光环境调控对植物生长发育的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着光电技术的发展,LED (Light Emitting Diode,发光二极管)在农业与生物领域的应用正逐渐受到世界各国的广泛关注。LED不仅具有体积小、寿命长、耗能低、波长固定与低发热等优点,而且还能根据植物需要进行发光光谱的精确配置,实现传统光源无法替代的节能、环保和空间高效利用等功能。
     光质对植物的生长发育、形态建成、光合作用、物质代谢以及基因表达均有调控作用。将LED辐射的各种光谱进行配比组合应用在植物组织培养、设施育苗、芽苗菜中具有重要意义。本研究以菊花、蝴蝶兰和文心兰组培苗,番茄、莴苣幼苗,及豌豆、萝卜种子等为试验材料,获得植株所需的各种光谱能量分布的LED光源,开展生长试验和指标测试分析,系统研究不同光谱能量分布的LED光源对不同品种的组培苗、实生苗,及种子发育及其各个生长阶段的影响,为LED光谱调控在农业与生物领域中的应用提供基础。
     研究结果如下:
     1.对番茄和莴苣幼苗的实验表明,红光下番茄、莴苣幼苗的可溶性糖、淀粉和碳水化合物值均显著高于对照,叶片叶绿体中淀粉粒膨大显著;蓝光极显著抑制番茄下胚轴长,显著提高莴苣和番茄幼苗叶片叶绿素a和类胡萝卜素含量;红蓝光下莴苣幼苗叶片中的可溶性糖、淀粉、碳水化合物、蔗糖和C/N比均达到最大值且显著高于红光处理,番茄、莴苣的主根显著伸长,并且幼苗叶片中叶绿体形态正常,基粒增多,基质片层清晰,淀粉粒体积明显小于红光下。红光下光合产物积累显著但运输受阻严重。在红光中添加适量蓝光更有利于莴苣幼苗的碳水化合物积累,促进幼苗根系生长并有利于同化产物输出。
     2.对菊花增殖苗及生根苗的实验表明,红光有助于增加株高、节间长,且有利于生根试管苗可溶性糖、淀粉和碳水化合物的合成;蓝光显著提高丛生苗的叶绿素b、叶绿素总量及类胡萝卜素含量和生根试管苗游离氨基酸含量;而红蓝黄复合光不仅有利于丛生苗分化和增殖,也利于促进其生根组培苗色素形成、生长发育及根系活力。与荧光灯相比,红蓝黄复合光质LED具有明显优势,有利于提高增殖系数、培育壮苗和降低能耗成本。
     3.对文心兰和蝴蝶兰生根研究结果表明,红光有助于增加株高,且有利于生根试管苗可溶性糖、淀粉和碳水化合物的合成;蓝光显著提高生根苗的叶绿素a、叶绿素b、叶绿素总量及类胡萝卜素含量和生根试管苗蛋白质含量;而红蓝黄复合光处理下两种植株生长生长健壮,生根率高,根长且根数多,干重鲜重较大,有利于文心兰和蝴蝶兰的的正常生长。与荧光灯相比,红蓝黄复合光质LED具有明显优势,有利于提高增殖系数、培育壮苗和降低能耗成本。
     4.对萝卜芽苗菜的生长及品质的研究结果表明,红光对萝卜芽苗菜生长影响显著,下胚轴长、子叶面积、鲜重及干重均达到最大值且显著高于对照。红光与红蓝组合处理下,可溶性糖与淀粉含量均显著高于对照。远红光能显著提高萝卜芽苗菜Zn、P、Mn、Mg、Ca、Na含量,其次为红光。综合考虑实验结果,可以认为应用LED红光照射有利于萝卜芽苗菜生长,提高产量,对于部分营养品质的改善有积极意义。
     5.对豌豆芽苗菜生长及品质的研究结果表明,黄光处理下的下胚轴长、第三节距长显著高于对照,其次是红光,与黄光相比,红光的子叶面积显著高于黄光,红光对促进下胚轴伸长、子叶扩张、光合速率提高及干物质积累有重要作用,蓝光和黄光处理下的叶面积显著小于对照。组合光下的叶面积高于对照,色素含量最高,但鲜重低于其它光质处理。蓝光下的可溶性蛋白含量及游离氨基酸的含量均最高。
     综上所述,本研究表明,LED光谱调控应用到农业与生物领域具有可行性,可替代荧光灯大范围应用于设施育苗、植物组织培养及芽苗菜生产中。
The application of light-emitting diode (LED) in agriculture and bio-industry has been concerned by all over the world along with the development of LED technology. LED not only has many advantages, such as small size, long life, low energy consumption, securing wave length and low production of heat, but also can emit the exact spectrum based on the need of plant. LED can actualize a lot of functions, such as energy saving, environment protection and efficient space utilization, which can not be achieved by conventional light source.
     Light spectrum plays an important role in plant development, morphogenesis, metabolism and gene expression. Application of light spectrum of LED on plantlets are important for plant tissue culture, plant cultivation and bud seeding vegetable. In this thesis, Phalaenopsis and Oncidium of orchids, tomato and lettuce seedlings, pea and radish seeds were tested to investigate the effects of light spectrum on growth of plantlets in different stages. The results are as follows:
     1. Effects of light qualities on the growth and leaf ultrastructure chloroplast of tomato and lettuce seedlings were studied. The results showed that, under red LED, the soluble sugar, starch of tomato and lettuce seedlings were significantly higher than those of the control, starch granules swelled obviously. Under blue LED, the length of hypocotyl of tomato seedlings were remarkably restrained, the chlorophyll a and carotenoid content of leaf of both seedlings were significantly increased. Under red+blue LED, the soluble sugar, starch, sucrose and C/N of lettuce seedlings were maximal and significantly higher than those of the red LED, the length of main roots of both seedlings were significantly increased as well, and the leaf chloroplast morphology was normal, the number of grana increased, the stroma lamellae was clear, the starch granules were less than those of red LED. The results suggested that effects of light quality on the photomorphogenesis, growth, metabolism of carbon and nitrogen including development of leaf chloroplast of plant seedlings were remarkable. Photosynthate was accumulated significantly but its transport was hindered badly under red LED. Adding some blue LED to red LED was in favor of the accumulation of photosynthate, growth of roots and export of assimilation product of lettuce seedlings.
     2. The effects of different light spectral energy distribution of LED on proliferation and growth of chrysanthemum plantlets in vitro were studied. The results showed that, red LED was in favor of enhancing plant height and the third internode length, and synthesizing soluble sugar, starch and carbohydrate; the contents of chlorophyll b, chlorophyll a+b and carotenoid of shoots including contents of amino acid of plantlets in vitro were significantly increased by blue LED; complex of red, blue and yellow LED was not only suitable for differentiation and proliferation of shoots in vitro, but for pigment synthesis, growth and root vigor of plantlets in vitro. The results indicated that, as compared with fluorescent light, application of complex of red+blue+yellow LED was propitious to improve propagation coefficient, breed vigorous plantlets and decrease energy consumption.
