme A ligase gene family [J]. Eur J Biochem, 2002, 269(4): 1304-1315.
    [23] Yamauchi T, Kamon J, Ito Y, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects [J]. Nature, 2003, 423(6941): 762-769.
    [24] Lindermayr C, Saalbach G, Durner J. Proteomic Identification of S-Nitrosylated Proteins in Arabidopsis 1 [J]. Plant Physiology, 2005, 137(3): 921-930.
    [25]许锋,程水源,程述汉,等.银杏查尔酮合成酶基因表达的时间进程(英文)[J].植物生理与分子生物学学报, 2007, 04: 309-317.
    [26]王燕,许锋,程水源.植物查尔酮合成酶分子生物学研究进展[J].河南农业科学, 2007, 08):5-9.
    [27]周波. UV-A特异诱导津田芜著花青素合成基因表达调控研究[D].东北林业大学,2007.
    [28]廖靖军,安成才,吴思,等查尔酮合酶基因在植物防御反应中的调控作用[J].北京大学学报(自然科学版), 2000, 36(4): 566-575.
    [29]谢修志,陈兆平,王小菁.非洲菊查尔酮合酶基因的克隆、序列分析及在大肠杆菌中的表达[J].热带亚热带植物学报, 2004, 12(5): 431-434.
    [30] Lister C, Lancaster J, Walker J. Developmental Changes in Enzymes Biosynthesis in the Skins of Red and [J]. J Sci Food Agric, 1996, 71(3): 313-320.
    [31]吴冰,祝钦泷,郭余龙,等.查尔酮异构酶基因的分子特征及其在基因工程中的应用[J].植物生理学通讯, 2008, 44(001): 175-181.
    [32]崔丽洁.梨f3h基因的克隆及植物载体的构建及应用RAPD技术对梨部分品种亲缘关系的探讨[D];福建农林大学, 2004.
    [33] Kim J, Lee Y, Kim B, et al. Flavanone 3 beta-Hydroxylases from Rice: Key Enzymes for Favonol and Anthocyanin Biosynthesis [J]. Mol Cells, 2008, 25(2): 312.
    [34]张龙,李卫华,姜淑梅,等.花色素苷生物合成与分子调控研究进展[J].园艺学报, 2008, 35(6): 909-916.
    [35]庞永珍.银杏黄酮和萜类化合物生物合成途径中重要相关基因的克隆和研究[D];复旦大学, 2005.
    [36] Nakatsuka A, Mizuta D, Kii Y, et al. Isolation and expression analysis of flavonoid biosynthesis genes in evergreen azalea [J]. Scientia Horticulturae, 2008, 118(4): 314-320.
    [37]杨文杰,杜海,方芳,等.大豆两个myb转录因子基因的克隆及表达分析[J].中国农业科学, 2008, 41(004): 961-970.
    [38] Halbwirth H, Fischer T C, Schlangen K, et al. Screening for inhibitors of 2-oxoglutarate-dependentdioxygenases: Flavanone 3[beta]-hydroxylase and flavonol synthase [J]. Plant Science, 2006, 171(2): 194-205.
    [39] Eisenreich W, Schwarz M, Cartayrade A, et al. The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms [J]. Chemistry & Biology, 1998, 5(9): 221-233.
    [40] Van Beek T, Lelyveld G. Preparative isolation and separation procedure for ginkgolides A, B, C, and J and bilobalide [J]. J Nat Prod, 1997, 60(7): 735-738.
    [41] Van Beek T A. Chemical analysis of Ginkgo biloba leaves and extracts [J]. Journal of Chromatography A, 2002, 967(1): 21-55.
    [42]张鹤鸣,王宁生.银杏萜内酯的化学性质及合成[J].广州中医药大学学报, 2000, 17(3): 266-270.
    [43] Lichtenthaler H. The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants [J]. Annu Rev Plant Biol, 1999, 50(1): 47-65.
    [44] Bach T. Hydroxymethylglutaryl-CoA reductase, a key enzyme in phytosterol synthesis[J]. Lipids, 1986, 21(1): 82-88.
    [45] Ruiz-Albert J, Cerd-Olmedo E, Corrochano L. Genes for mevalonate biosynthesis in Phycomyces [J]. Molecular Genetics and Genomics, 2002, 266(5): 768-777.
    [46] Toth M, Huwyler L. Molecular cloning and expression of the cDNAs encoding human and yeast mevalonate pyrophosphate decarboxylase [J]. Journal of Biological Chemistry, 1996, 271(14): 7895.
    [47] Dassanayake R, Cao L, Samaranayake L, et al. Characterization, heterologous expression and functional analysis of mevalonate diphosphate decarboxylase gene (MVD) of Candida albicans [J]. Molecular Genetics and Genomics, 2002, 267(3): 281-290.
