光质对黄瓜叶片叶绿素荧光光谱动力学特征的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对日光温室黄瓜生产中不同层位叶片光合作用过程中如何对光质进行充分利用的问题,本研究不仅对QE65000光纤光谱仪在荧光测定方面的可行性进行了分析,而且以北方白黄瓜为试材,采用蓝、绿、红发光二级管(LED)单色光进行照光处理,测定了光质对Fp_(685)、Fp_(735)、Fp_(685)/Fp_(735)、F_(685)、F_(735)、F_(685)/F_(735)、Y(II)、脱黄化过程中子叶的光吸收的影响;测定了阿特拉津对PSII向PSI电子传递的抑制情况,利用UV-2450分光光度计测定了光质对光合色素含量的影响;同时利用叶绿素成像荧光仪(MINI-IMAGING-PAM)进行黄瓜幼苗叶片叶绿素荧光动力学参数测定。分析探讨了光质对黄瓜幼苗绿色叶片叶绿素荧光的影响和单色光质诱导下黄瓜脱黄化子叶的光吸收与PSII活性。
     通过相关系统的配备, QE65000可以获得多种光质下的叶绿素荧光IPSMT相及之后的荧光曲线,还可以通过快速扫描获得200~900nm内的叶绿素荧光光谱图。3种LED单色光源照射诱导下,随着光强的增加白黄瓜叶片叶绿素荧光曲线OJIP中P相呈现快速上升趋势。其中,Fp_(685)主要表现为蓝光>绿光>红光;而Fp_(735)均表现为绿光下高,红蓝光下低;Fp_(685)/Fp_(735)荧光比值均表现为蓝光最高,绿光和红光下较低。蓝光下F_(685)荧光值要高于F735荧光值,而绿光或红光下F735荧光值要高于F_(685)荧光值;P相出现所需要的光合有效辐射量以蓝光最小,绿光次之,红光最大。
     混合光得到的荧光曲线的P相出现早于单色光照射,且P混合≥P单色光加和。混合光下的F_(685)/F735比值始终低于单色光下的F_(685)/F735比值。各个单色光质下的PSII实际光化学量子产量表现为:Y(II)′绿光>Y(II)′红光>Y(II)′蓝光,表明绿光下光合能力最强。
     阿特拉津处理会阻碍电子从PSII向PSI传递。背面照射红外光有利于加快PSI对电子的利用;背面照射绿光利于叶片对蓝光的利用。
     随着光强的增加,黄瓜脱黄化子叶的吸光系数、叶绿素含量、类胡萝卜素含量、初始荧光Fo和最大荧光F_m均呈现趋饱和型上升趋势,且均表现为红光>蓝光>绿光。可是,红光和蓝光下叶绿素a/b比值较绿光下的大;黑暗下黄化子叶的相对吸光度>红光>绿光>蓝光。
     随着照射光强和照射时间的增加,光系统II(PSII)最大量子产量F_v/F_m均呈现先下降后上升的趋势,PSII实际量子产量Y(II)均呈现上升趋势。其中,采用0.5~1.0μmol·m~(-2)·s~(-1)照射3 h的F_v/F_m为蓝光>红光>绿光,而采用1.5~3.0μmol·m~(-2)·s~(-1)照射3 h的F_v/F_m为红光>蓝光>绿光;采用0.5μmol·m~(-2)·s~(-1)照射1 h的F_v/F_m为绿光和蓝光>红光,而采用0.5μmol·m~(-2)·s~(-1)照射2~4 h的F_v/F_m为蓝光>红光>绿光。
     黑暗条件下黄瓜黄化子叶就含有微量的类胡萝卜素和叶绿素,且PSII非调节性能量耗散量子产量Y(NO)为1,而Y(II)和PSII调节性能量耗散量子产量Y(NPQ)均为0,表明黄化子叶中调节性能量耗散机制尚未建立。照光后,脱黄化的黄瓜子叶不仅Y(II)和Y(NPQ)均显著增加,Y(NO)也相应缩小。这表明照光诱导后黄瓜脱黄化子叶能够迅速构建光合机构和调节性热耗散机构,并与非调节性热耗散机构在能流平衡分配中协同发挥作用。
     通过对本试验结果的分析和研究,初步了解了叶片在不同光质下,叶绿素荧光、光吸收等生理指标所受的影响,可以为以后设施农业生产中提供一些新的理论依据。纯红光下叶绿素和类胡萝卜素含量、Fo和F_m较高;纯蓝光和纯红光下Y(II)较高;正面照射蓝光和反面同时照射绿光或红外光会降低叶片的荧光发射。因此从叶片对光能的利用角度看,在设施中对黄瓜进行补光照射时,除了给予红光和蓝光照射外,叶片背面同时照射一定量的绿光或红外光可以加大叶绿素对光能的利用。
The paper focused on the production of greenhouse cucumber leaves of different layers of light quality of the photosynthesis process to full utilization, this study not only QE65000 fiber spectrophotometer Determination of viability of the fluorescence were analyzed, and the study of white North cucumber as material, the use of blue, green and red light emitting diode (LED) for monochromatic light treatment, the use of optical spectroscopy (QE65000, Spectrometer Ocean Optics, Inc. USA) measured the light quality Fp_(685), Fp_(735), Fp_(685)/Fp_(735), F_(685), F735, F_(685)/F735, Y (II)′, the process of de-etiolated cotyledons of light absorption. Determination of atrazine on PSII to PSI electron transport inhibition.Using UV-2450 Spectrophotometer light quality on photosynthetic pigment content; while taking advantage of chlorophyll fluorescence imaging instrument (MINI-IMAGING-PAM) for cucumber leaves chlorophyll fluorescence parameters determined. Analysis of the cucumber green light quality on chlorophyll fluorescence and light quality induced de-etiolation in cucumber cotyledons in light absorption and activity of PSⅡ.
