光环境调控对水稻幼苗和黑豆芽苗菜生长发育的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着光电技术的发展,LED(Light Emitting Diode,发光二极管)在农业与生物领域的应用正逐渐受到世界各国的广泛关注。LED不仅具有体积小、寿命长、耗能低、波长固定与低发热等优点,而且还能根据植物需要进行发光光谱的精确配置,实现传统光源无法替代的节能、环保和空间高效利用等功能。
     光质对植物的生长发育、形态建成、光合作用、物质代谢以及基因表达均有调控作用。将LED辐射的各种光谱进行配比组合应用在设施育苗、芽苗菜中具有重要意义。本研究以水稻种子和黑豆种子为试验材料,利用获得植株所需的各种光谱能量分布的LED光源,开展生长试验和指标测试分析,系统研究不同光谱能量分布的LED光源对不同品种的水稻和黑豆种子发育及其各个生长阶段的影响,为LED光谱调控在农业与生物领域中的应用提供基础。研究结果如下:
     1.研究光质对‘武运粳7号’和‘抗优63’两种水稻幼苗生长及生理特性的影响,结果表明,光质对两个品种水稻幼苗生长有显著影响且存在差异。蓝光显著抑制幼苗株高,提高‘武运粳7号’叶片的可溶性蛋白质含量及两个品种水稻五叶期幼苗的壮苗指数;红光显著提高三叶期幼苗的茎基直径、壮苗指数以及五叶期叶片的可溶性糖和淀粉含量;红蓝光显著提高三叶期幼苗的根数、茎基直径、壮苗指数、根系活力和可溶性糖含量,以及五叶期幼苗的鲜质量、干质量、壮苗指数、叶片可溶性糖和蔗糖含量;黄光可在幼苗生长初期显著增加株高。总体上,红蓝光有利于培育水稻壮苗。
     2.蓝光处理显著增加水稻幼苗剑叶气孔的数量,显著增大根导管的直径;红蓝光的处理显著增加根部导管的数量,使剑叶气孔长和宽呈显著负相关,显著减小了气孔长宽度的差异。蓝光、红蓝光、黄光处理下Fv/Fm值、Fv/Fo值显著高于对照,呼吸速率显著降低;蓝光和黄光处理使qP值、ΦPSII值和ETR值显著提高;红光下水稻幼苗的呼吸速率显著高于其它光质处理;红光显著提高了水稻叶片的光合速率。总之,红蓝光处理能促进水稻器官结构的发育,蓝光更能显著提高水稻叶片的光合能力。
     3.研究光强对黑豆芽苗菜的生长和品质表明,增加光强至3μmol·-2·s-1可以增加黑豆芽苗菜维生素C的含量。光强为9μmol·m-2·s-1的处理使芽苗菜的根长、下胚轴长度、地上部鲜质量、POD活性、可溶性糖、蔗糖都显著高于对照。在0~9μmol·m-2·s-1的光强范围内,叶绿素a、叶绿素b、叶绿素总含量和类胡萝卜素含量都显著增加。用0~15μmol·m-1·s-1的光处理显著增加黑豆芽苗菜的下胚轴直径和氨基酸含量。结果表明,9μmol·m-2·s-1的光照强度最适合培养高品质的黑豆芽苗菜。
     4.黑豆芽苗菜在生长初期形态改变较显著、酶活性增长显著、可溶性蛋白质的含量逐渐下降、氨基酸的含量逐渐升高,生长至7d下胚轴长、下胚轴直径、可食鲜质量、可食干质量、可食率、叶绿素含量和SOD活性都已经趋于稳定。可溶性糖、蔗糖、维生素C的含量,在生长初期稳定上升,生长至6 d,呈现显著的下降的趋势。粗灰分和粗纤维含量7d后有了显著的增加。还原糖的含量总体呈下降趋势。由试验结果分析,黑豆芽苗菜在生长至7d时形态指标达到最大,而生长至6d营养物质含量较高。
     5.蓝光可以显著提高黑豆芽苗菜地上部鲜质量,促进了下胚轴的伸长,增加了下胚轴直径,POD的活性最高,维生素C、维生素E和可溶性蛋白质的含量均高于其它光质处理。红光下黑豆芽苗菜的地上部干质量显著增大,相比其它光质处理显著提高了叶绿素a、叶绿素b、叶绿素总量的含量以及SOD和POD的活性。红蓝光显著增加了地上部鲜质量、地上部干质量,并显著增加了根长。黄光显著增加了地上部鲜质量,使下胚轴有显著的伸长,并能显著增加根长。总体来说,蓝光最适合黑豆芽苗菜的生长。
     6.光周期为11 h·d-1时可溶性糖、蔗糖和淀粉的含量最高。光周期为13 h·d-1有利于黑豆芽苗菜地上部鲜质量、灰分和粗纤维含量的提高。光周期的延长可以使叶绿素a/b的值、游离氨基酸的含量显著增加,MDA的含量显著的降低。试验证明,13 h·d-1时黑豆芽苗菜地上部鲜质量最大,11 h·d-1时黑豆芽苗菜的营养成分含量最高。
     综上所述,本研究表明,LED光谱调控应用到农业与生物领域具有可行性,可替代荧光灯大范围应用于设施育苗、芽苗菜生产中。
The application of light-emitting diode (LED) in agriculture and bio-industry has been concerned by all over the world along with the development of LED technology. LED not only has many advantages, such as small size, long life, low energy consumption, securing wave length and low production of heat, but also can emit the exact spectrum based on the need of plant. LED can actualize a lot of functions, such as energy saving, environment protection and efficient space utilization, which can not be achieved by conventional light source.
     Light spectrum plays an important role in plant development, morphogenesis, metabolism and gene expression. Application of light spectrum of LED on plantlets is important for plant cultivation and bud seeding vegetable In this thesis, rice and black pea seeds were tested to investigate the effects of light spectrum on growth of plantlets in different stages.