    [48] Cordier H, Karst F, Berg S T. Heterologous expression in Saccharomyces cerevisiae of an Arabidopsis thaliana cDNA encoding mevalonate diphosphate decarboxylase [J]. Plant MolBiol, 1999, 39(5): 953-967.
    [49] Gong Y, Liao Z, Guo B, et al. Molecular cloning and expression profile analysis of Ginkgo biloba DXS gene encoding 1-deoxy-D-xylulose 5-phosphate synthase, the first committed enzyme of the 2-C-methyl-D-erythritol 4-phosphate pathway [J]. Planta Medica, 2006, 72(4): 329.
    [50] Gong Y, Liao Z, Chen M, et al. Molecular cloning and characterization of a 1-deoxy-D-xylulose 5-phosphate reductoisomerase gene from Ginkgo biloba [J]. Mitochondrial DNA, 2005, 16(2): 111-120.
    [51] Croteau R. Biosynthesis and catabolism of monoterpenoids[J]. Chemical reviews, 1987, 87(5): 929-954.
    [52]曹福亮,金继良,汪贵斌,等.截干萌芽在银杏叶用园培育中的应用机理[J].南京林业大学学报, 1999, 23(5): 60-63.
    [53]陈学森,章文才,邓秀新.树龄及季节对银杏叶黄酮与萜内酯含量的影响[J].果树科学, 1997, 14(4): 226-229.
    [54]冷平生,苏淑钗,蒋湘宁,等.银杏萜内酯的分布与矮壮素对其生物合成的调节[J].植物资源与环境学报, 2004, 13(2): 54-55.
    [55]程水源,顾曼如.影响银杏叶黄酮含量的因子及其评价[J].湖北农学院学报, 1999, 19(002):110-112.
    [56]冷平生,苏淑钗,王天华,等.光强与光质对银杏光合作用及黄酮苷与萜类内酯含量的影响[J].植物资源与环境学报, 2002, 11(1): 1-4.
    [57]王华田,谢宝东,姜岳忠,等.光照强度对银杏叶片发育及黄酮和内酯含量的影响[J].江西农业大学学报(自然科学版), 2002, 24(5): 617-622.
    [58]谢宝东,王华田.光质和光照时间对银杏叶片黄酮、内酯含量的影响[J].南京林业大学学报(自然科学版), 2006, 30(2): 51-54.
    [59]冷平生,苏淑钗,李月华,等.施肥与干旱胁迫对银杏生长及黄酮苷和萜类内酯含量的影响[J].北京农学院学报, 2001, 16(1): 32-37.
    [60]谢宝东,王华田,常立华,等.土壤水分含量对银杏叶黄酮和内酯含量的影响[J].山东林业科技, 2002, 04:1-3.
    [61]景茂.银杏对土壤水分胁迫的响应[D].南京林业大学, 2005.
    [62]张成军,郭佳秋,陈国祥,等.高温和干旱对银杏光合作用、叶片中黄酮苷和萜类内酯含量的影响[J].农村生态环境, 2005, 21(3): 11-15.
    [63]冷平生.银杏药效次生物生物合成及其栽培措施调控[D].北京林业大学,2005.
    [64]谢宝东.影响银杏叶有效成分黄酮、内酯含量相关因素的研究[D].山东农业大学, 2002.
    [65] Jung W, Yu O, Lau S, et al. Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes [J]. Nature Biotechnology, 2000, 18(2): 208-212.
    [66] Holton T, Brugliera f, Lester D, et al. Cloning and expression of cytochrome P450 genes controlling flower colour [J]. 1993,
    [67] Joung J, Mangai Kasthuri G, Park J, et al. An overexpression of chalcone reductase of Pueraria montana var. lobata alters biosynthesis of anthocyanin and 5'-deoxyflavonoids in transgenic tobacco [J]. Biochemical and Biophysical Research Communications, 2003, 303(1): 326-331.
    [68] Borevitz J, Xia Y, Blount J, et al. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis [J]. The Plant Cell Online, 2000, 12(12): 2383.
    [69] Gandikota M, De Kochko A, Chen L, et al. Development of transgenic rice plants expressing maize anthocyanin genes and increased blast resistance [J]. Molecular Breeding, 2001, 7(1): 73-83.
    [70] Grotewold E, Chamberlin M, Snook M, et al. Engineering Secondar y Metabolism in Maize Cells by Ectopic Expression of Transcription Factors [J]. The Plant Cell Online, 1998, 10(5): 721.
    [71]程强,张新叶,黄敏仁.实时定量rt-Pcr技术及在植物基因表达分析中的应用[J].中国生物工程杂志, 2005, 25(B04): 82-86.