     With the relevant system, IPSMT and later phase of chlorophyll fluorescence under a variety of light qualities can be obtained by QE65000, the 200 ~ 900nm in the spectra also can be quickly scanned by it.
     With the increase of light intensity, the P in OJIP of chlorophyll fluorescence curve showed a fast rising. Fp_(685) were in the order of red>blue>green, but Fp_(735) were in the order of green> red≈blue. However, the order of blue> green≈red were observed for the ratio of Fp_(685)/ Fp_(735).Under Blue light the F_(685) fluorescence value higher than F735, under green or red fluorescence the F735 fluorescence value is higher than the F_(685); P point appeared under blue required minimum PAR, followed by green, red the most. The point of P appeared earlier under the mixed light than under single light, and Pmix≥Psingle. The ratios of F_(685)/ F735 always lower under the mixed lights than under single light. The order of Y(II)′green> Y(II)′red> Y(II)′blue were observed for the yield of PSII by single light. Conclusion: In cucumber the photosynthetic capacity of the strongest is under green.
     Atrazine treatment will prevent transmission of electrons from PSII to PSI. Infrared radiation back help accelerate the use of electronic in PSI; the back of the light green leaves beneficial use of the Blue light.
     With the increase of light intensity, the absorption coefficient, chlorophyll content, carotenoid content, minimum fluorescence yield (Fo) and maximum fluorescence yield (F_m) of de-etiolated cotyledons of cucumber seeding showed a rising and saturated trend, which were in the order of red > blue > green. However, the order of red≈blue > green and no irradiated light > red > green > blue were observed for the ratio of chlorophyll a/b and relative absorbance, respectively.
     Furthermore, with increase of irradiation intensity and time, the maximum photochemical efficiency of PSII (F_v/F_m) was firstly decreased and then increased, as well as the effective quantum yield of PSII (Y(II)) was persistent rose. The trends of F_v/F_m for different light qualities in the de-etiolated cotyle dons of cucumber seeding were in the order: blue > red > green for 3 hours of photosynthetically active radiation (PAR) from 0.5 to 1.0μmol·m~(-2)·s~(-1), red > blue > green for 3 hour of PAR from 1.5 to 3.0μmol·m~(-2)·s~(-1), green≈blue > red for 1 hour of 0.5μmol·m~(-2)·s~(-1)PAR, and blue>red>green for 2 to 4 hours of 0.5μmol·m~(-2)·s~(-1) PAR.