     The results are as follows:
     1. Effects of light quality on growth and physiological characteristics of rice seedlings of'wuyunjing 7'and'kangyou 63'. The results suggested light quality had remarkable effects and significant difference on the growth of two rice cultivars at different growth stage. Under blue LED, the plant heights were restrained remarkably, but the soluble protein content of'wuyunjing 7'and healthy index of two rice cultivars at five leaf stage were increased significantly. Under red LED, the stem diameter and healthy index at three leaf stage were increased remarkably, and also the soluble sugar and starch contents were increased significantly at five leaf stage. Under red-blue LED, the root number, stem diameter, healthy index, root activity and soluble sugar content in roots of the seedlings at three leaf stage were significantly promoted, the fresh mass, dry mass, healthy index, soluble sugar and sucrose content in leaf at five leaf stage were increased remarkably. Under yellow LED, the plant height were significantly increased at the initial growth stage. Generally, the red-blue LED could be more benefit to culture strong seedlings.
     2. Stomatal density were increased and catheter diameter was increased significantly under blue LED. Under red-blue LED, catheter number was increased, stomatal length and width had significant negative correlation, and the difference of stomatal length and width were decreased significantly. Under blue, yellow and red-blue LED, the Fv/Fm and Fv/Fo were higher than those of the control, but respiration rate was decreased significantly. qp,ΦPSⅡand ETR were increased significantly under blue and yellow LED. Under red light, respiration rate was decreased remarkably. Photo synthetic rate of the leaves were increased significantly under red LED.
     3. Effects of Light intensity on growth and nutrient component of black bean sprouting seedlings were studied. From the experimental results, vitamin C was significantly increased. under the light intensity of 3μmol·m-2·s-1.The hypocotyls length, aboveground fresh mass, POD activity, soluble sugar and sucrose content were significantly increased. Under the light intensity of 3-9μmol·m-2·s-1, chlorophyll a, chlorophyll b and chlorophyll a+b content were increased remarkably. The content of hypocotyls diameter and amino acid were higher under the light intensity of 3~15μmol·m-2·s-1.The results suggested that the light intensity of 9μmol·m-2·s-1 could be more benefit to the growth of black bean sprouting seedlings.
     4. There were significantly increased on morphological index, enzyme activity and amino acid at early growth stage, but protein content gradually decreased. The hypocotyls length, hypocotyls diameter, aboveground fresh mass, aboveground dry mass, chlorophyll content and sod activity reach a stable state after seven days, but cellulose content were increased significantly. The soluble sugar, sucrose and vitamin C content were gradually increased at early growth stage, but decreased after six days. The ash and cellulose content were increased remarkably after seven days. The reducing sugar content was decreased significantly with growing. The results suggested that it had better morphological index on the seventh day and higher nutrient components on the sixth day.
     5. Blue light significantly increased aboveground fresh mass, hypocotyls elongation, hypocotyls diameter and POD activity in the black bean sprouting seedlings, maintained high vitamin C, vitamin E and protein content. Under red LED, aboveground dry mass were significantly increased chlorophyll a, chlorophyll b and chlorophyll a+b content, SOD activity and POD activity were maintained effectively. Under red-blue LED, the aboveground fresh mass, aboveground dry mass and root length were increased remarkably. Under yellow LED, the fresh mass of hypocotyls was increased significantly. Aboveground fresh mass and root length and were increased remarkably. Generally, the blue LED could be more benefit to the growth of black bean sprouting seedlings.
     6. Soluble sugar sucrose and starch content were increased significantly on 11 h-d-1 illumination. It was beneficial to the hypocotyls growth, ash and cellulose content were increased remarkably on 13 h-d-1. Chlorophyll a/b and amino acid content were increased significantly, but the content of MDA was decreased remarkably with increasing of the time of illumination. The results suggested that it had higher nutrient components on 11 h-d-1 illumination and better hypocotyls growth on 13 h-d-1 illumination.
     In conclude, this study supported the feasibility of application of light spectrum regulation of LED on agriculture and bio-industry, which would replace fluorescent and be widely used in plant cultivation and bud seeding vegetable
引文
1. Haraki T, and Nishikawa H. Growth responses of rice seedlings to light wavelengths.1. Growth of seedlings exposed to various light wavelengths and variations caused by differend growing conditions. Proc. Crop sci. Soc. Japan.1976,45(3):409-415.
    2. Brown C S, Schuerger A C, Sager J C. Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting. Am Soc Hort Sci,1995,120:808-813.
    3. Bula R J, Morrow R C, Tibbits T W, et al. Light-emitting diodes as a radiation source for plants. HortScience,1991,26(2):203-205.
    4. Guo S, Liu X, Ai W, et al. Development of an improved ground-based phototype of space plant-growing facility. Advances in Space Research,2008,41 (5):736-741.
    5. Haraki T, Nishikawa H, Growth responses of rice seedlings to light wavelengths.2. Effects of light wavelength on chlorosis of seedlings. Proc, Crop Sci. Soc, Japan.1976,45(3); 416-421.
    6. Haraki T, Nishikawa H. Growth responses of rice seedlings to light wavelengths.3. Effects of varous light treatments in the nursery stage on the growth during the early-stage after transplanting. Proc. Crop Sci. Soc. Japan.1976,45(3):420-428.
    7. Kim E J, Kyeoung I L, Kun Y P. Effects of germanium treatment during cultivation of soybean sprouts. Journal of the Korean Society of Food Science and Nutrition,2002a,31(4):615-620.
    8. Kim E J, Kyeoung I L, Kun Y P. Quantity analysis of nutrients in soybean sprouts cultured with germanium. Journal of the Korean Society of Food Science and Nutrition,2002b,31(6):1150-1154.