    [72] Hsiao T. Plant response to water stress [J]. Annual Review of Plant Physiology, 1973, 24:519-570.
    [73] Ceulemans R, Deraedt W. Production physiology and growth potential of poplars under short-rotation forestry culture [J]. Forest Ecology and Management, 1999, 121(1-2): 9-23.
    [74]中华人民共和国药典委员会.中华人民共和国药典(2005年版)一部[M].北京:化学工业出版社. 2005.
    [75] Jansson S, Meyer-Gauen G, Cerff R, et al. Nucleotide distribution in gymnosperm nuclear sequences suggests a model for GC-content change in land-plant nuclear genomes [J]. Journal of Molecular Evolution, 1994, 39(1): 34-46.
    [76]张萍一,周志春,金国庆,等.木荷种源苗高生长参数变异研究[J].林业科学研究, 2006, 19(1): 61-65.
    [77] Hasler A, Sticher O, Meier B. Identification and determination of the flavonoids from Ginkgo biloba by high-performance liquid chromatography [J]. Journal of Chromatography A, 1992, 605(1): 41-48.
    [78] Xu F, Cai R, Cheng S, et al. Molecular cloning, characterization and expression of phenylalanine ammonia-lyase gene from Ginkgo biloba [J]. African Journal of Biotechnology, 2008, 7(6): 721-729.
    [79] Turnbull J, Sobey W, Aplin R, et al. Are anthocyanidins the immediate products of anthocyanidin synthase? [J]. Chemical Communications, 2000, 2000(24): 2473-2474.
    [80] Prescott A, John P. Dioxygenases: molecular structure and role in plant metabolism [J]. Annu Rev Plant Biol, 1996, 47(1): 245-271.
    [81] Zahner R, Kozlowski T. Water deficits and growth of trees [J]. Water Deficits and Plant Growth: Plant water consumption and response, 1968, 191.
    [82]孔兰静,李红双,张志国.三种观赏草对土壤干旱胁迫的生理响应[J].中国草地学报, 2008, 30(004): 40-45.
    [83] Ogbonnaya C, Nwalozie M, Roy-Macauley H, et al. Growth and water relations of Kenaf (Hibiscus cannabinus L.) under water deficit on a sandy soil [J]. Industrial Crops and Products, 1998, 8(1): 65-76.
    [84]宇万太,于永强.植物地下生物量研究进展[J].应用生态学报, 2001, 12(006): 927-932.
    [85] Hester M, Mendelssohn I, Mckee K. Species and population variation to salinity stress in Panicum hemitomon, Spartina patens, and Spartina alterniflora: morphological and physiological constraints [J]. Environmental and Experimental Botany, 2001, 46(3): 277-297.
    [86] Cline R, Campbell G. Seasonal and diurnal water relations of selected forest species [J]. Ecology, 1976, 367-373.
    [87] Schulte P, Marshall P. Growth and water relations of black locust and pine seedlings exposed to controlled water stress [J]. CAN J FOR RES, 1983, 13(2): 334-338.
    [88] Woodward F, Smith T, Emanuel W. A global land primary productivity and phytogeography model [J]. Global biogeochemical cycles, 1995, 9(4): 471-490.
    [89]肖冬梅,王淼,姬兰柱.水分胁迫对长白山阔叶红松林主要树种生长及生物量分配的影响[J].生态学杂志, 2004, 23(005): 93-97.
    [90]李芳兰.三种豆科灌木对干旱胁迫的响应与适应[D];中国科学院研究生院(成都生物研究所), 2007.
    [91]王云龙,许振柱,周广胜.水分胁迫对羊草光合产物分配及其气体交换特征的影响[J].植物生态学报, 2004, 28(006): 803-809.
    [92] Hutchings M, John E. The effects of environmental heterogeneity on root growth and root/shoot partitioning [J]. Ann Bot, 2004, 94(1): 1.
    [93] Baigorri H, Antolin M, Sanchez-Diaz M. Reproductive response of two morphologically different pea cultivars to drought [J]. European Journal of Agronomy, 1999, 10(2): 119-128.
    [94] Larbi A, Awojide A, Adekunle I, et al. Fodder production responses to pruning height and fodder quality of some trees and shrubs in a forest-savanna transition zone in southwestern Nigeria [J].Agroforestry Systems, 2000, 48(2): 157-168.
    [95] Liu F, St Tzel H. Leaf water relations of vegetable amaranth (Amaranthus spp.) in response to soil drying [J]. European Journal of Agronomy, 2002, 16(2): 137-150.
    [96] Liu F, St Tzel H. Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress [J]. Scientia Horticulturae, 2004, 102(1): 15-27.