     3. The effects of different light spectral energy distribution of light-emitting diode (LED) on proliferation and growth of Oncidium and Phalaenopsis plantlets in vitro were studied. The results showed that, red LED was in favor of enhancing plant height and synthesizing soluble sugar, starch and carbohydrate; the content of chlorophyll b, chlorophyll a+b and carotenoid of shoots including content of amino acid of plantlets in vitro were significantly increased by blue LED; complex of red, blue and yellow LED, Oncidium and Phalaenopsis plantlets all had strong growth, high enriched degree, more quantity roots and higher dry and fresh mass. The results indicated that, as compared with fluorescent light, application of complex of red+blue+yellow LED was propitious to improve propagation coefficient, breed vigorous plantlets and decrease energy consumption.
     4.Effects of different light qualities(red light, far-red light, yellow light, blue light, and red+blue light) generated from light emitting diodes (LED) on the growth of radish sprouting seedlings were studied. Fluorescent light was used as the control. From the experimental results, red LED was the most effective for the growth of radish sprouting seedlings, and exhibited the highest hypocotyl length, cotyledon area and fresh/dry weight. Red LED and red+blue LED significantly increased the content of soluble sugar and starch; far-red LED significantly increased the content of Zn, P, Mn, Mg, Ca and Na. The results suggested that application of red LED could accelerate the growth of the radish sprouting seedlings, increase the yield and improve some nutrient component.
     5. Effects of different light qualities(red light, yellow light, blue light, and red+blue light) generated from light emitting diodes (LED) on the growth of pea seedlings were studied. Fluorescent light was used as the control. From the experimental results, yellow LED was the most effective for the growth of pea seedlings, and exhibited the highest hypocotyl length. Red LED is secondly, compared with yellow LED, the cotyledon area was higher. The cotyledon area was lowest under blue LED and yellow LED. Red LED plays an important role in hypocotyl elongation, cotyledon expansion, photosynthetic rate improvement and dry matter accumulation. Red+blue LED significantly increased the cotyledon area and the contents of chlorophyll; Blue LED had highest amino acid and protein content. The results suggested that application of LED could accelerate the growth of the radish sprouting seedlings, increase the yield and improve some nutrient component.
     In conclude, this study supported the feasibility of application of light spectrum regulation of LED on agriculture and bio-industry, which would replace fluorescent and be widely used in plant cultivation, plant tissue culture and bud seeding vegetable.
引文
1. 车生泉,盛月英,秦文英.光质对小苍兰茎尖试管培养的影响.园艺学报,1997,24(3):269-273
    2. 陈大清.不同光质和激动素对拟南芥(Arabidopsis thaliana L.)幼苗光形态建成影响的研究.广东:华南师范大学,2002
    3. 陈静,陈启林,程智慧,等.白光下光敏素对番茄幼苗胚轴长度、花青素含量及开花的控制.中国农业科学,2004,37(10):1517-1520
    4. 陈振德.蔬菜穴盘育苗技术.青岛出版社.1999
    6. 储钟稀,童哲,冯丽洁,等.不同光质对黄瓜叶片光合特性的影响.植物学报,1999,41(8):867-870
    7. 崔瑾,马志虎,徐志刚,等.不同光质补光对黄瓜、辣椒和番茄幼苗生长及生理特性的影响.园艺学报,2009,36(5):663-670
    8. 崔瑾,徐志刚,邸秀茹,等.LED在植物设施栽培中的应用和前景.农业工程学报,2008,24(8):249-253
    9. 邓江明,宾金华,潘瑞炽.光质对水稻幼苗初级氮同化的影响.植物学报,2000,42(3):234-238
    10.邸秀茹,崔瑾,徐志刚,等.不同光谱能量分布对冬青试管苗生长的影响.园艺学报,2008,35(9):1339-1344
    11.杜洪涛.光质对彩色甜椒幼苗生长发育特性的影响.泰安:山东农业大学,2005
    12.杜建芳,廖祥儒,叶步青,等.光质对油菜幼苗生长及抗氧化酶活性的影响.植物学通报,2002,19(6): 743-745
    13.高荣孚,张鸿明.植物光调控的研究进展.北京林业大学学报,2002,24(5):235-242
    14.葛晓光.蔬菜栽培二百题.中国农业出版.1997,102-104
    15.郭红转,陆占国,王彩艳.豆芽生长过程中维生素C的消长规律研究.食品研究与开发,2006,27(2): 133-135
    16.郭双生,艾为党,赵成坚,等.受控生态生保系统中植物生长光源的选择.航天医学与医学工程(增刊),2003,16
    17.郭小菲.萝卜施用微量元素效果试验.现代农业科技,2009,14:84
    18.韩锦峰,张国显,赵鹏,等.单色蓝光和红光对烟苗叶片生长和碳氮代谢的影响.河南农业大学学报,1998,3(32):258-262
    19.何小弟,裴建文,黄春华.菊花组织培养中的光质效应研究.江苏林业科技,2002,29(6):26-28
    20.何永进.绿色豆芽市场前景诱人.四川农业科技,2007,1:34
    21.侯红英.人工调光环境下蔬菜生长的研究.青岛:中国海洋大学,2006
    22.将要卫.大花蕙兰、蝴蝶兰试管苗光合自养培养体系初步建立.郑州:河南农业大学,2006:33-42
    23.科学技术部中国农村技术开发中心.设施农业在中国.中国农业科学技术出版社,2006,10:126
    24.李韶山,潘瑞炽.蓝光对水稻幼苗碳水化合物和蛋白质代谢的调节.植物生理学报,1995,21(1):22-28
    25.李韶山,潘瑞炽.植物的蓝光效应.植物生理学通讯,1993,29(4):248-252
    26.李韶山,潘瑞炽.蓝光对水稻幼苗生长效应的研究.中国水稻科学,1994,8(2):115-118
    27.李韶山,潘瑞炽.蓝光对水稻幼苗碳水化合物和蛋白质代谢的调节.植物生理学报,1995,21(1): 22-28
    28.李秀平.六类蔬菜前景看好.农村.农业.农民(A版),2005,3:28
    29.刘桂兰.无公害芽苗菜营养价值分析.现代农村科技.2009,2:20
    30.刘玉颖,廖祥儒,徐景智,等.补充光照对番茄幼苗生长的影响.河北大学学报:白然科学版,2002,22(1):51-54
    31.刘再亮,马承伟,杨其长.设施环境中红光与远红光比值调控的研究进展.农业工程学报,2004,20(1):270-273
    32.刘志敏.钙碘对芽苗蔬菜的生理效应和芽苗蔬菜对钙、碘的富集现象及机理研究.长沙:湖南农业大学,2001
    33.马光恕,廉华,闫明伟.不同覆盖材料对大棚内番茄生长发育的影响.吉林农业科学,2002,27(4): 41-43
    34.孟焕文,程智慧,高艳明.矮壮素浸种对黄瓜幼苗生长的影响.陕西农业科学,1998,(4):25-27
    35.牟宁宁,高亦珂.发光二极管在植物组织培养中的应用[A]//中国观赏园艺研究进2007-中国园艺学会观赏园艺专业委员会2007年学术年会论文集.中国观赏园艺进展,2007: 220-222
    36.倪文.不同光质对稻苗生长的效应.云南植物研究,1980,2(2):194-196
    37.潘瑞炽.植物生理学.第4版.北京:高等教育出社,2001:59-63
    38.蒲高斌,刘世琦,刘磊,等.不同光质对番茄幼苗生长和生理特性的影响.园艺学,2005,32(3):420-425
    39.蒲高斌,刘世琦,张珍.不同光质对番茄幼苗生长及抗氧化酶活性的影响.安徽农业科学,2004,32(5):971-972,975
    40.饶瑞估,方炜,李登华.超高亮度发光二极体作为组培苗栽培人工光源之灯具制作与应用.中 国园艺,2001,47(3):301-312
    42.史铀,汪红,尤康.高微量元素豆芽研究.成都大学学报,2007,26(2):101-102
    43.宋述尧,陈文荣,汲长奎.乙烯利对番茄幼苗生理效应的研究.中国蔬菜,1990,(2):17-19,23
    44.宋元林,何启伟.现代蔬菜育苗.中国农业出版社.1998
    45.童哲.光形态建成.植物生理生化进展,1987,(5):98-104
    46.童哲.光质纯度对幼苗光形态建成的影响.植物生理学通讯,1989(5):28-31
    47.汪俏梅.设施栽培中培育壮苗的一些技术措施.沈阳农业大学学报,2000,31(2):120-123
    48.王德槟,张德纯.芽苗菜生产技术图册.北京:中国农业出版社,1998,1-30
