人参、西洋参叶片光合作用特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人参、西洋参为多年生草本阴生植物,是吉林省特有和大面积引进栽培种植的名贵中药材。其产量低、生长周期长一直是限制人参、西洋参生产的关键因素。为了阐明人参、西洋参光合作用和干物质生产特性,为高产栽培实践提供理论依据,用红外线CO_2分析仪、稳态气孔仪、光学和电子显微技术,并结合常规生理生化分析技术,对不同生境条件下,以及植物生长室、人工气候箱和光照培养室内生长的人参、西洋参叶片光合作用对光强、光质和温度响应特性、叶片结构和超微结构、叶绿素含量以及光合作用的生育期变化和日变化进行了比较系统的研究,主要结果如下:
     1.对六种透光率(LTR)荫棚下长成的人参叶片结构和超微结构的研究表明,在5%、10%和20%三种LTR荫棚下人参叶片叶面积、叶片厚度、比叶重、单位叶面积叶肉细胞数目、叶肉细胞内表面积随着光强的增加而增加,其中5%LTR荫棚下人参叶片显著(显著水平达0.01)低于其它透光率荫棚下叶片。20%、30%和40%三种LTR荫棚下叶片形态结构特征的变化并不明显,50%LTR荫棚下叶片呈明显下降变化。5%LTR荫棚下叶片叶绿体片层系统发达,叶绿体内淀粉粒稀少,随着光强的增加叶绿体内片层系统减少,淀粉粒增多变大,以50%LTR荫棚下叶片叶绿体内片层系统最少,叶绿体内淀粉粒最多最大。
     人参叶片叶绿素含量以10%LTR荫棚下最高,随着光强的增加叶绿素含量下降,叶绿素a/b比值增加,叶绿素含量在50%LTR荫棚下叶片达到最低。10%、30%和50%三种LTR荫棚下西洋参叶片叶绿素含量的测定结果也表现与人参叶片相同的变化趋势。
     人参叶片在5%、10%、20%和30%四种LTR荫棚下,西洋参叶片在10%、20%和30%三种LTR荫棚下,叶片光合速率、光合作用的光补偿点和光饱和点随着光强的增加呈显著性增加变化,30%和40%LTR荫棚下长成叶片光合作用特性基本一致,50%LTR荫棚下叶片光合速率略有下降。田间荫棚下叶片光合速率的测定结果普遍低于室内饱和光下叶片的测定结果,其中,人参叶片在5%、10%和20%三种LTR荫棚下,西洋参叶片在10%和20%两种LTR荫棚下,田间荫棚下叶片所测的光合速率显著低于室内所测叶片的光合速率。30%、40%和50%三种透光率荫棚下叶片,在田间荫棚下和室内饱和光下所测光合速率结果差异并不明显。
     2.蓝、紫光对人参、西洋参茎叶生长有抑制作用,蓝、紫光下植株提前两周左
    
    右衰老,其中以紫色光下最为明显.红、绿光对植株茎叶生长有促进作用,但绿光下
    叶片展叶时间推迟2一3d。叶片叶绿素含量以蓝、紫光下最高,白、绿光下次之,红、
    黄光下最低;叶绿素a/b比值以蓝、紫光下最低,红、绿光下最高;与白光下叶片相
    比,蓝、紫光和黄光下叶片较厚,叶肉细胞层数和单位面积细胞数目增加,而红、绿
    光下则较低;在低光强(70似Em一,s一,)下,蓝、紫光下和红光下叶片光合作用和光合
    效率最高,白光下次之,黄、绿光下最低。饱和光下,各种光质下叶片光合作用基本
    一致。不同光质下,叶片光合作用的光饱和点有差异、以黄、绿光下最高,白、红光
    下次之,蓝、紫光下最低。
     3.人参叶片光合作用适宜温度为15一27℃,西洋参叶片光合作用的适宜温度为
    20一32℃。不同生长阶段叶片光合作用对温度的响应特性有变化,展叶期至绿果期的
    叶片不仅光合速率较高,对温度变化的响应也敏感;红果期和黄叶期的叶片不仅光合
    速率较低,对温度变化的响应也不敏感。
     在不同温度条件下培养的人参、西洋参植株叶片也表现为随着生长期间温度的变
    化,光合作用的温度响应也发生相应适应性变化的趋势。用室内不同温度条件下培养
    的人参、西洋参植株叶片研究表明,生长期间温度增加5一6℃,光合作用的适宜温度
    增加2一3℃。叶片光合作用和呼吸作用对温度的响应特性也有差异,当温度低于15℃
    时,呼吸作用的变化不大,随着温度的增加,呼吸作用增加,在35一38℃时达到最大
    值,此后随着温度的增加,呼吸作用下降。西洋参叶片光合作用和呼吸作用的C02交
    换比值,光合作用效率均比光合作用的适宜温度低5℃左右。由此推测,人参、西洋
    参生长的最适宜温度要低于光合作用的适宜温度5℃左右。
     4.人参、西洋参叶片完全展开后,叶片光合速率即达到最大值,开花期叶片光
    合速率略有下降,绿果期出现第二个高峰,此后随着果实的成熟,光合速率呈持续性
    下降。弱光下和适宜光照条件下,绿果期后叶片光合速率下降较小,强光下叶片光合
    速率下降较大,叶片出现早衰。叶片光合效率在绿果期后也呈下降变化,但在叶片完
    全展开后至绿果期叶片光合效率基本稳定。叶片气孔导度和蒸腾作用在整个生长季节
    表现与光合速率类似的变化趋势,但绿果期后叶片光合速率的下降较大,气孔导度和
    蒸腾作用的下降较小。对不同生长阶段胞间C02浓度的分析表明,胞间C0:浓度以绿果
    期最低,红果期和黄叶期依次上升,说明绿果期后叶片光合速率的下降属于非气孔限
    制,气孑匕导度的变化在于实现叶片对水分的最优化矛」用。不同生长阶段叶片光合速率
    的变化可能与植株对光合产物的需求有关,比叶重(SLw)与光合速率(Pn)呈?
Panax ginseng (Pg) and Panax quinquefolium (Pq) are famous herb medicine which are planted at large area in Jilin province. As poly-year shade medicine crops, both Pg and Pq are growing very slowly. It will take at least four years in Pq and at least six years in Pg, the yield is very low and it is a limitation factor for the production of Pg and Pq. In order to investigate the characteristics of photosynthesis and matter production, and provide physiological basis of high yield culture in Pg and Pq follow photosynthetic, physiological and structural characteristic were studied;