    [97] Bargali K, Tewari A. Growth and water relation parameters in drought-stressed Coriaria nepalensis seedlings [J]. Journal of Arid Environments, 2004, 58(4): 505-512.
    [98] Fort C, Fauveau M, Muller F, et al. Stomatal conductance, growth and root signaling in young oak seedlings subjected to partial soil drying [J]. Tree Physiology, 1997, 17(5): 281.
    [99]刘锦春.重庆石灰岩地区柏木幼苗对水分胁迫的生理生态适应性研究[D];西南大学, 2008.
    [100] Roden J, Ball M. The effect of elevated [CO2] on growth and photosynthesis of two eucalyptus species exposed to high temperatures and water deficits [J]. Plant Physiology, 1996, 111(3): 909.
    [101] Larcher W. Physiological plant ecology: ecophysiology and stress physiology of functional groups [M]. Springer Verlag, 2003.
    [102]韩蕊莲,梁宗锁.在土壤不同干旱条件下沙棘耗水特性的初步研究[J].沙棘, 1991, (004): 33-35.
    [103]Chartzoulakis K, Patakas A, Kofidis G, et al. Water stress affects leaf anatomy, gas exchange, water relations and growth of two avocado cultivars [J]. Scientia Horticulturae, 2002, 95(1-2): 39-50.
    [104] Gindaba J, Rozanov A, Negash L. Response of seedlings of two Eucalyptus and three deciduous tree species from Ethiopia to severe water stress [J]. Forest Ecology and Management, 2004, 201(1): 119-129.
    [105] Rodiyati A, Arisoesilaningsih E, Isagi Y, et al. Responses of Cyperus brevifolius (Rottb.) Hassk. and Cyperus kyllingia Endl. to varying soil water availability [J]. Environmental and Experimental Botany, 2005, 53(3): 259-269.
    [106] Castro-D Ez P, Puyravaud J, Cornelissen J. Leaf structure and anatomy as related to leaf mass per area variation in seedlings of a wide range of woody plant species and types [J]. Oecologia, 2000, 124(4): 476-486.
    [107] Milbau A, Scheerlinck L, Reheul D, et al. Ecophysiological and morphological parameters related to survival in grass species exposed to an extreme climatic event [J]. Physiologia Plantarum, 2005, 125(4): 500.
    [108] Marcelis L, Heuvelink E, Goudriaan J. Modelling of biomass production and yield of horticultural crops: a review [J]. Scientia Horticulturae, 1997, 74(1): 83-112.
    [109] Kranner I, Birtic S. A modulating role for antioxidants in desiccation tolerance [J]. Integrative and Comparative Biology, 2005, 45(5): 734.
    [110] Treutter D. Significance of flavonoids in plant resistance: a review [J]. Environmental Chemistry Letters, 2006, 4(3): 147-157.
    [111] Niyogi K, Bj Rkman O, Grossman A. The roles of specific xanthophylls in photoprotection [J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(25):14162.
    [112] Niyogi K, Grossman A, Bjorkman O. Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion [J]. The Plant Cell Online, 1998, 10(7): 1121.
    [113] Tattini M, Galardi C, Pinelli P, et al. Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress [J]. New Phytologist, 2004, 163(3): 547-561.
    [114]孙君明,韩粉霞.植物次生代谢产物异黄酮的调控机理[J].西南农业学报, 2005, 18(005): 663-667.
    [115]徐文燕,高微微,何春年.环境因子对植物黄酮类化合物生物合成的影响[J].世界科学技术:中医药现代化, 2006, 8(006): 68-72.
    [116]王华田,于文胜.土壤水分状况对苗期银杏生长及生理特性影响的研究[J].山东农业大学学报:自然科学版, 2000, 31(001): 74-78.
    [117]樊卫国,刘进平,何珺,等.银杏叶黄酮、萜内酯含量的季节性变化及适采期研究[J].山地农业生物学报, 2000, 19(2): 117-120.
    [118]诸姮,胡宏友,卢昌义, et al.植物体内的黄酮类化合物代谢及其调控研究进展[J].厦门大学学报:自然科学版, 2007, 46(A01): 136-143.
    [119]陆定志,傅家瑞,宋松泉.植物衰老及其调控[M].北京:中国农业出版杜, 1997.
    [120] Cartayrade A, Bourgeois G, Balz J P, et al. The secretory apparatus of ginkgo-biloba - structure, differentiation and analysis of the secretory product [J]. Trees-Struct Funct, 1990, 4(4): 171-178.
    [121] Chen J-Y, Wen P-F, Kong W-F, et al. Changes and subcellular localizations of the enzymes involved in phenylpropanoid metabolism during grape berry development [J]. Journal of Plant Physiology, 2006, 163(2): 115-127.