     The etiolated cotyledons of cucumber seeding had little carotenoids and chlorophyll accompanied with 1 for quantum yield of non-regulated energy dissipation of PSII (Y(NO)) and 0 for quantum yield of regulated energy dissipation of PSⅡ(Y(NPQ)) and Y(Ⅱ) before the start of light qualities treatment, which indicated that regulatory mechanism of energy dissipation of etiolated cotyledons had not been established. This may be related to function, epoxidation and de-epoxidation of xanthophyll cycle not establish. After etiolated cotyledons of cucumber seeding were irradiated by different light qualities, the Y(Ⅱ) and Y(NPQ) not only significantly increased, but also Y(NO) gradually reduced. It revealed that the photosynthetic apparatus and regulated mechanism for heat dissipation were constructed in de-etiolated cotyledons after induced by light, and eventually exerted function cooperating with non-regulated heat dissipation mechanism in the balance and distribution process of energy flow.
     Through analysis of the results of this study and research, a preliminary understanding of the leaves under different light quality, chlorophyll fluorescence, light absorption and other physiological indicators of the impact on agricultural production for future facilities to provide some new theoretical basis. The chlorophyll and carotenoid contents, Fo and F_m under red light are higher; pure blue light and red light of pure Y (Ⅱ) is high when under blue and red light. blue light on positive and green or infrared light on negative at the same time reduce the leaves of the fluorescence Emission. Therefore, the use of light energy from the blade angle, the when the cucumber grow in greenhouse need irradiation, in addition to red and blue light, the leaves on the back while a certain amount of green light or infrared light can increase the chlorophyll Energy use.
引文
[1]张蕾.光质在植物生长发育过程中的调控作用[D].河北大学.2000:1~3.
    [2]崔瑾,马志虎,徐志刚等.不同光质补光对黄瓜、辣椒和番茄幼苗生长及生理特性的影响[J],园艺学报, 2009,36(5):663~670 .
    [3]徐师华,王修兰,吴毅明.不同光质(光谱)对作物生长发育的影响[J].生态农业研究, 2000,8(1): 18~20.
    [4]赵玉国,吴沿友.光质对组培苗叶绿素含量和碳酸酐酶活性及生长的影响.现代农业科学[J],2009,16 (4 ).
    [5]杜爽,高志奎,薛占军,等.红蓝单色光质下茄子叶片的光吸收与光合光响应特性[J].河北农业大学学报, 2009,32 (1):20~29.
    [6]徐凯,郭延平,张上隆.不同光质对草莓叶片光合作用和叶绿素荧光的影响[J].中国农业科学,2005,38(2):369~375.
    [7]Saebo A, Krekling T. Appelgren M. Light quality affects photosynthesis and leaf anatomy of birch plantlets in vitro[J]. Plant Cell, Tissue and Organ Culture, 1995,41(2): 177~185.
    [8]Kim J H,Glick R E. Melis A. Dynamics of photosystem stoichiome-try adjustment by light quality in chloroplasts[J]. Plant Physiology,1993,102:181~190.
    [9] Patil Grete G,Oi R,Gissinger Astrid,Moe R. Plant morphology is affected by light quality selective plastic films and alternating day and night temperature[J]. Gartenbauwissenschaft,2001,66(2):53~60
    [10] Bhaskar RB and Syvertsen JP. Leaf chlorophyll, net gas exchange and chloroplast ultrastructure in citrus leaves of different nitrogen status[J]. Tree Physiology, 2003,23: 553~559.
    [11]车生泉,盛月英,秦文英.光质对小苍兰茎尖试管培养的影响[J].园艺学报,1997,24(3):269~273.
    [12]李韶山,潘瑞炽.植物的蓝光效应[J].植物生理学通讯,1993,29(4):248~252.
    [13]Anna B, Alicja K. Effect of light quality on somatic embryogenesis in Hacinthus orientalis L. 'Delft's blue'[J]. Biological Bulletin of Poznan, 2001,38(1): 103~107.
    [14]储钟稀,童哲,冯丽洁,等.不同光质对黄瓜叶片光合特性的影响[J].植物学报,1999, 41(8): 867~870.
    [15]Ramalho JC,Marques NC,Semedo JN ,et al. Photosynthetic performance and pigment composition of leaves from two tropical species is determined by light quality[J]. Plant Biology, 2002,4(1): 112~120.