    9. Ueda S. Effects of monochromatic light on the growth of rice plant. Proc. Crop Sci. Soc. Japan. 1935,7(2); 223-238
    10. Ueda S. Effects of monochromatic light on the growth of rice plant. Proc. Crop sci. Soc. Japan. 1934,6(4):411-477
    11. Wu M C, Hou C Y, Jiang C M et al. A novel approach of LED light radiation improves the antioxidant activity of pea seedlings. Food Chemistry.2007,101(4):1753-1758.
    12.#12
    13.储钟稀,童哲,冯丽洁,等.光质对黄瓜叶片光合特性的影响.植物学报,1999,41(8):867-87
    14.崔瑾,徐志刚,邸秀茹.LED在植物设施栽培中的应用和前景.农业工程学报,2008.24(8):249-253.
    15.邓江明,宾金华,潘瑞炽.光质对水稻幼苗初级氮同化的影响.植物学报,2000,42(3):234-238
    16.邓江明.蔡群英.潘瑞炽.光质对水稻幼苗蛋白质、氨基酸含量的影响.植物学通报,2000,17(5):419-423
    17.杜洪涛.光质对彩色甜椒幼苗生长发育特性的影响.山东农业大学,2005,6
    18.付传明,黄宁珍,赵志国,等.光质与补光对水稻幼苗生长及光合速率的影响.广西植物,2007,27(2):255-259
    19.郭红转,陆占国,王彩艳.豆芽生长过程中维生素C的消长规律研究.食品研究与开发,2006,27(2):133-135.
    20.韩玉珠,全永会.不同处理对萝卜芽苗菜生长和产量的影响.种子科技,2009(9):21-23.
    21.韩云哲,金明.不同用量蜂蜜对水稻秧苗生长的影响.延边大学农学学报,2002,3(9):183-185
    22.侯扶江.UV-B辐射对植物的影响研究进展.植物学通报,1977(14):18-23
    23.侯扶江.田问增加紫外线辐射对大豆幼苗生长和光合作用的影响.植物生态学报,1998,2(3):256-261
    24.胡文河,吴春胜,邓劭华,等.空气整根营养钵育苗对水稻秧苗生长发育的影响.吉林农业大 学学报,1998,20(4):15-18
    25.黄正来,韦朝领,刘敏华,等.水稻抽穗灌浆期模拟阴天的光质环境分析及其对产量形成的影响.安徽农业大学学报,1999,26(4):403-409
    26.江明艳,潘远智.光质对盆栽一品红光合特性及生长的影响.园艺学报,2006,33(2):338-34
    27.李德红,邓江,邢达.光质对水稻幼苗超弱发光和谷氨酰胺合成酶活性的影响.生命科学研究,1998.2(6)::109-112
    28.李合生,曾汉来.红光/远红光逆转效应在鉴别不同类型光温敏不育水稻中应用研究.杂交水稻1995(1)
    29.李韶山,潘瑞炽.蓝光对水稻幼苗生长效应的研究.中国水稻科学,1994,8(2):115-117
    30.李韶山,潘瑞炽.蓝光对水稻幼苗碳水化合物和蛋白质代谢的调节.植物生理学报,1995,21(1):22-28
    31.李韶山,潘瑞炽.蓝光对水稻幼苗叶绿体发育的影响.中国水稻科学,1994,8(3):185-188
    32.刘桂兰.无公害芽苗菜营养价值分析.现代农村科技,2009(2):20.
    33.刘立侠,唐树延,徐守民.光质对人参叶绿体结构和光合生理性状的影响.植物学报,1993,35(8):588-592
    34.刘希忠,杨勋毅,杨明东,等.杂交水稻制种常用发芽技术.中国种业,2006.5.
    35.刘志敏.钙、碘对芽苗蔬菜的生理效应和芽苗蔬菜对钙、碘的富集现象及机理研究.长沙:湖南农业大学,2001.
    36.卢荣禾.光系统Ⅱ反应中心复合物中y-559的光还原.植物学报,1997(39):517-52
    37.马超,张欢,郭银生,等.LED在芽苗菜生产中的应用及前景.中国蔬菜,2010(20):9-13
    38.毛金水,扬大旗.光质对稻苗生长的影响.西南农业大学学报,1991,13(8):446-449
    39.毛金水,杨大旗.光质所育稻苗对高温胁迫的反应.植物学通报,1994,11(1):48-49
    40.毛久庚,唐懋华,李英,等.不同类型基质对芽苗菜品质及产量的影响.上海蔬菜,2010.(1):50.
    41.倪文.光质对稻苗生长的效应.云南植物研究,1980,2(5):194-201
    42.彭世勇,王兴东.不同基质栽培对萝卜芽苗菜生长与产量的影响.科技资讯,2008(20):137.
    43.饶瑞佶,方炜,李登华.超高亮度发光二极体作为组培苗栽培人工光源之灯具制作与应用.中国园艺文摘,2001,47(3):301-312.
    44.邵玲.光对植物光合作用的调节.西江大学学报,1999,4:72-76
    45.时向东,蔡恒,焦枫,等.光质对作物生长发育影响研究进展.中国农学通报,2008,6(24):226-230
    46.史铀,汪红,尤康.高微量元素豆芽研究.成都大学学报,2007,26(2):101-102.
    47.Tanaka N.水稻秧苗素质尤指淀粉酶活性与其发根力关系,译者胡为涛.丽水农业科技1992,2:13-15
    48.童建华,赵介仁.杂交水稻与常规水稻秧苗根系比较研究.杂交水稻,1995(2)
    49.童平,杨世民,马均,等.不同水稻品种在不同光照条件下的光合特性及干物质积累.应用生态学报,2008.19(3).