    49.王建军,冼秀丽,陈新富.大棚绿瓣豆芽菜优质高产栽培技术.特种经济动植物,2006,(4):26-27
    50.王绍辉,孔云,陈青君,等.不同光质补光对日光温室黄瓜产量与品质的影响.中国生态农业学报,2006,14(4):119-121
    51.王铁生.人参光合生理研究:Ⅱ不同光质对人参生育,生理特性及人参皂甙含量的影响.中草药,2000,20(1):89
    52.魏灵玲,杨其长,刘水丽.密闭式植物种苗工厂的设计及其光环境研究.中国农学通报,2007,23(12):415-419
    53.魏灵玲,杨其长,刘水丽,等.LED在密闭式植物苗工厂中的应用LED在设施园艺中的应用系列(一).农业工程技术(温室园艺),2005,05:13-14,47
    54.魏灵玲,杨其长,刘水丽.LED在植物工厂中的研究现状与应用前景.中国农学通报,2007,23(11):408-411
    55.吴永尧,张驰,周大寨.豆芽菜对硒的富集特点初步研究.湖北农业科学,2004,6:53-56
    56.夏石头,彭克勤,萧浪涛,等.碘对豌豆苗生长及其可食部分游离氨基酸和维生素C及纤维素含的影响.湖南农业大学学报,2002,28(2):118-121
    57.徐景致,李同凯,葛大勇,等.植物生长发育对光波段选择性吸收的研究进展.河北林果研究,2002,17(2):180-184
    58.徐凯,郭延平,张上隆,等.不同光质对丰香草莓生长发育的影响.果树学报,2006,23(6):818-824
    59.徐伟忠,陈银华,曹鹏飞.芽苗菜智能化生产模式的研究.农产品加工,2006,5:8-13
    60.徐志刚,崔瑾,邸秀茹.不同光谱能量分布对文心兰组织培养的影响.北京林业大学学报,2009,31(4):45-50
    61.许莉,刘世琦,齐连东,等.不同光质对叶用莴苣光合作用及叶绿素荧光的影响.中国农学通报,2007,23(1):96-100
    62.杨其长,张成波.植物工厂概论.北京:中国农业科学技术出版社.2005
    63.杨其长.LED在农业与生物产业的应用与前景展望.中国农业科技导报,2008,10(6):42-47
    64.杨秀坚.不同浓度GA3、6-BA对萝卜芽苗菜产量影响的研究.北方园艺,2006,4,22-23
    65.岳岚.光独立培养和新型组培光源(LED)对牡丹试管苗生长的影响.郑州:河南农业大学,2008:34-35
    66.张德纯,王德槟.芽苗菜生产及展望.中国食物与营养.2003,1,25-26
    67.张德纯.体芽菜及其营养.中国食物与营养,2006(2):48-50
    68.张方丕.植物组织培养在繁殖上的应用.上海:上海教育出版社,1985,11-13
    69.张桂芬.不同浓度赤霉素和6-BA对香椿芽萌发及产量的影响.甘肃农业,2005,10:181
    70.张欢,徐志刚,崔瑾,等.不同光质对萝卜芽苗菜生长和营养品质的影响.中国蔬菜,2009(10): 28-32
    71.张婕,高亦珂,何琦,等.发光二极管(LED)在菊花组织培养中的应用研究[A]//中国观赏园艺研究进展2008-中国园艺学会观赏园艺专业委员会2008年学术年会论文集.2008:296-299
    72.张瑞华,战琨友,徐坤.有色膜覆盖对姜叶片色素含量及光合作用的影响.园艺学报,2007,34(6):1465-1470
    73.张绍文.工厂化集中育苗,分散种植,是当今蔬菜生产发展的必然趋势.中国瓜菜,2007,6,60
    74.赵瑞,葛晓光,马健.番茄穴盘育苗株型化学调控的研究.中国蔬菜,2000(3):17-20
    75.郑洁,胡美君,郭延平.光质对植物光合作用的调控及其机理.应用生态学报,2008,19(7)1619-1624
    76. Andrew C S, Christopher S B, Elizabeth C. Anatomical features of pepper plants (Capsicum annu-um L1) grown under red light2e2mitting diodes supplemented with blue or far-red light. Annals of Botany,1997,79:273-282
    77. Anna B, AlicjaK. Effectof light quality on somatic embryogenesis in Hacinthus orientalis L.'Delfts blue'. Biological Bulletin of Poznan,2001,38:103-107
    78. Barta D J, Tibbitts TW, Bula R J, et al. Evaluation of lighting-emitting diodes charact-eristics for a spacebased plant irradiation source. Adv. Space Res.,1992,12:141-149
    79. Bergh A A, Dean P J. Light-emitting diodes.Proceedings of the IEEE,1972:156-223
    80. Brown C S, SchuergerA C, Sager J C. Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting. Am Soc Hort Sci,1995,120:808-813
    81. Bula R J, Morrow R C, Tibbits TW, et al.. Light-emitting diodes as a radiation source for plants. HortScience,1991,26 (2):203-205
    82. Choi YW, Ahn C K, Kang J S,et al.. Growth, photomorphogenesis, and photosynthesis of perilla grown under red, blue light emitting diodes and light intensities. Journal of the KoreanSociety Horticultural Science,2003,44(3):281-286
    83. Cui Y I, Hahn E J, Kozai T, et al.. Number of air exchanges,sucrose concentration, photosynthetic photon flux, and differences in photoperiod and dark period temperatures affect growth of Rehmannia glutinosa plantlets in vitro.Plant Cell Tiss. Org. Cult,2000,62:219-226
    84. Dooley J H. Influnce of lighting spectra on plant tissue culture. Presented at an ASAE (Americam Society of Agricultural Engineers) Meeting. Chicago, Illinois,1991
    85. Folta K M. Green Lihgt Stimulates Early Stem Elongation, Antagonizing Light-Mediated Growth Inhibition. Plant Physiol.,2004,135:1407-1416
    86. Fujiwara K, Kozai T. Physical microenvironment and its effects. In:Automation and Environmental Control in Plant Tissue Culture, (ed. By Aitken—Christie J. Kozai T.Smith M A L). The Netherlands Kluwer Academic Publishers. Dordrechtr,1995:319-369
    87. Gaba V, Black M. Photoreceptor interaction in plant photomorphogenesis, the limits of experimental techniques and their interpretations. Photochem. Photobiol,1987,45:151-156
    88. Garner L C, Langton F A. Brushing pansy (Viola tricolor L.) transplants:a flexible, effectivemethod for controlling plantsize. Scientia-Horticulturae.1997,70:187-195
    89. Gautier H, Varlet-grancher C, Baudry N. Effects of blue light on the vertical colonization of space by white clover and their consequences for dry matter distribution. Annals of Botany,1997,80: 665-671
    90. Goins G D, Yorio N C, Sanwo M M, et al.. Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under light emitting diodes (LEDs) with or without supplemental blue lighting. Exp Bot,1997,48:1407-1413
    91. Guo S, Liu X, AiW, Tang Y, et al.. Development of an improved ground-based prottype of space plant-growing facility. Advances in Space Research,2008,41:736-741
    92. Hahn E J, Kozai T, Paek K Y. Blue and red light-emitting diodes with or without sucrose and ventilation affects in vitro growth of Rehmannia glutinose plantlets. Plant Biol,2000,43:247-250
    93. Heo J W, Lee C W, Murthy H N, et al.. Influence of light quality and photoperiod on flowering of Cyclamen persicum Mill. Cv.'Dixie White'. Plant Growth Regulation,2003,40:7-10
    94. Heo J, Lee C, Chakrabarty D, et al.. Growth responses of marigold and salvia bedding plants as affected by monochromic or mixture radiation provided by a light-emitting diode (LED). Plant Growth Regul,2002,38:225-230
    95. Hoad S P, Leaker R R B. Effects of light quality on gas exchange and dry matter partitioning inEucalyptus grandis. W Maiden for Ecol Manage,1994,70:265-273
    96. James M. Controlling Tomato TransplantHeightwith Chlormequa Daminozide, and Ethephon. J. Amer. Soc. Hort. Sc.i,1979,104(3):342-344