    [122] Leyva A, Jarillo J, Salinas J, et al. Low temperature induces the accumulation of phenylalanine ammonia-lyase and chalcone synthase mRNAs of Arabidopsis thaliana in a light-dependent manner [J]. Plant Physiology, 1995, 108(1): 39.
    [123] Bufler G, Bangerth F. UV-induced peroxidase and phenylalanine ammonia-lyase activity and phaseollin accumulation in leaves of Phaseolus vulgaris L. in relation to ethylene [J]. Plant Science Letters, 1982, 25(2): 227-237.
    [124] Lavola A, Julkunen-Tiitto R, De La Rosa T M, et al. Allocation of carbon to growth and secondary metabolites in birch seedlings under UV-B radiation and CO2 exposure [J]. Physiologia Plantarum, 2000, 109(3): 260-267.
    [125] Nugroho L H, Verberne M C, Verpoorte R. Activities of enzymes involved in the phenylpropanoid pathway in constitutively salicylic acid-producing tobacco plants [J]. Plant Physiology and Biochemistry, 2002, 40(9): 755-760.
    [126] Kang M K, Park K S, Choi D. Coordinated expression of defense-related genes by TMV infection or salicylic acid treatment in tobacco [J]. Mol Cells, 1998, 8(4): 388-392.
    [127] Song B Q, Xiong J, Fang C X, et al. Allelopathic enhancement and differential gene expression inrice under low nitrogen treatment [J]. Journal of Chemical Ecology, 2008, 34(5): 688-695.
    [128]金丽萍.不同生态条件下干旱胁迫对蒙古扁桃生理指标及解剖构造的影响[D];内蒙古农业大学, 2009.
    [129]李云飞,李彦慧,王中华,等.土壤干旱胁迫对紫叶矮樱叶片呈色的影响[J].生态学报, 2009, 29(007): 3678-3684.
    [130] Cheng S, Xu F, Wang Y. Advances in the study of flavonoids in Ginkgo biloba leaves [J]. Journal of Medicinal Plants Research, 2009, 3(13): 1248-1252.
    [131] Watkinson J, Sioson A, Vasquez-Robinet C, et al. Photosynthetic acclimation is reflected in specific patterns of gene expression in drought-stressed loblolly pine [J]. Plant physiology, 2003, 133(4): 1702.
    [132] Watkinson J I, Hendricks L, Sioson A A, et al. Accessions of Solanum tuberosum ssp. andigena show differences in photosynthetic recovery after drought stress as reflected in gene expression profiles [J]. Plant Science, 2006, 171(6): 745-758.
    [133]范敏,金黎平,黄三文,等.干旱胁迫对马铃薯类黄酮和类胡萝卜素合成关键酶基因表达的影响[J].园艺学报, 2008, 35(004): 535-542.
    [134] Andr C, Schafleitner R, Legay S, et al. Gene expression changes related to the production of phenolic compounds in potato tubers grown under drought stress [J]. Phytochemistry, 2009, 70(9): 1107-1116.
    [135] Winkel B. Metabolic channeling in plants [J]. 2004.
    [136] Hrazdina G, Jensen R. Spatial organization of enzymes in plant metabolic pathways [J]. Annual Review of Plant Biology, 1992, 43(1): 241-267.
    [137] Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology [J]. Plant physiology, 2001, 126(2): 485.
    [138] Saslowsky D. Molecular Genetics and Subcellular Localization of Flavonoid Metabolism in Arabidopsis [D], 2000.
    [139] Towler M, Weathers P. Evidence of artemisinin production from IPP stemming from both the mevalonate and the nonmevalonate pathways [J]. Plant cell reports, 2007, 26(12): 2129-2136.
    [140] Rodriguez-Concepcion M. The MEP pathway: a new target for the development of herbicides, antibiotics and antimalarial drugs [J]. Current pharmaceutical design, 2004, 10(19): 2391-2400.
    [141] Blackwell J, Horgan R. Cloned Agrobacterium tumefaciens ipt1 gene product, DMAPP: AMP isopentenyl transferase [J]. Phytochemistry, 1993, 34(6): 1477-1481.
    [142] Watkinson J I, Hendricks L, Sioson A A, et al. Tuber development phenotypes in adapted and acclimated, drought-stressed Solanum tuberosum ssp. andigena have distinct expression profiles of genes associated with carbon metabolism [J]. Plant Physiology and Biochemistry, 2008, 46(1): 34-45.
    [143]齐欣,曹坤芳,冯玉龙.热带雨林蒲桃属3个树种的幼苗光合作用对生长光强的适应[J].植物生态学报, 2004, 28(001): 31-38.
    [144]王洋,戴绍军,阎秀峰.光强对喜树幼苗叶片次生代谢产物喜树碱的影响[J].生态学报, 2004, 24(006): 1118-1122.