    50.屠乃美,官春云.光周期对水稻源库关系的影响.作物学报,1999,25(9):596-601
    51.王德槟,张德纯.芽苗菜生产技术图册.北京:中国农业出版社,1998
    52.王绍辉,孔云,程继鸿,等.补充单色光对日光温室黄瓜光合特性及光合产物分配的影响.农业工程学报,200824(9).
    53.王伟.光敏核不育水稻在光质下的叶绿素合成.西南农业大学学报2002.24(4)
    54.王洋,刘兆永,齐晓宁,等.蓝光转化膜在北方寒冷地区水稻生产上的应用试验研究.吉林农业科学2002,27(6):7-9
    55.温玉珍.杂交水稻种子田间成苗率低的原因及对策.杂交水稻,2006,21(4):34-36
    56.闻婧,鲍顺淑,杨其长,等.LED光源R/B对叶用莴苣生理性状及品质的影响.中国农业气象,2009,30(3):413-416.
    57.吴永尧,张驰,周大寨.豆芽菜对硒的富集特点初步研究.湖北农业科学,2004(6):53-56.
    58.夏石头,彭克勤,萧浪涛,等.碘对豌豆苗生长及其可食部分游离氨基酸和维生素C及纤维素含量的影响.湖南农业大学学报:自然科学版,2002,28(2):118-121.
    59.徐光良,马荣荣,舒巧云,等.杂交水稻秧苗素质影响因素研究初报.宁波农业科技,2000,4:11-14
    60.徐凯,郭延平,张上隆.光质对草莓叶片光合作用和叶绿素荧光的影响.中国农业科学,2005,38(2):369-37
    61.徐伟忠,陈银华,曹鹏飞.芽苗菜智能化生产模式的研究.农产品加工,2006(5):8-13.
    62.许彬,张应华,范眸天.不同处理对豌豆芽苗菜生长和产量的影响.云南农业大学学报,2004,19(5):613-615.
    63.许莉,刘世琦,齐连东,等.光质对叶用莴苣光合作用及叶绿素荧光的影响.中国农学通报,2007,23(1):96-100
    64.杨安中.不同育苗方式对水稻秧苗素质及抗逆性的影响.安徽技术师范学院学报,2004,18(1):39-41
    65.杨秀坚,罗富英.不同浓度GA3、6-BA对萝卜芽苗菜产量影响的研究.北方园艺,2006(4):22-23.
    66.于虹漫,唐咏,粱艳丽.烯效唑对水稻秧苗体内过氧化物酶及蛋白质的影响.河南农业科学,1995(3):22-24
    67.余让才,范燕萍,王声斌,等.红光和远红光对黄化水稻和小麦幼苗乙醇酸氧化酶活性的影响.2002,38(5):450
    68.余让才,潘瑞炽.蓝光对水稻幼苗光合作用的影响.华南农业大学学报,1996,17(2):88-92
    69.余让才,潘瑞炽.蓝光对水稻幼苗呼吸代谢的影响.中国水稻科学,1996,10(3):159-16
    70.余让才,潘瑞炽.蓝光对水稻幼苗生长及内源激素水平的影响.植物生理学报,1997,23(2):175-180
    71.张德纯,王德槟.芽苗菜生产及展望.中国食物与营养,2003(1):25-26.
    72.张德纯.体芽菜及其营养.中国食物与营养,2006(2):48-50.
    73.张桂芬.不同浓度赤霉素和6-BA对香椿芽萌发及产量的影响.甘肃农业,2005(10):181.
    74.张欢,徐志刚,崔瑾,等.光质对萝卜芽苗菜生长和营养品质的影响.中国蔬菜,2009,(10):28-32.
    75.张立伟.光质对三种芽苗菜生理特性及品质的影响.山东农业大学,2010,6
    76.张林青,蔡小铭.光强对水稻秧苗素质的影响.江苏农业科学,2007,3:31-33
    77.张瑞华,徐坤,董灿兴.光质对生姜叶片光合特性的影响.中围农业科学2008,41(11):3722-3727
    78.张瑞华,战现友,徐坤.有色膜覆盖对姜叶片色素含量及光合作用的影响.园艺学报,2007,34(6):1465-1470
    79.张瑞华,徐坤.苗期遮光光质对生姜光合及生长的影响.应用生态学报,2008,19(3):499-504
    80.张永泰,吴怀,王忠,等.水稻育苗环境对秧苗生长的影响.中国水稻科学,1999,13(2):86-90
    81.赵凤亮,郑桂萍,曾宪国,等.不同盘土及草炭配比对水稻秧苗素质的影响.黑龙江八一农垦大学学报,2007,19(12).:30-33
    82.郑洁,胡美君,郭延平.光质对植物光合作用的调控及其机理.应用生态学报,2008,19(7):1619-162
    1. Anna B, Alicja K. Effects of light quality on somatic embryogenesis in Hyacinthus orientalis L. 'Delft's blue'. Biological Bulletin of Poznan,2001,38(1):103-107.
    2. Bradfoad M M, A rapid and sensitive method for the quantification of microgram qualities of protein utilizing the principle of protein-dye binding. Anal Biol Chem,1976,72:248.
    3. Carmona R, Vergara J J, Lahaye M, et al. Light quality affects morphology and polysaccharide yield and composition of Gelidium sesquipedale (Rhodophyceae). Journal of Applied Phycology, 1998,10:323-331
    4. Fukuda N, Ikeda H, Nara M. Effects of light quality on the growth of tomato and kidney bean cultured by hydroponics under controlled environment. Agric. Struct.1993a,23,17-24.
    5. Goins G D, Yorio N C, SanwoM M, et al. Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under light emitting diodes (LEDs) with orwithout supp lemental blue lighting. J Exp Bot,1997,48:1407-1413
    6. Hausler R E, Blackwall R D, Lea P J, et al. Control of photosynthesis in barley leaves with reduced activities of glutamine synthetase or glutaminate synthase. Planta,1994,194:406-417
    7. Health R L. Photoperoxidation in isolated chloroplasts I. Kinetics and stoichionmetry of fatty acid peroxidation. Architecture Biochemistry Biophysiology,1968,125:189-198.