    97. Jao R C, Lai C C, Fang W, et al.. Effects of red light on the growth of Zantedeschia plantlets in vitro and tuber formation using light-emitting diodes. Hortscience,2005,40(2):436-438
    98. Jao-Ruey Chi, Fang-Wei. Growth of potato plantlets in vitro is different when provided concurrent versus alternating blue and red light photoperiods.HortScience,2004,39(2):380-382
    99. Jordan K A, Ono E, Norikane J, et al.. Control of LEDs to achieve light quality and intensity in tissue culture and micro-propagation studies. Acta-Horticulturae,2001, (562):135-140
    100. Kim E J, Kyeoung I L, Kun Y P. Effects of germanium treatment during cultivation of soybean sprouts. Journal of the Korean Society of Food Science and Nutrition,2002a,31 (4):615-620
    101. Kim E J, Kyeoung I L, Kun Y P. Quantity analysis of nutrients in soybean sprouts cultured with germanium. Journal of the Korean Society of Food Science and Nutrition,2002b,31 (6):1150-1154
    102. Kim H H, Goins G D, Wheeler R M, et al.. Green-light supplementation for enhanced lettuce growth under red-and blue-light-emitting diodes. Hort Science.2004b,39(7):1617-1622
    103. Kim H H, Goins G D, Wheeler R M, et al.. Stomatal conductance of lettuce grown under or exposed to different light qualities. Annals of Botany,2004a,94:691-697
    104. Kim S J, Hahn E J, Heo J W, et al.. Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Scientia Horticulturae,2004,101:143-151
    105. Kirdmanee C, Kitaya Y, Kozai T. Effect of supplemental far-red lighting and photosynthetic photon flux density on stem elongation and dry weight increase of Eucalyptus amaldulensis plantlets in vitro [A]. In:Abstr XV Intl Botanic Congr[C],1993,28:537
    106. Kozai T, Kubota C, Jeong B R. Environmental control for large-scale production of plants through in vitro techniques. Plant Cell Tiss. Org. Cult,1997,51:49-56
    107. Kurilcik A, CanovaR M, Dapkuniene S, et el..In vitro culture of Chrysanthemum plantlets using light-emitting diodesCent.Eur.J.biol,2008,3(2):161-167
    108. Le Van T H, Tanaka M. Effects of Red and Blue Light-Emitting Diodes on CallusInduction, callus Proliferation, and Protocorm-Like Body Formation from Callus in Cymbidium Orchid. Environ Control in Biol.,2004,42(1):57-64
    109. Lian M L, Murthy H N, Paek K Y. Effects of light emitting diodes on the in vitro induction and growth of bulblets of Lilium oriental hybrid 'Pesaro'. Sci Hort,2002,94:365-370
    110. Ruiz H M J, Benito E P, Sandmann G, et al..The phytoene dehydrogenase gene of Phycomyces: regulation of its expression by blue light andvitamin A. Mol Gen Genet.1997,253:734-744
    111. Meijer G. Some aspects of plant irradiation.Zcta Hortic.Intern.Soc. Hortic Sci,1971,22:103-108
    112. Wu M C, Hou C Y, Jiang C M, et al.. A novel approach of LED light radiation improves the antioxidant activity of pea seedlings. Food Chemistry.2006,1-6
    113. Miyashita Y, Kitaya Y, Kozai T, et al.. Effects of red and far-red light on the growth and morphology of potato plantlets in vitro:using light emitting diode as a light source for microprogation. Acta Horticulturae,1995,393:189-194
    114. Moe R, Heins R. Control of plant morphogenesis and flowering by light quality and temperature. Acta Hort,1990,272:81-89
    115. Moe R, Morgan L, GrindalG. Growth and plant morphology of Cucumis sativusand fuchsia hybrid are influenced by lightquality during the photoperiod and by temperature alternations. ActaHort, 2002,580:229-234
    116. Morini S, Foruna P, Muleo R. Effects of different light-dark cycles on growth of fruit tree shoots cultured in vitro. Advances HortScience,1990,4:163-166
    117. Murakami K, Alga I, Horaguchi I. Red/far—red photon flux ratio used as an index number of morphological control of plant growth under artificial lighting conditions. Acta Horticuhurae,1994, 2:135-140
    118. Nhut D T, Takamura T, Watanabe H, et al.. Artificial light source using light-emitting diodes in the efficient micropropagation of spathiphyllum plantlets. Acta Horticulturae,2005,692:137-142
    119. Nhut D T, Takamura T, Watanabe H, et al.. Responses of strawberry plantlets cultured in vitro under superbright red and blue light-emitting diodes(LED). Plant Cell,2003,73:43-52
    120. NhutD T, Takamura T, WatanabeH, et al..Efficiency of anovel culture system by using light-emitting diode (LED) oninvitroand subsequentgrowth of micropropagated banana plantlets. ISHS Acta Horticulture,2003,616:121-127
    121. Normanly J. Auxin metabolism. Physiologia Plantarum,1997,100:431-442
    122. Puspa R P, Ikuo K, Ryosuke M. Effect of red- and blue-light-emitting diodes on growth and morphogenesis of grapes. Plant Cell Tissue Organ Culture,2008,92:147-153
    123. Rajapakse N C, Pollock R K, McMahon M J, et al.. Interpretation of light quality measurements and plant response in spectral filter research. HortScience,1992,27:1208-1211
    124. Richter G, Wessel K. Red light inhibits blue-induced chloroplast development in cultured plant cells at the mRNA level. Plant Mol Biol,1985,5:175-182
    125. Robin C, Hay M J M, Newton P C D, et al.. Effect of light quality (red:far-red ratio) at the apical bud of the main stolon on morphogenesis of Trifolium repens. L Annals of Botany,1994,74:2, 119-123
    126. Rueychi J, Wei F. Growth of potato plantlets in vitro isdifferent when provided concurrent versus alternating blueand red light photoperiods.Hort Science,2004,39(2):380-382.