    [145] Powles S, Critchley C. Effect of light intensity during growth on photoinhibition of intact attached bean leaflets [J]. Plant physiology, 1980, 65(6): 1181.
    [146] Adkins S, Armstrong L. The effect of light intensity on seed production and quality in a number of Australian wild oat (Avena fatua L.) lines [J]. Seeds: biology, development and ecology, 2007, 383.
    [147] Shirley H. The influence of light intensity and light quality upon the growth of plants [J]. American Journal of Botany, 1929, 16(5): 354-390.
    [148] Seibert M, Wetherbee P, JOB D. The effects of light intensity and spectral quality on growth and shoot initiation in tobacco callus [J]. Plant physiology, 1975, 56(1): 130.
    [149] Hou J, Li W, Zheng Q, et al. Effect of low light intensity on growth and accumulation of secondary metabolites in roots of Glycyrrhiza uralensis Fisch [J]. Biochemical Systematics and Ecology, 2010.
    [150] Gauslaa Y, Solhaug K. High-Light-Intensity Damage to the Foliose Lichen Lobaria Pulmonaria within Natural Forest: The Applicability of Chlorophyll Fluorescence Methods [J]. The Lichenologist, 2007, 32(03): 271-289.
    [151]蔡昆争,骆世明.不同生育期遮光对水稻生长发育和产量形成的影响[J].应用生态学报, 1999, 10(002): 193-196.
    [152]任万军,杨文钰,徐精文,等.弱光对水稻籽粒生长及品质的影响[J].作物学报, 2003, 29(005): 785-790.
    [153] Jarvis P. The Adaptability to Light Intensity of Seedlings of Quercus Petraea (Matt.) Liebl [J]. The Journal of Ecology, 1964, 52(3): 545-571.
    [154] Hunt R, Burnett J. The effects of light intensity and external potassium level on root/shoot ratio and rates of potassium uptake in perennial ryegrass (Lolium perenne L.) [J]. Annals of Botany, 1973, 37(3): 519.
    [155] Poorter H, Nagel O, Anderson J, et al. The role of biomass allocation in the growth response of plants to different levels of light, CO [J]. Aust J Plant Physiol, 2000, 27:595-607.
    [156] Blackman G, Wilson G. Physiological and ecological studies in the analysis of plant environment: VII. An analysis of the differential effects of light intensity on the net assimilation rate, leaf-area ratio, and relative growth rate of different species [J]. Annals of Botany, 1951, 15(3): 373.
    [157] Ashton P, Berlyn G. A comparison of leaf physiology and anatomy of Quercus (section Erythrobalanus-Fagaceae) species in different light environments [J]. American Journal of Botany, 1994, 81(5): 589-597.
    [158] Arens N. Responses of leaf anatomy to light environment in the tree fern Cyathea caracasana (Cyatheaceae) and its application to some ancient seed ferns [J]. Palaios, 1997, 12(1): 84-94.
    [159] Oguchi R, Hikosaka K, Hirose T. Does the photosynthetic light-acclimation need change in leaf anatomy? [J]. Plant, Cell & Environment, 2003, 26(4): 505-512.
    [160] Oguchi R, Hikosaka K, Hirose T. Leaf anatomy as a constraint for photosynthetic acclimation: differential responses in leaf anatomy to increasing growth irradiance among three deciduous trees [J]. Plant, Cell & Environment, 2005, 28(7): 916-927.
    [161] Ellsworth D, Reich P. Leaf mass per area, nitrogen content and photosynthetic carbon gain in Acer saccharum seedlings in contrasting forest light environments [J]. Functional Ecology, 1992, 423-435.
    [162] Grassi G, Giannini R. Influence of light and competition on crown and shoot morphologicalparameters of Norway spruce and silver fir saplings [J]. Ann For Sci, 2005, 62(3): 269-274.
    [163] Stafford H. Flavonoids and related phenolic compounds produced in the first internode of Sorghum vulgare Pers. in darkness and in light [J]. Plant Physiology, 1965, 40(1): 130.
    [164]朱肖锋,周守标,杨集辉,等.不同光照强度对马蹄金叶的特征及总黄酮含量的影响[J].激光生物学报, 2 009, 18(001): 62-66.
    [165]高嵩,何莉莉,陈俊琴,等.不同光强对辣椒果实中辣椒素及其竞争物质的影响[J].河南农业科学, 2008, 004): 83-86.
    [166] Rozema J, Vandestaaij J, Bjorn L O, et al. UV-B as an environmental factor in plant life: Stress and regulation [J]. Trends in Ecology & Evolution, 1997, 12(1): 22-28.