    8. Heo J, Lee C, Chakrabarty D, et al. Growth responses of marigold and salvia bedding plants as affected by monochromic or mixture radiation provided by a light emitting diode (LED). Plant Growth RegulationRegul,2002,38:225-230.
    9. Kowallik W. Blue light effects on respiration. Annual Review of Plant Physiology.1982,33:51-72
    10. Leong T Y, Goodchild D J, Anderson J M. Effects of light quality on the composition, function and structure of photosynthetic thylakoid membranes of Asplenium australasicum (Sm.)Hook. Plant Physiol.1985,78:561-567.
    11. Moe R,Morgan L,Grindal G. Growth and plant morphology of Cucumis sativus and fuchsia hybrid are influenced by light quality during the photoperiod and by temperature alternations. Acta horticulturae,2002,580:229-234
    12. Omran R G. Peroxide levels and the activities of catalase, peroxidase and indoleacetic acid oxidase during and after chilling cucumber seedlings. Plant Physiology,1980,65(2):407-408.
    13. Rey M, Diaz S, Rodriguez R. Exogenous polyamines improve rooting of hazel microshoots. Plant Cell, Tissue Organ Culture,1994,36(3):303-308
    14. Saebo A, Krekling T, Appelgren M. Light quality affects photosynthesis and leaf anatomy of birch plantlets in vitro. Plant Cell,Tissue and Organ Culture,1995,41:177-185
    15. Samuoliene G, Brazaityte A, Urbonaviciute A. The effects of red and blue light component on the growth and development of frigo strawberries. Zemdirbyste Agriculture, vol.97,2010(2):99-104
    16. Shin K S, Murthy H N, Heo J W, et al.. The effects of light quality on the growth and development of in vitro cultured Doritaenopsis plants. Acta Physiol Plant.2008,30:339-343
    17. Stuefer JF, Huber H. Differential effects of light quantity and spectral light quality on growth, morphology and development of two stoloniferous Potentilla species. Oecologia,1998,117:1-8
    18. Sun Ja Kim, Eun-Joo Hahn, Jeong-Wook Heo.. Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Scientia Horticulturae.2004(101) 143-151
    19. Wang C-Y, Fu C-C, Liu Y-C. Effects of using light emitting diodes on the cultivation of Spirulina platensis. Biochemical Engineering Journal,2007,37:21-25.
    20. Wang H, Gu M, Cui J X. Effects of light quality on CO2 assimilation, chlorophyll-fluoescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus, Journal of Photochemistry and Photobiology B:Biology,2009,96:30-37.
    21. Wu C C, Hsu S T, Chang M Y, et al. Effects of light environment on runner plant propagation of strawberry,6th International Symposium of Light in Horticulture, Tsukuba, Japan.2009,11:15-19
    22. Yagi K, Hamada K, Hirata K, et al. Stimulatory effects of red light on starch accumulation in a marine green alga, Chlamydomonas sp. Strain MGA161. Applied Biochemistry and Biotechnology,1994,1:45-46
    23. Yorio N C, Goins G D, Kagie H R, et al. Improving spinach, radish, and lettuce growth under red light emitting diodes (LEDs) with blue light supplementation. HortScience,2001,36(2):380-383.
    24.常涛涛,刘晓英,徐志刚.不同光谱能量分布对番茄幼苗生长发育的影响.中国农业科学,2010,43(8):1748-1756
    25.陈温福,程红卫,刘丽霞.稻叶气孔性状研究新方法,作物学报.2000,2(2):58-62
    26.崔瑾,徐志刚,邸秀茹.LED在植物设施栽培中的应用和前景.农业工程学报,2008,24(8):249-252
    27.崔瑾,马志虎,徐志刚.光质补光对黄瓜、辣椒和番茄幼苗生长及生理特性的影响.园艺学报,2009,36(5):663-670
    28.邓江明,宾金华,潘瑞炽.光质对水稻幼苗初级氮同化的影响.植物学报,2000,4(23):234-238
    29.杜洪涛,刘世琦,张珍.光质对彩色甜椒幼苗生长及酶活性的影响.华北农学报,2005,20(2):45-48
    30.郭冬生,彭小兰.蒽酮比色法和酶水解法两种淀粉测定方法的比较研究.湖南文理学院学报.2007.19(3)
    31.贺晓蔚,陈克成,肖栩华.红光、远红光和植物激素对水稻幼苗生长及CAT、POX活性的影响.武汉植物学研究,1993,11(2):125-129
    32.洪法水,魏正贵,赵文贵.菠菜叶绿素的浸提和协同萃取反应.应用化学,2001,18(7):532-535.
    33.李合生.植物生理化试验原理和技术.北京:高等教育出版社,2000
    34.李韶山,潘瑞炽.植物的蓝光效应.植物生理学通讯,1993,29(4):248-252
    35.李韶山,潘瑞炽.蓝光对水稻幼苗生长效应的研究.中国水稻科学,1994,8(2):115-118
    36.刘立功,徐志刚,崔瑾,等.光环境调控及LED在蔬菜设施栽培中的应用和前景.中国蔬菜,2009(14):1-5
    37.刘立侠,马英忠,唐树延.光质与人参淀粉酶活性、总糖和淀粉含量的关系.生物物理学报,1992,8(4):653-658
    38.倪文.不同光质对稻苗生长的效应.云南植物研究,1980,2(2):194-201
    39.倪纪恒,陈学好,陈春宏,等.补充光质对温室黄瓜生长发育、光合和前期产量的影响.中国农业科学,2009,42(7):2615-2623
    40.蒲高斌,刘世琦,刘磊.光质对番茄幼苗生长和生理特性的影响.园艺学报,2005,32(3):420-425
    41.齐连东.光质对菠菜生理特性及其品质的影响.山东农业大学,2007
    42.张立伟,刘世琦,张自坤.光质下香椿苗的生长动态.西北农业学报,2010,19(6):115-119
    43.张林青,蔡小铭.光强对水稻秧苗素质的影响.江苏农业科学,2007,3:31-33
    44.张振贤,王培伦,刘世琦.蔬菜生理.北京:中国农业科技出版社,1993,38-39.