    127. Ruey C J,Chien C L, Wei F, et al.. Effects of Red and light the Growth of Zantedeschia Plantlets in vitro and Tuber Formation Using Light-emitting Diodes. Hort Science,2005,40(2):436-438
    128. Saebo A, Krekling T, Appelgren M. Light quality affects photosynthesis and leaf anatomy of birch plantlets in vitro. Plant Cell Tiss and Org Cult,1995,41:177-185
    129. Schoch PG, Navarro M, Teisson C, et al.. The significance of microclimatic conditions for in vitro cultures. Fruits-Paris,1988,43:10,579-583
    130. Seibert M, Wetherbee P J, Job D D. The effects of light intensity and spectral quality on growth and initiation in tobacco callus. Plant Physiol,1975,56:130-139
    131. Senger H. The effect of blue light on plants and microorganisms. Phytochem. Photobiol,1982,35: 911-920.
    132. Shin K S, Murthy H N, Heo J W, et al.. The effect of light quality on the growth and development of in vitro cultured Doritaenopsis plants. Acta Physiol Plant,2008,30:339-343
    133. Shin K S, Murthy H N, Heo JW, et al.. Induction of betalain p igmentation in hairy roots of red beet under different radiation sources. Biologia Plantarum,2003,47 (1):149-152
    134. Standaertde Metsenaere R E A. Economic considerations [A].In:Debergh PC and Zimmerman RH (ed). Micropropagation[M]. The Netherlands Kluwer Academic Publishers. Dordrecht,1991:131-140
    135. SteffensG L. Controlling plantgrowth via the gibberellin biosynthe-sis system-I.Growth parameter alterations in apple seedlings.Physio. Plant,1985,63(2):163-168
    136. Suneetha Alokam, Chinnappa C C, David M Reid. Red/far-red light mediated stem elongation and anthocyanin accumulation in Stellaria longipes:Differential response of alpine and prairie ecotypes. Canadian Journal of Botany,2002,80:72-81
    137. Sung I K, Kitoya M, Hirano T. The effects of time and intensity of supplemental blue lighting during morning twilight on growth and physiological performance of cucumber seedlings. Life Supp. Biosph. Sci,1998,5:137-142
    138. Tanaka M, Takamura T, Watanabe H, et al.. In vitro growth of Cymbidium plantlets cultured under superbright red and blue light-emitting diodes (LEDs). Journal of Horticultural Science and Biotechnology,1998,73(1):39-44
    139. Yanagi T, Okamoto K. Utilization of super-bright light emitting diodes as an artificial light source for plant growth. Acta Horticulturae,1997,418:223-228
    140. Yorio N C, Goins G D, Kagie H R, et al.. Improving spinach, radish, and lettuce growth under red light emitting diodes (LEDs) with blue light supp lementation. HortScience,2001,36 (2):380-383
    141. Zeiger E. The biology of stomatal guard cells. Ann Rev Plant Physiol,1983,34:441-475
    1. 储钟稀,童哲,冯丽洁,等.不同光质对黄瓜叶片光合特性的影响.植物学报,1999,41(8):867-870
    2. 邓江明,宾金华,潘瑞炽.光质对水稻幼苗初级氮同化的影响.植物学报,2000,42(3):234-238
    3. 邓丽娜.光调控下叶绿体发育的变化.北京:北京林业大学,2007
    4. 杜洪涛,刘世琦,张珍.光质对彩色甜椒幼苗生长及酶活性影响.华北农学报,2005,20(2):45-48
    5. 杜建芳,廖祥儒,叶步青,等.光质对油菜幼苗生长及抗氧化酶活性的影响.植物学通报,2002,19(6):743-745
    6. 冯东霞,施生锦.叶面积测定方法的研究效果初报.中国农学通报,2005,21(6):150-155
    7. 韩善华,张红,顾素芳,等.沙冬青淀粉粒及其与叶绿体发育的关系.西北植物学报,2001,21(1):107-111
    8. 李韶山,潘瑞炽.植物的蓝光效应.植物生理学通讯,1993,29(4):248-252
    9. 李韶山,潘瑞炽.蓝光对水稻幼苗碳水化合物和蛋白质代谢的调节.植物生理学报,1995,21(1): 22-28
    10.李书民.光质调控薄膜在设施园艺生产中的应用.中国蔬菜,2000:54-57
    11.刘亚丽,李明军,李洁,等.红光下菊花水培插枝的生根和某些生理生化变化.植物生理学通讯,2003,39(4):337
    12.蒲高斌,刘世琦,刘磊,等.不同光质对番茄幼苗生长和生理特性的影响.园艺学报,2005,32(3):420-425
    13.石岭,霍秀文.不同光质对河套蜜瓜器官培养的影响.内蒙古农牧学院学报,1999,2(20):76-79
    14.徐凯,郭延平,张上隆.不同光质对草莓叶片光合作用和叶绿素荧光的影响.中国农业科学,2005,38(2):369-375
    15.张汝民.绿豆幼苗脱黄化初期质体发育生理生化机制的研究.北京:北京林业大学,2005
    16.张瑞华,战琨友,徐坤.有色膜覆盖对姜叶片色素含量及光合作用的影响.园艺学报,2007,34(6):1465-1470
    17. Bondada B R, Syvertsen J P. Concurrent changes in net CO2 assimilation and chloroplast ultrastructure in nitrogen deficient citrus leaves. Environmental and Experimental Botany,2005,54: 41-48
    18. Carmona R, Vergara J J, Lahaye M, et al.. Light quality affects morphology and polysaccharide yield and composition of Gelidium sesquipedale (Rhodophyceae). Journal of Applied Phycology, 1998,10:323-331
    19. Clouse S D. Integration of light and brassinosteroid signals in etiolated seedling growth. Trends in Plant Science,2001,6:443-445
    20. Corbineau F, Rudnicki R M, Goszczyska D M, et al.. The effect oflight quality of ethylene production in leaves of oat seedlings (Avena Satival.). Environmental and Experimental Botany, 1995,35:227-233