    (1) Microstructure and ultra structure of Pg leaves grown under different light conditions were observed under light microscope and electronic microscope.
    (2) Response characteristic of photosynthesis and photosynthetic efficiency (Apparent Quantum Yield, AQY) to light intensity, light quality and temperature during the growth were measured by model Beckman 865 and QGD-07 infrared gas analyzer.
    (3) Changes of different growth stage and diurnal of photosynthesis, stomatal conductance, transpiration, water usage efficiency (WUE) and intercellular CO2 concentration (Ci) under different growth region were measured infrared gas analyzer and model Li-1600 stable porometer.
    (4) Chlorophyll content, starch content, soluble sugar content were analyzed by normal chemical method.
    The main results are as follows:
    1. The light intensity during the growth for Pg was arranged with 5%, 10%, 20%, 30%, 40% and 50%, six light transmission rate (LTR) shades; and Pq was arranged with 10%, 20%, 30%, 40% and 50%, five LTR shades. Leaf growth, microstructure, ultrastructure chlorophyll content and photosynthetic characteristic were studied with leaves grown under different light conditions. Specific leaf weight (SLW), leaf thickness, number of mesophyll cell and surface area of mesophyll cell per unit leaf area were increased as the increase of
    
    
    light intensity grown under 5%, 10% and 20% LTR shades in Pg leaves. Changes of leaf structure were not obvious in leaves grown under 20%, 30% and 40% LTR shades, and SLW, leaf thickness, number of mesophyll cell per unit leaf area and surface area of mesophyll cell per unit leaf area were showed decreased changes in leaves grown under 50% LTR shade. The system of granum lamella in chloroplast was well developed in leaves grown under 5% LTR shade, as the increase of light intensity the system of granum lamella was decreased in leaves grown under 20% to 50% LTR shades. Highest chlorophyll content were measured in leaves grown under 10% LTR shade, as the increase of light intensity, chlorophyll content was decreased and chlorophyll a/b ratio was increased.
    Starch grain in chloroplast as a product of photosynthesis, were changed dramatically under different light conditions. There was almost no starch grain in chloroplast in the leaves grown under 5% LTR shade, as the increase of light intensity, the size and number of starch grain were increased in chloroplast. Under 50% LTR shade, most of space of chloroplast was occupied by starch grain, the maximum diameter of starch grain was in 3 to 4um in chloroplast.