    [16]Leong TY, Goodchild DJ, Anderson JM. Effect of light quality on the composition,function, and structure of photosynthetic thylakoid membranes of asplenium australasicum(Sm.)Hook[J]. Plant Biology,1985,78(3): 561~567.
    [17]Gressel J,Rau W. Photocontrol of fungal development. Shroshite W, Morhr H, eds.Encyclopedia of plant physiology[J]. Berlin: Springer-Verlag,1983,603~639.
    [18]陶汉之,王新长.茶树光合作用与光质的关系[J].植物生理学通讯,1989,1: 19~23.
    [19]陶俊,陈鹏,佘旭东.银杏光合特性的研究[J].园艺学报,1999, 26(3): 157~160.
    [20]冷平生,苏淑钗,王天华.光强与光质对银杏光合作用及黄酮苷与萜类内酯含量的影响[J].植物资源与环境学报,2002,11(1):1~4.
    [21]Warpeha LmF_marrs KA, KauF_man LS. Blue light regulation of specific transcript levels in pidum sativum:fluence-response, time-course, and reciprocity characteristics[J]. Plant Physiology, 1989,91(3): 1030~1035.
    [22]许莉,刘世琦,齐连东,等.不同光质对叶用莴苣光合作用及叶绿素荧光的影响[J].植物生理科学,2007,23(1): 96~100.
    [23]Bjorkman O. Responses to different quantum flux densities [A]. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds). Encyclopedia of plant Physiology[C], Ns, Vol, 12A: Interaction with the physical environment[J]. New York:Spring-Verlag, 1981,57~107.
    [24] Ernstsen J, Woodrow IE, Mott KA. Effects of growth light quantity, growth light quality and CO2 concentration on Rubisco deactivation during low PFD or darkness[J]. Photosynthesis Research, 1999,61(1): 65~75.
    [25]战吉成,黄卫东.葡萄幼苗对弱光环境的形态和生长反应[J].中国农学通报, 2002,18:1~2.
    [26]Seemann JRm. Light adaptation/acclimation of photosynthesis and the regulation of Ribulose-1,5-Bisphosphate Carboxylase activity in sun and shade plants[J]. Plant Physiology, 1989,91: 379~386.
    [27]Syvertsen JP, Smith MLJ.Light acclimation in citrus leaves. I: Changes in physical characteristics, chlorophyll, and nitrogen content[J]. Journal of the American Society for Horticultural Science, 1984,109, 807~812.
    [28]陈根云,缪有刚.光和蛋白合成抑制剂对水稻Rubisco大,小亚基和Rubisco亚基结合蛋白基因表达的影响[J].植物生理学报, 1993,19: 243~249.
    [29]Schoch PG, Zinsou C, Sibi M. Dependence of the stomatal index on environmental factors during stomatal differentiation in leaves of Vigna sinensis L[J]. Journal of experimental botany,1980,3,11211~1216.
    [30] King R. Light-regulated plant growth and flowering; from photoreceptors to genes, hormones and signals[J]. Acta Horticulturae, 2006,711~ 234.
    [31] Yanagi T, Yachi T, Okuda N, Okamoto K . Light quality of continuous illuminating at night to induce floral initiation of Fragaria chiloensis L. CHI-24-1[J]. Scientia Horticulturae, 2006,109:309~314.
    [32] Simpson RS. light control-technology and applications[J]. Oxford: Focal Press, 2003, 564
    [33]杨其长. LED在农业与生物产业的应用与前景展望[J].中国农业科技导报, 2008,10, 42~47.
    [34]McMahon MJ, KELLY JW, Decoteau R, et al. Growth of Dendrarrthema Xgrandiflorum (Ramat.) Kitamura under various spectral filters[J]. Journal of the American Society for Horticultural Science, 1991,116:950~954.
    [35] Brown CS, Schuerger AC, Sager JC. Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting[J]. American Society for Horticultural Science, 1995,803~813.
    [36] Hoenecke ME, Bula RJ, Tibbitts TW. Importance of blue photon levels for lettuce seedlings grown under red-light-emitting diodes[J]. HortScience, 1992,27, 427~430.