    21. Erdei N, Barta C, Hideg E, et al.. Light-induced wilting and its molecular mechanism in epicotyls of dark-germinated pea (Pisum sativum L.) seedlings. Plant Cell Physiology,2005,46:185-191
    22. Folta K M. Green light stimulates early stem elongation,antagonizing light-mediated growth inhibition. Plant Physiolog,2004,135:1407-1416
    23. John J L, Courtney W H, Decoteau D R.. Photocontrol of dioscorea alata plantlet growth. Scientia Horticulturae,1993,54(4):255-265
    24. Kowallik W. Blue light effects on respiration. Annu Rev Plant Physiol,1982,33:51-72
    25. Leong T Y, Goodchild D J, Anderson J M. Effect of light quality on the composition, function, and structure of photosynthetic thylakoid membranes of Asplenium australasicum (Sm) Hook. Plant Physiology,1985,78:561-567
    26. Leonid V K, Linda J W, David M R. Interaction of red to far red light ratio and ethylene in regulating stem elongation of Helianthus annuus. Plant Growth Regul,2007,51:53-61
    27. Miyashita Y, Kitaya Y, Kozai T, et al.. Effects of red and far-red light on the growth and morphology of potato plantlets in vitro:using light emitting diode as a light source for microprogation. Acta Horticulturae,1995,393:189-194
    28. Moe R, Morgan L, Grindal G. Growth and plant morphology of Cucumis sativus and fuchsia hybrid are influenced by light quality during the photoperiod and by temperature alternations. Acta Hort, 2002,580:229-234
    29. Rey M, Diaz S, Rodriguez R. Exogenouspolyamines improve rooting of hazel microshoots, Plant Cell Tissue Ore. Culture,1994,36 (3):303-308
    30. Saebo A, Krekling T, Appelgren M. Light quality affects photosynthesis and leaf anatomy of birch plantlets in vitro. Plant Cell, Tissue and Organ Culture,1995,41(2):177-185
    31. Stuefer J F, Huber H. Differential effects of light quantity and spectral light quality on growth, morphology and development of two stoloniferous Potentilla species. Oecologia,1998,117 (1-2): 1-8
    32. Von A A, Deng X W. Light conrtol of seedling development. Annu.Rev.Palnt Physiol. Plant Mol. Biol.,1996,47:215-243
    33. Voskrenskava N P, Nechayeya E P, Vlasovam P. The significance of blue light and kinetin for restoration of the photosynthetic apparatus in aging narley leaves. Fizid Rast,1968,15:890
    34. Voskresenskaya N P, Photoregulation responses and activity of the photosynthetic apparatus. Sov.Plant Physiol,1987,34:669-684
    35. Ward J M, Cufr C A, Denzel M A, et al.. The Dof transcription factor OBP3 modulates phytochrome and cryptochrome signaling in arabidopsis. Plant Cell,2005,17:475-485
    36. Wu M C, Hou C Y, Jiang C M, et al.. A novel approach of LED light radiation improves the antioxidant activity of pea seedlings. Food Chemistry,2006:1-6
    1. 常宏,王玉萍,王蒂,等.光质对马铃薯试管薯形成的影响.应用生态学报,2009,20(8):1891-1895
    2. 车生泉,盛月英,秦文英.光质对小苍兰茎尖试管培养的影响.园艺学报,1997,24(3):269-273
    3. 储钟稀,童哲,冯丽洁,等.不同光质对黄瓜叶片光合特性的影响.植物学报,1999,41(8):867-870
    4. 邓江明,宾金华,潘瑞炽.光质对水稻幼苗初级氮同化的影响.植物学报,2000,42(3):234-238
    5. 邓丽娜.光调控下叶绿体发育的变化.北京:北京林业_大学,2007
    6. 杜洪涛,刘世琦,张珍.光质对彩色甜椒幼苗生氏及酶活性影响.华北农学报,2005,20(2):45-48
    7. 杜建芳,廖祥儒,叶步青,等.光质对油菜幼苗生长及抗氧化酶活性的影响.植物学通报,2002,19(6):743-745
    8. 韩善华,张红,顾素芳,等.沙冬青淀粉粒及其与叶绿体发育的关系.西北植物学报,2001,21(1):107-111
    9. 江明艳,潘远智.不同光质对盆栽一品红光合特性及生长的影响.园艺学,2006,33(2):338-343
    10.焦海华,铁军.不同光质对一品红幼茎愈伤组织的诱导和器官分化影响的研究.内蒙古师范大学学报:自然科学(汉文)版,2003,2(32):168-170
    11.李韶山,潘瑞炽.植物的蓝光效应.植物生理学通讯,1993,29(4):248-252
    12.李韶山,潘瑞炽.蓝光对水稻幼苗碳水化合物和蛋白质代谢的调节.植物生理学报,1995,21(1): 22-28
    13.李书民.光质调控薄膜在设施园艺生产中的应用.中国蔬菜,2000:54-57
    14.梁学芬,蚁伟南,顾梓兴,等.不同光质的辅助光对香蕉组培苗的影响.中国南方果树,2001,30(4): 34
    15.刘亚丽,李明军,李洁,等.红光下菊花水培插枝的生根和某些生理生化变化.植物生理学通讯,2003,39(4):337
    16.刘媛,李胜,马绍英,等.不同光质对葡萄试管苗离体培养生长发育的影响.园艺学报,2009,36(8):1105-1112
    17.蒲高斌,刘世琦,刘磊,等.不同光质对番茄幼苗生长和生理特性的影响.园艺学报,2005,32(3):420-425
    18.秦永华,张上隆,秦巧平,等.不同有色膜对丰香草莓再生的影响及机理研究.中国农业科学,2005,38(4):777-783
    19.饶瑞估,方炜,蔡田龙.超高亮红、蓝光LED应用于蝴蝶兰栽培之研究.农业机械学刊,2003,12(4):93-100
    20.石岭,霍秀文.不同光质对河套蜜瓜器官培养的影响.内蒙古农牧学院学报,1999,2(20):76-79
    21.王爱民,肖炜,杜文雪,等.光质对缕丝花试管苗生长发育的影响.徐州师范大学学报(自然科学版),2001,19(4):56-58
    22.徐凯,郭延平,张上隆.不同光质对草莓叶片光合作用和叶绿素荧光的影响.中国农业科学,2005,38(2):369-375
    23.徐志刚,崔瑾,邸秀茹.不同光谱能量分布对文心兰组织培养的影响.北京林业大学学报,2009,31(4):45-50
    24.许莉,刘世琦,齐连东,等.不同光质对叶用莴苣光合作用及叶绿素荧光的影响.中国农学通报,2007,23(1):96-100
    25.杨其长.LED在农业与生物产业的应用与前景展望.中国农业科技导报,2008,10(6):42-47
    26.杨雅婷,肖平,胡永逵,等.LED在植物组织培养中的应用.农业工程技术·温室园艺.2009,(7): 13-14
    27.岳岚.光独立培养和新型组培光源(LED)对牡丹试管苗生长的影响.郑州:河南农业大学,2008.