    Net photosynthetic rate (Pn), light compensation point and light saturation point were increased as the increase of light intensity in leaves of Pg grown under 5%, 10%, 20% and 30% LTR shades and Pq grown under 10%, 20% , 30% LTR shades. Photosynthetic characteristic was nearly same in leaves of Pg and Pq grown under 30% and 40% LTR shades. Pn in leaves of Pg and Pq grown under 50% LTR shade was showed slightly decreased.
    2. Growth of stem length and leaf area in Pg were inhibited grown under blue and violet light, and were promoted under red and green light. The stem and leaf grown under yellow light were same as those grown under white light. There were higher total chlorophyll content, chlorophyll b content, leaf thickness and number of mesophyll cell per unit leaf area grown under blue and violet light than those grown under other light quality. Under low light intensity (70uE m-
引文
1. Anderson J M. Photoregulation of the composition function and structure of thylakoid membrane .Ann.Rev. Plant Physiol, 1986,37:93-136.
    2. Arnon D I. Copper enzymes in isolated chloroplasts, Polyphenoloxidase in Beta rulgaris. Plant physiol, 1949,24:1-15.
    3. BA,Logan .AS Verhoeven, Xanthophyll cycle-dependent energy dissipation and flexible PSⅡ efficiency in plant acclimated to light stress .Aust J Physiol, 1995,22:249-261.
    4. Boardman N.K. Comparative photosynthesis of sun and shade plant. Annu. Rev. Plant Physiol, 1977,28:355-377.
    5. Cao K-F, Leaf anatomy and chlorophyll content of 12 woody species in contrasting light conditions in a Bornean heath forest. Can. J. Bot. 2000,78:1245-1253.
    6. Chabot B.F. and J.F.Chabot. Effects of light and temperature on leaf anatomy and photosynthesis in Fraharia vesca. Oecologia(Berlin), 1977,26:363-377.
    7. Coelatz G.D. Influence of certain environmental factors on Photosynthesis and Photo respiration in simmondsia chinensis. Planta, 1977,134,127-132.
    8. Demming-Adams .B and W.W. Adams Ⅲ, Photoprotection and other responses of plant to high light stress. Annu,Rev. Plant physiol. Plant Mol. Biol. 1992,43:599-626.
    9. Demming-Adams. B WWⅢ,Adams carotenoid composition in sun and shade leaves of plant with different life forms .Plant Cell Environ, 1992,15:411-419.
    10. Dennis N.Erect leaves and Photosynthesis in rice. Science ,1999,283:1456-1457.
    11. Farquhar. GD., Sharkey. TD. Stomatal conductance and photosynthesis. Ann. Rev. Plant physiol 1982,33:317-345.
    12. Hong Soon-keun, Ginseng cultivation. In cultivation and utilization of medicinal plant, Korea 1982: 418-435.
    13. Krause GH. E Weis. Chlorophyll fluorescence and Photosynthesis the basics. Annu. Rev. Plant Physiol Plant Mol. Biol. 1991, 42:313-349.
    14. Leong T.Y. and Anderson.J.M. Effects of light quality on the composition ,function, and structure of photosynthetic thylakoid membranes of Asplenium australasicum(Sm) Hook. Plant Physiol. 1985,78:561-567.
    15. Long S.P., Humphries S. Photoinhibition of photosynthesis in nature, Annu Rev. Plant Physiol Plant Mol Biol, 1994,45:633-662.
    
    
    16. Long. S. P. and J-E. Hallgren. Measurement of CO_2 assimilation by plant in the field and the laboratory. In. Plotosynthesis and production in a changing environment. D. Hall et al. London, 1993,129-159.
    17. Nobel P.S. J. Zarahoza and W. K. Smith. Relation between mesophyll surface area, photosynthetic rate and illumination level during development to leaves of plectranthus parviflorus Henekel. Plant physiol. 1975,55:1067-1070.
    18. Park. H. Physiological response of Panax ginseng to light. Proceeding of the 3 rd international ginseng symposium (South Korea). 1980, 151-157.
    19. Pearcy R.W. Sunflecks and photosynthesis in plant canopies .Annu.Rev. Plant Physiol. Plant Mol. Biol. 1990,41:421-453.
    20. Portis A. R. Regulation of-1.5-bisphotosyate carboxyllase/oxygenase catirity. Annu Rev Plant Physiol. Plant Met Biol, 1992,43:415-437.
    21. Powles C.B. Photoinhibitions induced by visible light. Annu Rev Plant Physiol. 1984,35:15~44.
    22. Proctor J.T.A. Some aspects of the Canadian culture of ginseng (Panax quinquefolius L.),Proeeeding of the 3 rd international ginseng symposium (South Korea). 1980, 39-47.