    [37] Yanagi T, Okamoto K, Takita S. Effects of blue, red, and blue/red lights of two different PPF levels on growth and morphogenesis of lettuce plants[J]. Acta Horticulturae, 1996,117~122.
    [38] Goins GD,Yorio NC,Sanwo MM, et al. Photornorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting[J]. Journal of Experimental Botany, 1997,48, 1407~1413.
    [39]Siefermann-Harms D. Carotenoids in photosynthesis.I: Location in photosynthetic membrane and light-harvesting function[J]. Biochim Biophys Acta, 1985, 811: 325~355.
    [40] Thayer SS, Bjorkman O. Carotenoid distribution and deepoxidation in thylakoid pigmentprotein conplexes from cotton leaves and bundle-sheath cells of maize[J]. Photosynthesis Research, 1992, 33: 213~225.
    [41] Horton P, Ruban AV, Walters RG. Regulation of light harvesting in green plants. Annu. Rev. Plant Physiol[J]. PlantMOI. Biol, 1996, 47:655~684.
    [42]冯建灿,胡秀丽,毛训甲.叶绿素荧光动力学在研究植物逆境生理中的应用[J].经济林研究,2002,20(4): 14~30.
    [43]Laisk A, Walker DA. A mathematical model of electron transport. Thermodynamic necessity for photosystemⅡregulation:‘light stomata’[J]. Proceedings of The Royal Society of London, B237, 1989: 417~444.
    [44]吴甘霖,段仁燕,王志高,等.干旱和复水对草莓叶片叶绿素荧光特性的影响[J].生态学报,2010,30(14):3941~3946.
    [45]徐凯,郭延平,张上隆,等.草莓叶片光合作用对强光的响应及其机理研究[J].应用生态学报,2005,16(1):73~78.
    [46]徐凯,郭延平,张上隆.不同光质对草莓叶片光合作用和叶绿素荧光的影响[J].中国农业科学,2005,38(2):369~375.
    [47]杜洪涛,刘世琦,蒲高斌.光质对彩色甜椒幼苗生长及叶绿素荧光特性的影响[J].西北农业学报,2005,14(1):41~45.
    [48]阳成伟,彭长连,陈贻竹,等.超高产杂交稻剑叶的光抑制及其77K荧光光谱特性[J].作物学报,2004,30(1):21~25.
    [49]李延,刘星辉,庄卫民.缺镁对龙眼光合作用的影响[J].园艺学报,2001,28(2):101~106.
    [50]苏吉虎,沈允钢.珊瑚树阳生和阴生叶片光合特性和状态转换的比较[J].植物生理与分子生物学学报,2003,29(5):443~448.
    [51]周国顺,李建东,刘自华,等.水分胁迫对小麦叶绿体光化学活性的影响[J].北京农学院学报,2003,18(3):188~190.
    [52]曹婷婷,罗时荣,赵晓艳,等.太阳直射光谱和天空光谱的测量与分析[J].物理学报, 2007, 56 (9): 5554~5557.
    [53]RW.Pearcy. Photosynthetic Utilisation of Lightflecks by Understory Plants[J]. Australian Journal of Plant Physiology, 1988, 15: 223~238.
    [54]Ichiro Terashima, Takashi Fujita, Takeshi Inoue, et al. Green light drives leaf photosynthesis more efficiently than red light in strong white light: Revisiting the enigmatic question of why leaves are green[J]. Plant and Cell Physiology, 2009, 50 (4): 684~697
    [55]刘永军,郭守华,杨晓玲.植物生理生化实验[M].北京:中国农业科技出版社, 2002:117~118.
    [56]赵弢,高志奎,徐广辉.非调制式荧光仪测定叶绿素荧光参数的研究[J].生物物理学报,2006,22(1):34~38.
    [57]童哲.光质纯度对幼苗光形态建成的影响[J].植物生理学通讯,1989,(2):28~31.
    [58]李鹏民,高辉远,Reto J. Strasser.快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J].植物生理与分子生物学学报, 2005,31(6): 559~566.
    [59] Krause GH, Weis E. Chlorophyll fluorescence and photosynthesis: the basics[J]. Annu Rev Plant Physiol Plant Mot Bio1, 1991, 42: 313~349.