    1. Carmona R, Vergara J J, Lahaye M, et al. Light quality affects morphology and polysaccharide yield and composition of Gelidium sesquipedale (Rhodophyceae). Journal of Applied Phycology, 1998,10:323-331
    2. Corbineau F, Rudnicki RM, Goszczyska D M. The effects of light quality on ethylene production in leaves of oat seedlings(Avena sativa L.). Environmental and Experimental Botany,1995,35:227-233
    3. Duncan D B. Multiple range and multiple F test. Biometrics,1995,11:1-42
    4. Folta K M. Green light stimulates early stem elongation, antagonizing light-mediated growth inhibition. Plant Physiology,2004,135:1407-1416
    5. Ramalho J C, Marques N C, Semedo J N, et al. Photosynthetic performance and pigment composition of leaves from two tropical species is determined by light quality. Plant Biology,2002, 4(1):112-120
    6.陈温福,程红卫,刘丽霞.稻叶气孔性状研究新方法,作物学报.2000,2(2):58-62
    7.储钟稀,童哲,冯丽洁,等.不同光质对黄瓜叶片光合特性的影响.植物学报,1999,41(8):867-870.
    8.邓江明,宾金华,潘瑞炽.光质对水稻幼苗初级氮同化的影响.植物学报,2000,42(3):234-238
    9.杜洪涛,刘世琦,张珍.光质对彩色甜椒幼苗生长及酶活性的影响.华北农学报,2005,20(2):45-48
    10.杜健芳,廖祥儒,叶步青,等.光质对油菜幼苗生长及抗氧化酶活性的影响.植物学通报,2002,19(6):743-745
    11.冷平生,苏淑饭,王天华.光强与光质对银杏光合作用及黄酮苷与萜类内酯含量的影响.植物资源与环境学报.2002,11(1):1-4.
    12.李伟,曹坤芳.干旱胁迫对不同光环境下的三叶漆幼苗光合特性和叶绿素荧光参数的影响.西北植物学报,2006,26(2):0266-0275
    13.李雯琳,郁继华,张国斌,杨其长.LED光源不同光质对叶用莴苣幼苗叶片气体参数和叶绿素荧光参数的影响[J].甘肃农业大学学报,2010,45(1):47-51
    14.蒲高斌,刘世琦,刘磊.光质对番茄幼苗生长和生理特性的影响.园艺学报,2005,32(3):420-425
    15.时向东,汪文杰,王卫武,等.遮荫下氮肥用量对雪茄外包皮烟叶光合特性的调控效应.植物营养与肥料学报,2007,13(2):299-304
    16.邵毅,叶文文,徐凯.温度胁迫对杨梅光合作用的影响.中国农学通报,2009,25(16):161-166
    17.陶俊,陈鹏,余旭东.银杏光合特性的研究.园艺学报,1999,31(1):69-71.
    18.徐汉卿.植物学.北京:中国农业出版社1995
    19.徐凯,郭延平,张上隆.不同光质对草莓叶片光合作用和叶绿素荧光的影响.中国农业科学,2005,38(2):369-375
    20.许莉,刘世琦,齐连东,等.光质对叶用莴苣光合作用及叶绿素荧光的影响.中国农学通报,2007,23(1):96-100
    21.余让才,范燕萍,李明启.光呼吸与硝酸还原关系研究.中国农业科学,2002,35(1):49-52.
    22.余让才,潘瑞炽.蓝光对水稻幼苗光合作用的影响.华南农业大学学报,1996,17(2):88-92
    23.张红萍.干旱胁迫对豌豆冠层生长及叶片生理生化指标的影响.甘肃农业大学,2008
    24.张欢,徐志刚,崔瑾,等.光质对番茄和莴苣幼苗生长及叶绿体超微结构的影响.应用生态学报.2010,21(4):959-965
    25.张林青,蔡小铭.光强对水稻秧苗素质的影响.江苏农业科学,2007.3:31-33
    26.张瑞华,战琨友,徐坤.有色膜覆盖对姜叶片色素含量及光合作用的影响.园艺学报,2007,34(6):1465-1470
    1. Cavagnaroa JB, Trioneb SO.2007. Physiological, morphological and biochemical responses to shade ofTrichloris crinita,a forage grass from the arid zone of Argentina. J Arid Environ,68:337-347
    2. He S Q, Wang F Q. Relationship between the seedlings growth of Quercus liaotungensisand light. Forest Research,2001,14:697-700.
    3. Kuang T Y, Lu C M, Li L B. Photosynthetic Efficiency of Crops and ItsRegulations. Ji'nan: Shandong Science&Technology Press,2004
    4. Logan B A, Barker D H, Demmig-Adams B,et al. Acclimation of leaf carotenoid composition and ascorbate levels to gradients in the light environment within an Australian rainforest. Plant Cell Environ,1996,19:1083-1090
    5.蔡志全,曹坤芳,冯玉龙,等.热带雨林三种树苗叶片光合机构对光强的适应.应用生态学报,2003,14(4)4:493-496
    6.曹建新,张光飞,张磊,等.滇青冈幼苗的光合和生长对不同生长光强的适应.广西植物,2008,28(1):126-129
    7.段青青.短期光胁迫对西瓜幼苗叶片结构及其衰老的影响.上海交通大学,2009.2
    8.符裕红,谢双喜,薛于山.不同光照对广玉兰1年生移栽苗的生长影响.山地农业生物学报, 2006.25(5):394-398
    9.郭巧生,王艳茹,张贤秀,等.光强对药用白菊花营养期生理生化特性的影响.中国中药杂志,2010.35(3):561-564
    10.李霞,于涛,阎秀峰.光强对黄蘖幼苗生长及抗氧化酶活性的影响.2007,1(35):25-30
    11.刘立功,徐志刚,崔瑾,张欢.光环境调控及LED在蔬菜设施栽培中的应用和前景.中国蔬菜,2009(14):1-5.