    23. Xu Kezhang, ZA. Zhang, YY Yin, X Chen, WQ Zhang and RT Qiao. Studies on the photosynthetic characteristic in the leaves panax quinquefolium. L. Proceedings of the international ginseng conference-Vancouver. 1994,481-486.
    24. XU D.Q and Y.G.Shen. Diural variations in the photosynthetic efficiency in plants. Acta Phytophsiologiea Sinica, 1997,23(4):410-416.
    25. YANG Yeong-yuh.The effects of different shading of mulching on yield of root and quality in Panax ginseng, (South Korea) Proceeding of the 3rd International Ginseng Symposium, 1980:137-141.
    26.白容森,张惠丽,曲力涛.参地施用有机粪肥对人参锈腐病和参根质量的影响.特产研究,2000,2:34-36.
    27.陈光,李向高.曲洋参磷素营养特性的研究.吉林农业大学学报,2000,22(3):56-60.
    28.陈铁如,吴钟玲.人参荫棚遮荫时间的探讨(Ⅰ).吉林农业大学学报,1987,9(1):1-7.
    29.陈瑛,孙昌高,郑光华.促进人参种子萌发的新方法.科学通报,1983,28(19):1280.
    30.陈震,陈瑛.西洋参优质高产高效栽培技术.北京:中国农业出版社,1997.
    31.陈震,赵杨景,马小军.吕瑞绵,宋洁.西洋参营养特点的研究Ⅱ,氮、磷、钾营养元素对西洋参生长的影响.中草约,1990,21(5):29-32.
    32.大隅敏夫.药用受光量日覆改良.农业園芸.1973,48(9):83~86.
    33.丁希泉,郑秀梅,田海云等.人参喷施B_9的效果观察.特产科学实验,1987(1):47-50.
    
    
    34.高辉远,邹琦,程炳嵩.大豆光合日变化过程中气孔限制和非限制的研究.西北植物学报,1993,13(2):96-102.
    35.高辉远,邹琦,程炳嵩,甘薯光合活力,羧化效率日变化与光合午休的关系.作物学报,1997,23(1):62-65.
    36.高镇生.西洋参的生态习性及搞寒性表现.特产科学实验(西洋参专辑),1980,26-31.
    37.宫泽洋一.药用栽培技术.农业園芸.,1975,50(1):117-122.
    38.郭延年,张良成,洪双松,沈允钢.温州密柑叶片气体交换和叶绿素荧光对低温的响应.植物生理学报,2000,26(2):88-94.
    39.胡宝华译.苏联对人参的研究.(四)高加索的人参栽培.中草药,1984,15(4):41~42.
    40.李时珍.本草纲目.北京:人民卫生出版社,1982,699-710.
    41.李万莲.参棚透光率对西洋参生长发育产量和品质的影响.人参研究,2000,12(3):11-14.
    42.李霞,刘友良,焦德茂.不同高产水稻品种叶片荧光参数的日变化和光适应特性的关系.作物学报,2002,28(2):145-153
    43.李先恩,陈瑛,张军.激素在人参种胚后熟中的作用.植物学报,1991,33(5):385-389.
    44.李向高.我国人参栽培、加工的历史概况.中药材科技,1984(5):39-40.
    45.李向高.西洋参有效成分和药理及其作用.特产研究,1989(4):61-62.
    46.廖建雄,王根轩.谷子叶片光合速率日变化及水分利用效率.植物生理学报,1999,25(4):362-368.
    47.林植芳,彭长连,林桂珠.C_3C_4植物叶片叶绿素荧光猝灭日变化和对光氧化作用的响应.作物学报,1995,20(3):285-292.
    48.林仲凡.有关人参的历史考证.中国农史,1985(4):78-84.
    49.刘铁成,刘惠卿,胡炳义.不同覆盖物对西洋参生长发育及产量的影响.中药通报,1986,3:8-10.
    50.娄子恒.简述人参与西洋参的区别.特产研究,1989(4):54-56.
    51.罗文熹,于国华,李凤玲,茼辉民.不同光强下西洋参的某些光合特性.植物生理学通讯,1990,26(1):35-37.
    52.孟繁莹,王化民,赵亚惠等.不同植物生长调节剂对西洋参生育和产量的影响.特产研究,1992(3):9-10.
    53.孟繁莹,王铁生,王化民等,西洋参光合生理特性.特产研究,1996(2):9-11.