    28.张汝民.绿豆幼苗脱黄化初期质体发育生理生化机制的研究.北京:北京林业大学,2005
    29.张瑞华,战现友,徐坤.有色膜覆盖对姜叶片色素含量及光合作用的影响.园艺学报,2007,34(6):1465-1470
    30. Anna B, AlicjaK. Effectof light quality on somatic embryogenesis in Hacinthus orientalis L.'Delfts blue'. Biological Bulletin of Poznan,2001,38:103-107
    31. Chory J, Chatterjee M, Cook R K, et al.. From seed germination to flowering, light controls plant development via pigment phytochrome. Proc. Natl. Acad. Sci. USA,1996,93:12066-12071
    32. Guo S, Liu X, Ai W, et al.. Development of an improved ground-based prototype of space plant-growing facility. Advances in Space Research.,2008,41:736-741
    33. Kim H H, Goins G D, Wheeler R M, et al.. Green-light supplementation for enhanced lettuce growth under red and blue-light-emitting diodes. Hort Science.2004b,39(7):1617-1622
    34. Kim H H, Goins G D, Wheeler R M,et al.. Stomatal conductance of lettuce grown under or exposed to different light qualities. Annals of Botany,2004a,94:691-697
    35. Kim S J, Hahn E J, Heo J W, et al.. Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Scientia Horticulturae,2004,101:143-151
    36. Kong S S, Hosakatte N M, Jeong W H, et al.. The effect of light quality on the growth and development of in vitro cultured Doritaenopsis plants. Acta PhysiolPlant,2008,30:339-343
    37. Kurilcik A, Canova R M, Dapkuniene S, et al.. In vitro culture of Chrysanthemum plantlets using light-emitting diodes. Cent. Eur. J. Biol.2008,3(2):161-167
    38. Kurilcik A, Canova R M, Zilinskaite S,et al.. In vitro cultivation of grape culture under solid-state lighting. Sodininkyste ir darzininkyste,2007,26(3):235-245
    39. Le Van T H, Tanaka M. Effects of red and blue light-emitting diodes on callus induction, callus proliferation,and protocorm-like body formation from callus in Cymbidium orchid. Environment Control in Biology,2004,42(1):57-64
    40. Lian M L, Murthy H N,Paek K Y. Effects of light emitting diodes on the in vitro induction and growth of bulblets of Lilium oriental hybrid'Pesaro. Scientia Horticulturae.2002,94:365-370
    41. Moreria M H, Debergh P C. The effect of light quality on the morphogenesis of in vitro cultures of Azorina vidalii(Wats.) Feer.Plant Cell,Tissue and Organ Culture.1997,51(3):187-193
    42. Naoya F, Mitsuko K F, Masami U, et al.. Effects of light quality, intensity and duration from different sources on the growth of petunia (Petunia xhybrida Vilm.). Jpn.Soc. Horticult. Sci.2002, 71:509-516
    43. Nhut D T, Takamura T, Watanabe H, et al.. Efficiency of anovel culture system by using light-emitting diode (LED) on in vitro and subsequent growth of micropropagated banana plantlets. ISHS Acta Horticulture,2003,616:121-127
    44. Normanly J. Auxin metabolism. Physiologia Plantarum,1997,100:431-442
    45. Richter G, Wessel K. Red light inhibits blue-induced chloroplast development in cultured plant cells at the mRNA level. Plant Mol Biol,1985,5:175-182
    46. Saebo A, Krekling T, Appelgren M. Light quality affects photosynthesis and leaf anatomy of birch plantlets in vitro. Plant Cell,Tissue and Organ Culture,1995,41:177-185
    47. Seibert M, Wetherbee P J, Job D D. The effects of light intensity and spectral quality on growth and shoot initiation in tobacco callus. Plant Physiology,1975,56:130-139
    48. Shin K S, Murthy H N, Heo J W, et al.. The effect of light quality on the growth and development of in vitro cultured Doritaenopsis plants. Acta Physiol Plant,2008,30:339-343
    49. Teixeira da Silva J.A. Ornamental chrysanthemums:improvement by biotechnology-Review of Plant Biotechnology and Applied Genetics. Plant Cell Tiss. Org.,2004,79:1-1
    1.常宏,王玉萍,王蒂,等.光质对马铃薯试管薯形成的影响.应用生态学报,2009,20(8):1891-1895
    2.车生泉,盛月英,秦文英.光质对小苍兰茎尖试管培养的影响.园艺学报,1997,24(3):269-273
    3.陈之林,曾宋君,段俊.独角石斛的离体繁殖.植物生理学通讯,2004,40(3):342
    4.丁峰.蝴蝶兰无菌播种快繁技术.江苏农业科学,2005(4):79-80
    5.高荣孚,张鸿明.植物光调控的研究进展.北京林业大学学报,2002,24,(5/6):235-243
    6.胡松华.热带兰花.北京:中国农业出版社.2003
    7.江明艳,潘远智.不同光质对盆栽一品红光合特性及生长的影响.园艺学报,2006,33(2):338-343
    8.李合生.植物生理生化实验原理和技术.北京:高等教育出版社.2003
    9.秦凡,周吉源.蝴蝶兰的组织培养研究.生物学杂志,2003,20(3):19-21
    10.王爱民,肖炜,杜文雪,等.光质对缕丝花试管苗生长发育的影响.徐州师范大学学报(自然科学版),2001,19(4):56-58
    11.伍建榕,韩素芬,朱有勇,等.地生兰组培快繁技术研究.北方园艺,2008(5):202-205
    12.徐志刚,崔瑾,邸秀茹.不同光谱能量分布对文心兰组织培养的影响.北京林业大学学报,2009,31(4):45-50
    13.徐志刚,丁为民,崔瑾,等.组培室补光光源应用分析与评价.农业机械学报,2001,32(5):62-64
    14.徐志刚,焦学磊.一种光谱柔性可调的LED光源系统:中国,200710133284.1[POL].2008-03-19[2008-08-25]
    15.许莉,刘世琦,齐连东,等.不同光质对叶用莴苣光合作用及叶绿素荧光的影响.中国农学通报,2007,23(1):96-100
    16.杨其长.LED在农业与生物产业的应用与前景展望.中国农业科技导报,2008,10(6):42-47
    17.周伟香,龚宁,李光,等.花叶开唇兰种子非共生萌发的研究.中草药,2007,38(4):610-613
    18. Anna B, AlicjaK. Effectof light quality on somatic embryogenesis in Hacinthns orientalis L.'Delfts blue'. Biological Bulletin of Poznan,2001,38:103-107
    19. Chen S C. On Diplandrochis, a very primitive and phylogentically significant new genus of Orchidaceae. Acta Phytotaxonomica Sinica,1979,17(1):1-6
    20. Guo S, Liu X, AiW, Tang Y, Zhu J, Wang X, Wei M, Qin L, Yang Y. Development of an improved ground-based prottype of space plant-growing facility. Advances in Space Research,2008,41:736-741
    21. Heo J, Lee C, Chakrabarty D, Paek K Y. Growth responses of marigold and salvia bedding plants as affected by monochromic or mixture radiation provided by a light-emitting diode (LED). Plant Growth Regul,2002,38:225-230
    22. Jheng F Y, Do Y Y, Liauh Y W, et al.. Enhancement of growth and regeneration efficiency from embryogenic callus cultures of Oncidium'Gower Ramsey'by adjusting carbohydrate sources. Plant Science,2006,170:1133-1140