    12.王寅,张坤,赵晋.黑豆的营养价值及在食品中的开发应用.中国食品添加剂开发应用,2007(6):132-135.
    13.肖艳辉,何金明,王羽梅.光照强度对茴香植株生长以及精油的含量和成分的影响.植物生理学通讯,2007,43(3):551
    14.杨兴有,叶协锋,刘国顺,等.光强对烟草幼苗形态和生理指标的影响.应用生态学报.2007,18(11):2642-2645
    15.张欢,徐志刚,崔瑾,等.不同光质对萝卜芽苗菜生长和营养品质的影响.中国蔬菜.2009(10):28-32
    16.张蕾.光质在植物生长发育过程中的调控作用.河北保定:河北大学,2000,6.
    17.张立伟.光质对三种芽苗菜生理特性及品质的影响.山东农业大学.2010.
    18.朱龙英,徐悌惟,康高强,等.番茄耐低温和耐弱光性能鉴定方法初探.上海农业学报,1998,14(1):45-50.
    1. Baker J E. Superoxide dismutase in ripening fruits. Plant Physio,1976,58:644-647.
    2. Clouse S D. Integration of light and brassinosteroid signals in etiolated seedling growth. Trends in Plant Science,2001,6:443-445.
    3. Noemi E, Csengele B, Eva H, Bela B. Light-induced wilting and its molecularmechanism in epicotyls of dark-germinated pea (Pisum sativum L.) seedlings. Plant Cell Physiology,2005,46: 185-191
    4. Veteh (VieiAsAtiva). Journal Experimental Botany,2000,51(349):1423-1433
    5.白永富,卢秀萍.烟草种子萌发期间可溶性蛋白质含量与离氨基酸含量的相关性研究.中国农学通报,2006,22(8):286-288
    6.董建华,杨华庚,王炳忠.橡胶种子不同萌发期几种酶及可溶性蛋白质的变化.热带作物学报,1998,19(3):1-7
    7.傅家瑞.种子生理学.北京:科学出版社,1985
    8.韩春然.玉米萌发过程中蛋白酶的活力和蛋白质含量的研究.食品科学,2007,28(1):209-212
    9.何丹.8个种源香椿的营养动态变化分析.华中农业大学,2006,6
    10.刘鹏,杨玉爱.铝、硼对大豆膜脂过氧化及体内保护系统的影响.植物学报,2000,42(5):461-466
    11.鲍士旦.南京农业大学.土壤农化分析.第3版.北京:农业出版社,2000,3
    12.王萃,胡可心,汪树生,等.豆类萌发期蛋白质和氨基酸含量的比较分析.吉林农业大学学报,2003,25(1):21-23
    13.王克平,娄玉杰,成文革,等.吉生羊草营养物质动态变化规律的研究.草业科学,2005,8(22)
    14.许雷,赵文明.豆类种子中贮藏蛋白质的降解.种子,1992,57(1):37-39
    15.阳东青,赵美丽,余德润.从竹叶中提取叶绿素.江西化工,2008,1:33-35
    16.杨玉珍,李生平,吴青霞,等.银杏种子萌发过程中蛋白质及3种氮代谢酶活性的变化.南京林业大学学报(自然科学版),2006,30(4):119-122
    17.杨忠仁,郝丽珍,张凤兰,等.野生沙葱种子的萌发和几种贮藏物质含量的变化.植物生理学通讯,2007,43(1):23-25,
    18.张欢,徐志刚,崔瑾,等.不同光质对萝卜芽苗菜生长和营养品质的影响.中国蔬菜,2009(10):28-32
    19.张侠,张中义,关兵,等.鲜绿豆芽萌发过程主要营养成分规律.食品研究与开发,1997,18(2):51-54
    1. Briggs W R, Beck C F, Cashmore A R,et al.. The phototropin family of photoreceptors. Plant Cell, 2001,13:993-997
    2. Briggs W R, Olney M A. Photoreceptors in plant photomorphogenesis to date, five photochromes, two cryptochrome, one phototropin and one superchrome. Plant Physiology,2001,125:85-88
    3. Chang H S, Chakrabarty D, Hahn E J, et al. Micropropagation of calla lily (Zantedeschia Albomaculata) viain vitro shoot tip proliferation[J].In vitro Cellular& Developmental Biology-Plant,2003,39:129-134.
    4. Heo J, Lee C, Chakrabarty D, et al. Growth responses of marigold and salvia bedding plants as affected by monochromic or mixture radiation provided by a light-emitting diode (LED). Plant Growth Regul,2002,38:225-230.
    5. Heo J, Lee C, Chakrabarty D, Paek K. Growth responses of marigold and salvia bedding plants as affected by monochromic or mixture radiation provided by a light-emitting diode(LED). Plant Growth Regul,2002,38:225-230.
    6. Hunter D C et al. Light quality influences adventitious shoot production from cotyledon explants of lettuce(Lactuca sativa L.). In Vitro Cellular & Developmental Biology-Plant,2004,40(2): 215-220.
    7. Kim H, Goins G, Wheeler R, et al.. Green-light supplementation for enhanced lettuce growth under red-and blue-light-emitting diodes. HortScience,2004,39(7):1617-1622
    8. Kowallik W. Blue light effects on respiration. Ann Rev Plant Physiol,1982,33:51-72.
    9. Oba K, Ishikawa S, Nishikawa M, etal. Purification and properties of L-galactono-1,4-lactone dehydrogenase, a key enzyme for ascorbic acid biosynthesis, from sweetpotato. JBiochem, 1995,117:120-124.