    54.孟庆伟,赵世杰,许长成,邹琦,田间小麦叶片光合作用的光抑制和光呼吸的防御作用.作物学报,1996,22(4):470-475.
    55.任贵兴,王纪华.西洋参.北京:学术期刊出版社,1989,28-37.
    56.孙世昌,唐熙春,王春其.人参栽培技术问答.沈阳:辽宁科学技术出版社,1988,1-9.
    57.孙星衍等编辑.神农本草经.北京:商务印书馆,1955.
    58.王本祥.人参的研究.天津:天津科学技术出版社,1985,1-5.
    
    
    59.王纪华,王铁生,赵冬梅,郭崇民.不同光温条件及水分胁迫对人参、西洋参光合速率的影响.特产研究,1992(2):1-4.
    60.王景余.稀土对人参光合作用及营养代谢的影响.中草药,1991,22(2):82-84.
    61.王铁生,王化敏.双透大棚栽培人参的研究.特产科学实验,1979(1):1-8.
    62.王章淮.西洋参引种栽培总结.特产科学实验(西洋参专辑),1980,26-31.
    63.王章淮.西洋参栽培技术与加工.北京:中国林业出版社,1989,145-146.
    64.魏锦城,AGATA Wa-Ichi.水稻叶片生育过程中Rubisco活性与光合、光呼吸的关系.植物生理学报,1994,20(3):285-292.
    65.翁晓燕,陆庆,蒋德安.水稻Rubisco活化酶在调节Rubisco活性和光合日变化中的作用.中国水稻科学,2001,15(1):35-40.
    66.徐辉光.论人参与党参—关于人参与党参的文献考证.中成药研究,1983,9:32.
    67.徐克章,曹正菊,修立军.人参叶片的叶龄对光合作用和呼吸作用的影响.植物学报,1988,5(4):217-219.
    68.徐克章,曹正菊,张为群,修立军.人参叶片光合作用特性的研究.中国农业科学,1990,23(6):69-74.
    69.许大全,丁勇,武海.田间小麦叶片光合效率日变化与光合“午睡”的关系.植物生理学报,1992,18(3):279-284.
    70.许大全,徐宝基,李德耀.不同CO_2含量空气的简易制备法.植物生理学通讯,1987,(6):55-57.
    71.许大全,徐宝基,沈允钢.C_3植物光合效率的日变化.植物生理学报,1990,16(1):1-5.
    72.许大全,张玉忠,张荣铣.植物光合作用的光抑制.植物生理学通讯,1992,28(4):237-243.
    73.杨巧凤,江华,许大全.小麦旗叶发育过程中光合效率的变化.植物生理学报,1999,25(4):408-412.
    74.杨中汉.植物组织中糖含量的测定—几种比色法.见:植物生理生化实验,袁晓华,杨中汉//北京:高等教育出版社,1983:1-9.
    75.叶庆生,潘瑞炽,丘才新.墨兰叶片结构及光合作用的研究.植物学报.1992,34(10):771-776.
    76.于国华,茼辉民.罗文熹不同光照强度对西洋参光合特性、营养成分和产量的影响.应用生态学报,1994,5(1):57-61.
    77.张大鹏,王学臣,娄成后.不同辐照日变化系统对葡萄(V.vinifera.cv.Sauvighon blanc)净光合和气孔导性的影响.中国农业科学,1991,24(3):1-7.
    78.张连学,朱桂香,王铁生.人参栽培技术及其应用基础的研究.见:人参研究进展.王本祥主编.天津:天津科学技术出版社,1991:209-223.
    79.张美善,陈展宇,崔喜艳,武志海,徐克章.6-BA对西洋参叶片衰老的延缓效应.吉林农业大学学报,2002,24(3):12-15.
    
    
    80.张其德,唐崇钦,林世青,娄世庆,匡廷云.光强度对小麦幼苗光合特性的影响.植物学报,1988,30(5):508-514.
    81.张其书,王郁彭.人参单透光棚环境的分析.特产科学实验,1982,4:10-15.
    82.张其书等.关于人参种植的区化问题,植物生态学与植物学丛刊.1984,1:42-46.
    83.张治安,徐克章,任跃英等.光照条件对参株碳水化合物和人参皂甙含量的影响.吉林农业大学学报,1994,16(3):15-17.
    84.章观德,周志华,王慕邹,高凤英.人参的分析,Ⅱ 人参皂甙的测定.药学学报,1980,15(3):175-180,
    85.郑国生,邹琦.不同天气条件下田间大豆光合作用日变化的研究.中国农业科学,1993,26(1):44-50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700