    [167] Ormrod D P, Landry L G, Conklin P L. Short-term uv-b radiation and ozone exposure effects on aromatic secondary metabolite accumulation and shoot growth of flavonoid-deficient arabidopsis mutants [J]. Physiologia Plantarum, 1995, 93(4): 602-610.
    [168]刘叔倩,郑俊华,王弘,等.不同气候区银杏叶中黄酮和萜内酯含量的变化[J].中草药, 2000, 31(6): 424-426.
    [169]戚向阳,陈维军,谢笔钧.银杏叶中萜内酯含量的动态变化的研究[J].中成药, 2003, 25(6): 445-448.
    [170] Dogbo O, Laferri Re A, D'harlingue A, et al. Carotenoid biosynthesis: Isolation and characterization of a bifunctional enzyme catalyzing the synthesis of phytoene [J]. Proceedings of the National Academy of Sciences, 1988, 85(19): 7054.
    [171] Giuliano G, Bartley G, Scolnik P. Regulation of carotenoid biosynthesis during tomato development [J]. The Plant Cell Online, 1993, 5(4): 379.
    [172]欧阳光察,薛应龙.植物苯丙烷类代谢的生理意义及其调控[J].植物生理学通讯, 1988, 24(3): 9-16.
    [173]张依.紫叶加拿大紫荆生理生化特性对光因子的响应[D],东北林业大学, 2009.
    [174] Kreuzaler F, Ragg H, Fautz E, et al. UV-induction of chalcone synthase mRNA in cell suspension cultures of Petroselinum hortense [J]. Proceedings of the National Academy of Sciences of the United States of America, 1983, 80(9): 2591.
    [175] Ryder T, Hedrick S, Bell J, et al. Organization and differential activation of a gene family encoding the plant defense enzyme chalcone synthase in Phaseolus vulgaris [J]. Molecular and General Genetics MGG, 1987, 210(2): 219-233.
    [176] Mccue K, Conn E. Induction of shikimic acid pathway enzymes by light in suspension cultured cells of parsley (Petroselinum crispum) [J]. Plant Physiology, 1990, 94(2): 507.
    [177] Conn B. Description of inflorescence axes in the genus Logania R. Br.(Loganiaceae) [J]. Kew Bulletin, 1995, 50(4): 777-783.
    [178]许锋.银杏GbPAL和GbANS基因的克隆与表达及ALA对类黄酮含量的影响[D].山东农业大学,2008.
    [179] Sarma A, Sreelakshmi Y, Sharma R. Differential expression and properties of phenylalanine ammonia-lyase isoforms in tomato leaves [J]. Phytochemistry, 1998, 49(8): 2233-2243.
    [180] Sparvoli F, Martin C, Scienza A, et al. Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.) [J]. Plant MolBiol, 1994, 24(5): 743-755.
    [181] Lo S, Nicholson R. Reduction of light-induced anthocyanin accumulation in inoculated sorghum mesocotyls. Implications for a compensatory role in the defense response [J]. Plant Physiology, 1998, 116(3): 979.
    [182] Takeuchi A, Matsumoto S, Hayatsu M. Effects of shading treatment on the expression of the genes for chalcone synthase and phenylalanine ammonia-lyase in tea plant (Camellia sinensis) [J]. Bulletin of the National Research Institute of Vegetable, Ornamental Plants and Tea, 1995, 1-9.
    [183] Henery M, Moran G, Wallis I, et al. Identification of quantitative trait loci influencing foliar concentrations of terpenes and formylated phloroglucinol compounds in Eucalyptus nitens [J]. New Phytologist, 2007, 176(1): 82-95.
    [184] Narita J, Gruissem W. Tomato hydroxymethylglutaryl-CoA reductase is required early in fruit development but not during ripening [J]. The Plant Cell Online, 1989, 1(2): 181.
    [185] Korth K, Stermer B, Bhattacharyya M, et al. HMG-CoA reductase gene families that differentially accumulate transcripts in potato tubers are developmentally expressed in floral tissues [J]. Plant MolBiol, 1997, 33(3): 545-551.
    [186] Van Treuren R, Bijlsma R, Van Delden W, et al. The significance of genetic erosion in the process of extinction. I. Genetic differentiation in Salvia pratensis and Scabiosa columbaria in relation to population size [J]. Heredity, 1991, 66:181-189.
    [187]杨光.三基色T5直管荧光灯及替代应用的节能效果[J].灯与照明, 2007, 3(3): 12-14.
    [188] Shirley H. The Influence of Light Intensity and Light Quality Upon the Growth of Plants [J]. 2007.
    [189] Schmitt J, Wulff R. Light spectral quality, phytochrome and plant competition [J]. Trends in Ecology & Evolution, 1993, 8(2): 47-51.