    10. Okamoto K, Yanagi T, Kondo S. Growth and morphogenesis of lettuce seedlings eaisde under different combinations of red and blue light. Acta Horticulturae,1997,435:149-157
    11. Schuerger A C, Brown C S, Stryjewski E C. Anatomical features of pepper plants (Capsium annuum L.) grown under red lightemitting diodes supplemented with blue or far-red light. Annals of Botany,1997,79:273-282
    12. Wang C Y, Fu C C, Liu Y C. Effects of using light-emitting diodes on the cultivation of Spirulina platensis. Biochemical Engineering Journal,2007,37:21-25.
    13. Wu Ming-chang, Hou Chi-yao, Jiang Chii-ming, Wang Yuh-tai, Wang Chih-yu, Chen Ho-hsien, Chang Hung-min. A novel approach of LED light radiation imp roves the antioxidant activity of pea seedlings. Food Chemistry,2007,101(4):1753-1758.
    14. Yorio N C, Goins G D, Kagie H R, et al. Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation. HortScience,2001,36 (2):380-383.
    15.常涛涛,刘晓英,徐志刚,等.不同光谱能量分布对番茄幼苗生长发育的影响.中国农业科学.2010,43(8):1748-1756
    16.邓江明,宾金华,潘瑞炽.光质对水稻幼苗初级氮同化的影响.植物学报,2000,42:234-238.
    17.杜洪涛,刘世琦,张珍.光质对彩色甜椒幼苗生长及酶活性影响.华北农学报.2005,20(2):45-48
    18.杜健芳,廖祥儒,叶步青,等.光质对油菜幼苗生长及抗氧化酶活性的影响.植物学通报,2002,19(6):743-745
    19.付传明,黄宁珍,赵志国,等.光质与补光对水稻幼苗生长及光合速率的影响.广西植物,2007,27(2):255-259.
    20.潘波,郑丕尧.大麦叶片叶绿素含量及a/b值消长规律的研究.莱阳农学院学报,1990,7(4):266-269
    21.齐连东,刘世琦,许莉,等.光质对菠菜草酸、单宁及硝酸盐积累效应的影响.农业工程学报,2007,23:201-205.
    22.唐仕荣,高兆建,尤佳,等.LED对纤维素酶产生菌生长的影响.徐州工程学院学报,2005,20(5):22-24.
    23.徐茂军,朱睦元,顾青.光诱导对发芽大豆中半乳糖酸内酯脱氢酶活性和维生素C合成的影响.营养学报,2002,24:212-214.
    24.徐志刚,崔瑾,邸秀茹.不同光谱能量分布对文心兰组织培养的影响.北京林业大学学报,2009,31(4):45-50.
    25.阳东青,赵美丽,余德润.从竹叶中提取叶绿素.江西化工,2008,1:33-35
    26.张欢,徐志刚,崔瑾,等.光质对萝卜芽苗菜生长和营养品质的影响.中国蔬菜,2009(10):28-32
    27.张立伟,刘世琦,张自坤,等.光质对豌豆苗品质的动态影响.北方园艺,2010(8):4-7
    1. Hayama R,Coupland G. The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice. Plant Physiology,2004,135:677-684.
    2. YamAsAki S,Fujii N,Takahashi H. Photoperiodic regulation of CS-ERSgene expression contributes to the femaleness of cucumber flowers throughdiurnal ethylene production under short-day conditions. Plant Cell and Environment,2003(26):537-546.
    3.陈敏,李海云.不同光周期对茄子幼苗生长的影响.北方园艺,2010(16):53-55
    4.范国强,董占强,李峰稳,等.光周期对泡桐叶片体外植株再生影响研究.西北植物学报,2007,27(1):104-109
    5.李瑾.光周期对桃芽休眠的诱导效应及休眠诱导期呼吸代谢的研究.山东农业大学,2008,6
    6.李进,顾绘,许逢美.环境因子对甜椒组培生根培养的影响.辣椒杂志,2004(4):36-37.
    7.刘磊,刘世琦,许莉,等.光周期及春化处理对洋葱蛋白质合成代谢与POD活性的影响.西北农业学报,2005,14(6):90-95.
    8.任永哲,陈彦惠,库丽霞,等.玉米光周期反应及一个相关基因的克隆.中国农业科学,2006,39(7):1487-1494.
    9.王成章,李建华,郭玉霞,等.光周期对不同秋眠型苜蓿SOD、POD活性的影响.草地学报,2007.15(9):407-411
    10.巫一伦,梁韶莉.两种光周期对青梗菜生物产量的影响.山西农业科学,2008,36(11):84-85
    11.谢虎风,何其智,龙作义.光周期对塑料大棚樟子松育苗的效应.黑龙江林学会会刊,1987,29-35.
    12.严妍.温度和光周期对水培生菜生长的影响及生长模型初探.华中农业大学,2008.6
    13.杨娜,郭维明,陈发棣,等.光周期对秋菊品种“神马”花芽分化和开花的影响.园艺学报,2007,34(4):965-972.
    14.尹宝重,张月辰,陶佩君,等.光周期诱导对红小豆不同叶龄叶片生理生化特性的影响.华北农学报.2008,23(2):25-29
    15.尹宝重.红小豆花前不同叶龄光周期诱导效应研究.河北农业大学.2007.6.20
    16.尹淑丽.苗期不同日照长度对红小豆开花、形态、生理及产量的影响.保定:河北农业大学,2006.
    17.袁娟,武天龙,陈典.光周期对扁豆内源激素及游离氨基酸含量的影响.上海交通大学学报,2004,22(3):215-217.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700