    [60] Strasser RJ, Srivastava A, Govindjee.Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria[J]. Photochern Photohiol, 1995,61:32~42.
    [61] Govindjee. Sixty-three years since Kautsky: Chlorophyll a fluorescence[J]. Aust J Plant Physiol, 1995,22: 131~160.
    [62] Strasser RJ, Srivastava A, Tsimilli-Michael M. The fluorescence transient as a tool to characterize and screen photosynthetic samples[J]. In: Yunus M, Pathre U, Mohanty P(eds). Probing Photosynthesis: Mechanism, Regulation and Adaptation[J]. London: Taylor and Francis Press, 2000,445~483.
    [63]Strasser RJ, Tsimill-Michael M, Srivastava A (2004). Analysis of the chlorophyll a fluorescence transient[J]. In:Papageorgiou G, Govindjee (eds). Advances in Photosynthesis and Respiration. Netherlands: KAP Press, 2004,1~42.
    [64]Strasscr RJ and Butlcr W L (1977c) Fluorcsccncc cmission spcctra of Photosystcm I, Photosystcm II and the light-harvcsting chlorophyll a/b complcx of highcr plants. Biochim Biophys Acta 462: 307~313.
    [65]Stober F, Lang M, Lichtenthaler H K. Studies on the blue, green, red fluorescence signature of green etiolated and white leaves[J]. Remote Sens Environ, 1994(47):65~71.
    [66]潘瑞炽,王小菁,李娘辉.植物生理学(第4版)[M].北京:高等教育出版社,2001:63~64.
    [67]Marsac Det, Houmard J. Adaptation of cyanobacteria to environmental stimuli: New steps towards molecular mechanism[J]. FEMS Microbiology Reviews, 1993, 104: 119~190.
    [68]童哲,赵玉锦,王台,等.植物的光受体和光控发育研究[J].植物学报, 2000, 42 (2): 111~115.
    [69]许大全.光合作用效率[M].上海:上海科学技术出版社, 2002: 136~150.
    [70]Wallen DG, Geen GH. Light quality in relation to growth, photosynthetic rates and carbon metabolism in two species oF_marine plankton algae[J]. Marine Biology, 1971, 10: 34~43.
    [71] Govindjee WJSD, Fork DC, Armond PA. Chlorophyll a fluorescence transient as an indicator of water potential of leaves[J]. Plant Sci Lett, 1981, 20 (3): 191~194.
    [72]许大全,张玉忠,张荣铣.植物光合作用的光抑制[J].植物生理学通讯, 1992, 28 (4):237~243.
    [73]Siefermann-Harms D. Carotenoids in photosynthesis.I: Location in photosynthetic membrane and light-harvesting function. Biochim Biophys Acta, 1985, 811: 325~355.
    [74] Thayer SS, Bjorkman O. Carotenoid distribution and deepoxidation in thylakoid pigmentprotein conplexes from cotton leaves and bundle-sheath cells of maize. Photosynthesis Research, 1992, 33: 213~225.
    [75]Ralph P J, Polk SM, Moore KA, Orthb R J, et al. Operation of the xanthophyll cycle in the seagrass zostera marinain in response to variable light. Journal of Experimental Marine Biology and Ecology, 2002, 271: 189~207
    [76]Christof Klughammer, Ulrich Schreiber. Complementary PSII quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the Saturation Pulse method[M]. PAM application notes, 2008, 1: 27~35.
    [77]高苏娟,谢修志,陈兆平,等.蓝光调节高粱突变体har1幼苗的去黄化反应[J].植物学报, 2009, 44 (1): 69~78.
    [78]Pfundel E, Bilger W. Regulation end possible function of the vioxanthin cycle[J]. Photosynth Res, 1994, 42: 89~109.
    [79]张汝民,姚洪军,钟传飞,等.绿豆幼苗发育初期叶绿素生物合成的研究[J].内蒙古农业大学学报, 2005, 26 (4): 30~35.
    [80]邸秀茹,焦学磊,崔瑾,等.新型光源LED辐射的不同光质配比光对菊花组培苗生长的影响[J].植物生理学通讯, 2008, 44 (4): 661~664.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700