    [190] Smith H. Phytochromes and light signal perception by plants-an emerging synthesis [J]. Nature, 2000, 407(6804): 585-591.
    [191] Leong T, Goodchild D, Anderson J. Effect of light quality on the composition, function, and structure of photosynthetic thylakoid membranes of Asplenium australasicum (Sm.) Hook [J]. Plant Physiology, 1985, 78(3): 561.
    [192]余让才,潘瑞炽.蓝光对水稻幼苗生长及内源激素水平的影响[J].植物生理学报, 1997, 23(2): 175-180.
    [193] Stuefer J, Huber H. Differential effects of light quantity and spectral light quality on growth, morphology and development of two stoloniferous Potentilla species [J]. Oecologia, 1998, 117(1): 1-8.
    [194] Moe R, Heins R. Control of plant morphogenesis and flowering by light quality and temperature, F, 1989 [C]. ISHS.
    [195]蒲高斌,刘世椅,杜洪涛,等.光质对番茄果实转色期品质变化的影响[J]. Chinese Agricultural Science, 2005, 21(004): 176-178.
    [196] Glover H, Keller M, Spinrad R. The effects of light quality and intensity on photosynthesis andgrowth of marine eukaryotic and prokaryotic phytoplankton clones [J]. Journal of Experimental Marine Biology and Ecology, 1987, 105(2-3): 137-159.
    [197]倪德祥,张丕方,陈刚,等.光质对康乃馨试管苗生长发育的影响[J].园艺学报, 1985, 12(3): 197-202.
    [198] Gautier H, Varlet-Grancher C, Baudry N. Effects of blue light on the vertical colonization of space by white clover and their consequences for dry matter distribution [J]. Ann Bot, 1997, 80(5): 665.
    [199]史宏志,韩锦峰.红光和蓝光对烟叶生长,碳氮代谢和品质的影响[J].作物学报, 1999, 25(002): 215-220.
    [200]江莎,胡阳,郑书馨,等.不同光强与光质对"达赛莱克特"草莓叶片形态结构的影响[J].电子显微学报, 2009, 28(5):453-461.
    [201]赵德修,邢建民.光质,光强和光期对水母雪莲愈伤组织生长和黄酮生物合成的影响[J].植物生理学报, 1999, 25(002): 127-132.
    [202]黄璐琦,郭兰萍.环境胁迫下次生代谢产物的积累及道地药材的形成[J].中国中药杂志, 2007, 32(004): 277-280.
    [203] Liu L, Gitz iii D, Mcclure J. Effects of UV-B on flavonoids, ferulic acid, growth and photosynthesis in barley primary leaves [J]. Physiologia Plantarum, 2006, 93(4): 725-733.
    [204] Ren P, Zhao X L, Zhang J, et al. Synthesis of high selectivity polymeric adsorbent and its application on the separation of ginkgo flavonol glycosides and terpene lactones [J]. React Funct Polym, 2008, 68(4): 899-909.
    [205]王莉,史玲玲,刘玉军.不同光质对长鞭红景天悬浮细胞生长及苯丙氨酸解氨酶活性的影响[J].林业科学, 2007, 43(006): 52-56.
    [206]张进杰,徐茂军,周桂飞.光质对悬浮培养黄芩细胞生长及黄芩苷积累的影响[J].热带亚热带植物学报, 2007, 15(002): 135-140.
    [207] Jenkins G. Environmental Regulation of Flavonoid Biosynthesis [J]. Health Benefits of Organic Food: Effects of the Environment, 2008, 240–262.
    [208] Kubasek W, Shirley B, Mckillop A, et al. Regulation of flavonoid biosynthetic genes in germinating Arabidopsis seedlings [J]. The Plant Cell Online, 1992, 4(10): 1229.
    [209] Merkle T, Frohnmeyer H, Schulze-Lefert P, et al. Analysis of the parsley chalcone-synthase promoter in response to different light qualities [J]. Planta, 1994, 193(2): 275-282.
    [210] Dixon R, Paiva N. Stress-induced phenylpropanoid metabolism [J]. THE PLANT CELL, 1995, 7(7): 1085.
    [211] Feinbaum R, Storz G, Ausubel F. High intensity and blue light regulated expression of chimeric chalcone synthase genes in transgenic Arabidopsis thaliana plants [J]. Molecular and General Genetics, 1991, 226(3): 449-456.
    [212] Yang Y, Elamawi R, Bubeck J, et al. Dynamics of COPII vesicles and the Golgi apparatus in cultured Nicotiana tabacum BY-2 cells provides evidence for transient association of Golgi stacks with endoplasmic reticulum exit sites [J]. The Plant Cell Online, 2005, 17(5): 1513.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700