    23. Kim H H, Goins G D, Wheeler R M, et al.. Green-light supplementation for enhanced lettuce growth under red-and blue-light-emitting diodes. Hort Science.2004b,39(7):1617-1622
    24. Kim H H, Goins G D, Wheeler R M, et al.. Stomatal conductance of lettuce grown under or exposed to different light qualities. Annals of Botany,2004a,94:691-697
    25. Kim S J, Hahn E J, Heo J W, et al.. Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Scientia Horticulturae,2004,101:143-151
    26. Kong S S, Hosakatte N M, Jeong W H, et al.. The effect of light quality on the growth and development of in vitro cultured Doritaenopsis plants. Acta PhysiolPlant,2008,30:339-343
    27. Kurilcik A, Canova R M, Dapkuniene S, et al.. In vitro culture of Chrysanthemum plantlets using light-emitting diodes. Cent. Eur. J. Biol.2008,3(2):161-167
    28. Kurilcik A, Canova R M, Zilinskaite S,et al.. In vitro cultivation of grape culture under solid-state lighting. Sodininkyste ir darzininkyste.2007,26(3):235-245
    29. Le Van T H, Tanaka M. Effects of red and blue light-emitting diodes on callus induction, callus proliferation,and protocorm-like body formation from callus in Cymbidium orchid. Environment Control in Biology,2004,42(1):57-64
    30. Lian M L, Murthy H N, Paek K Y. Effects of light emitting diodes on the in vitro induction and growth of bulblets of Lilium oriental hybrid'Pesaro. Scientia Horticulturae.2002,94:365-370
    31. Naoya F, Mitsuko K F, Masami U, et al.. Effects of light quality, intensity and duration from different sources on the growth of petunia (Petunia xhybrida Vilm.). Jpn.Soc. Horticult. Sci,2002, 71:509-516
    32. Nhut D T, Takamura T, Watanabe H, Tanaka M. Efficiency of anovel culture system by using light-emitting diode (LED) on in vitro and subsequent growth of micropropagated banana plantlets. ISHS Acta Horticulture,2003,616:121-127
    33. Nhut D T, Takamura T, Watanabe H, et al.. Responses of strawberry plantlets cultured in vitro under superbright red and blue light-emitting diodes(LED).Plant Cell,2003,73:43-52
    34. Normanly J. Auxin metabolism. Physiologia Plantarum,1997,100:431-442
    35. Richter G, Wessel K. Red light inhibits blue-induced chloroplast development in cultured plant cells at the mRNA level. Plant Mol Biol,1985,5:175-182
    36. Saebo A, Krekling T, Appelgren M. Light quality affects photosynthesis and leaf anatomy of birch plantlets in vitro. Plant Cell,Tissue and Organ Culture,1995,41:177-185
    37. Seibert M, Wetherbee P J, Job D D. The effects of light intensity and spectral quality on growth and shoot initiation in tobacco callus.Plant Physiology,1975,56:130-139
    38. Shin K S, Murthy H N, Heo J W, et al. The effect of light quality on the growth and development of in vitro cultured Doritaenopsis plants. Acta Physiol Plant,2008,30:339-343
    1. 安华明,陈力耕,樊卫国,等.刺梨果实中维生素C积累与相关酶活性的关系.植物生理与分子生物学学报,2005,31(4):431-436
    2. 车生泉,盛月英,秦文英.光质对小苍兰茎尖试管培养的影响.园艺学报,1997,24(3):269-273
    3. 储钟稀,童哲,冯丽洁,等.不同光质对黄瓜叶片光合特性的影响.植物学报,1999,41(8):867-870
    4. 邓江明,宾金华,潘瑞炽.光质对水稻幼苗初级氮同化的影响.植物学报,2000,42(3):234-238.
    5. 李韶山,潘瑞炽.蓝光对水稻幼苗碳水化合物和蛋白质代谢的调节.植物生理学报,1995,21(1): 22-28
    6. 刘国顺,乔新荣,王芳,等.弱光对烤烟干物质积累及矿质养分的影响.西南农业学报,2008,21(1): 130-133
    7. 蒲高斌,刘世琦,刘磊,等.不同光质对番茄幼苗生长和生理特性的影响.园艺学报,2005,32(3):420-425
    8. Briggs W R, Beck C F, Cashmore A R,et al.. The phototropin family of photoreceptors. Plant Cell, 2001,13:993-997
    9. Briggs W R, Olney M A. Photoreceptors in plant photomorphogenesis to date, five photochromes, two cryptochrome, one phototropin and one superchrome. Plant Physiology,2001,125:85-88
    10. Clouse S D. Integration of light and brassinosteroid signals in etiolated seedling growth. Trends in Plant Science,2001,6:443-445
    11. Erdei N, Barta C, Hideg E, et al.. Light-induced wilting and its molecular mechanism in epicotyls of dark-germinated pea (Pisum sativum L.) seedlings. Plant Cell Physiology,2005,46:185-191
    12. Heo J, Lee C, Chakrabarty D, et al.. Growth responses of marigold and salvia bedding plants as affected by monochromic or mixture radiation provided by a light-emitting diode (LED). Plant Growth Regul,2002,38:225-230
    13. Kevin W.'Photo-Manipulation-Boxes'; An instrument for the study of plant photobiology. Plant Photobiology,2000,26:3-15
    14. Okamoto K, Yanagi T, Kondo S. Growth and morphogenesis of lettuce seedlings eaisde under different combinations of red and blue light. Acta Horticulturae,1997,435:149-157
    15. Richter G, Wessel K. Red light inhibits blue-induced chloroplast development in cultured plant cells at the mRNA level. Plant Mol Biol,1985,5:175-182
    16. Schuerger A C, Brown C S, Stryjewski E C. Anatomical features of pepper plants (Capsium annuum L.) grown under red lightemitting diodes supplemented with blue or far-red light. Annals of Botany,1997,79:273-282
    17. Shin K S, Murthy H N, Heo J W, et al.. The effect of light quality on the growth and development of in vitro cultured Doritaenopsis plants. Acta Physiol Plant,2008,30:339-343
    18. Wang Ch Y, Fu Ch Ch, Liu Y Ch. Effects of using light-emitting diodes on the cultivation of Spirulina platensis. Biochemical Engineering Journal,2007,37:21-25
    19. Ward J M, Cufr C A, Denze M A, et al.. The Dof transcription factor OBP3 modulates and cryptochrome signaling in Arabidopsis. Plant Cell,2005,17:475-485
    20. Wu M Ch, Hou Ch Y, Jiang Ch M, et al.. A novel approach of LED light radiation improves the antioxidant activity of pea seedlings. Food Chemistry,2007,101(4):1753-1758
    21. Yorio N C, Goins G D, Kagie H R, et al.. Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation. HortScience,2001,36(2):380-383

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700