牛结核病DNA疫苗的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牛结核病是主要由牛分枝杆菌引起的一种慢性消耗性疾病,在许多国家尤其是发展中国家仍广泛流行,该病不仅给畜牧业造成巨大的经济损失,而且严重威胁着人类的身心健康。因此,控制牛结核病对防治人类结核病意义重大。然而,至今仍没有一种疫苗可用于该病的预防。
     本研究利用PCR技术和重叠延伸剪接技术(splice by overlapping extension,SOE),以牛分枝杆菌ValleeⅢ菌株的基因组为模板,扩增ag85b、esat-6、hsp65、mpb64基因和ag85b-esat-6、hsp65-esat-6、mpb64-esat-6融合基因,连接到真核表达载体pCDNA3.1(+)中,构建重组质粒pCDNA3.1-Ag85B(简称pCA)、pCDNA3.1.ESAT-6(简称pCE6)、pCDNA3.1-HSP65(简称pCH)、pCDNA3.1-MPB64 (简称pCM)、pCDNA3.1-Ag85B-ESAT-6 (简称pCAE)、pCDNA3.1-HSP65-ESAT-6(简称pCHE)和PCDNA3.1-MPB64-ESAT-6(简称pCME)。转染SP2/0细胞,检测目的基因的表达。以各重组质粒和pCDNA3.1(+)及PBS免疫BALB/c小鼠,免疫3次,每次间隔2周,1免后每周以牛分枝杆菌纯化蛋白衍生物(purified protein derivmive,PPD)为包被抗原,间接ELISA方法检测血清抗体水平;以牛分枝杆菌PPD和刀豆蛋白A(Concanavalin A,ConA)为刺激原,MTT法检测脾淋巴细胞增殖情况。3免2周后以ELISA试剂盒检测脾细胞分泌IFN~γ的情况。结果表明,除pCH组外,其他各重组质粒免疫后小鼠血清抗体水平持续上升,与pCDNA3.1(+)对照组和PBS对照组相比差异显著(p<0.05)。3免2周后,融合DNA疫苗免疫组的刺激值(SI值)与单价DNA疫苗免疫组相比差异显著(p<0.05)。PPD刺激后融合基因DNA疫苗免疫组小鼠脾细胞分泌的IFN~γ高于单价DNA疫苗组(p<0.05),而ConA刺激后各疫苗组分泌的IFN~γ,水平均高于PPD刺激时(p<0.05),其中以pCAE和pCME组最高。以上结果表明在诱导细胞免疫应答方面融合DNA疫苗要优于单价DNA疫苗。
     同样,利用PCR和SOE技术,获得牛分枝杆菌mpb64-ag85b和mpb64-ag85b-esat-6融合基因,以pCDNA3.1(+)为载体构建了牛分枝杆菌多价组合和多基因融合DNA疫苗:二基因融合(pCDNA3.1-MPB64-Ag85B,简称pCMA)和三基因融合(pCDNA3.1-MPB64-Ag85B-ESAT-6,简称pCMAE)DNA疫苗;二价组合(pCA+pCM)和三价组合(pCA+pCM+pCE6)DNA疫苗,免疫BALB/c小鼠,以牛分枝杆菌BCG免疫组为阳性对照,以pCDNA3.1(+)及PBS免疫组为阴性对照,共免疫3次,每次间隔2周,BCG组仅初免时皮下免疫1次。1免后每周,以原核表达纯化的重组MPB64-Ag85B-ESAT-6蛋白(rMAE)和牛分枝杆菌PPD为包被抗原,以间接ELISA方法检测血清IgG水平及lgG亚类。每次免疫2周后以rMAE蛋白和PPD刺激,MTT法检测脾淋巴细胞增殖情况,试剂盒检测IFN~γ和IL-2的分泌情况。3免3周后以1×10~6CFU的BCG进行攻毒。攻毒3周后,以间接免疫荧光试验、肺脏荷菌数和病理组织学变化评价攻毒后的免疫保护效果。试验结果表明,融合DNA疫苗免疫后产生的血清抗体水平、淋巴细胞增值(SI值)水平、IFN~γ和IL-2水平明显高于多价DNA疫苗(p<0.05),以rMAE蛋白为包被抗原和刺激原时BCG免疫组的抗体水平、SI值和分泌的IFN~γ、IL-2的量明显低于融合DNA疫苗组,而与多价DNA疫苗组相当,以牛分枝杆菌PPD为包被抗原和刺激原时BCG免疫组的体液和细胞免疫指标均明显优于各DNA疫苗组。从攻毒保护效果来看,融合DNA疫苗组的保护效果明显优于多价DNA疫苗,达到了BCG疫苗的免疫保护水平,表明本研究制备的融合DNA疫苗具有良好的用前景,从而为牛结核病新型疫苗的研究奠定了基础。
Bovine tuberculosis (BT) is a chronic wasting disease primary caused by Mycobacterium bovis thatis prevalent throughout the world, particularly in developing countries. This disease not only causestremendous economic hardship to the livestock industry, but it is also a serious human health threat.Hence, the development of strategies to control the disease is tremendously important to preventinghuman tuberculosis. Currently, no clinical vaccine against BT is available.
     In the present study, the DNA fragments of ag85b, esat-6, hsp65, mpb64 and ag85b-esat-6,hsp65-esat-6, mpb64-esat-6 were amplified by PCR and spliced by overlapping extension (SOE) fromthe genome DNA of Mycobacterium bovis Vallee HI.These seven fragments were inserted intopCDNA3.1(+) vector to construct recombinant plasmids pCA, pCE6, pCH, pCM, pCAE, pCHE andpCME. The seven plasmids were transfected into SP2/0 cell in vitro to detect the expression of targetgenes. BALB/c mice were intramuscularly vaccinated with the seven plasmids and the control vectorpCDNA3.1(+) and PBS respectively. The animals in each group were immunized 3 times with 2-wkintervals.The serum antibody titers were determined using indirect enzyme-linked immunosorbent assay(iELISA) coated with with M. bovis PPD every week. Two weeks after each immunization, spleniclymphocytes proliferation (SLP) assay were detected by MTT method using M. bovis PPD and ConA asstimulator. Two weeks after the third immunization, secreted IFN~γ, of spleen were tested. The results ofindirect ELISA showed the levels of antibodies in all recombinant plasmids groups were significantlyhigher than the two control groups(p<0.05). SLP experiments indicated the SI value in the groups offusion gene were higher than the single gene groups (p<0.05). The IFN~γexperiments showed thelevels of IFN~γ, induced with PPD in the groups of fusion gene were significantly higher than the singlegene (p<0.05). The levels of IFN~γinduced with ConA were higher than with PPD, and the levelswere higher in groups pCAE and pCME than in other groups. So the results showed fusion gene DNAvaccines surpass single gene DNA vaccines in the induction of cellullar immunologic response.
     The fusion DNA fragments of ag85b-mpb64 and ag85b-mpb64-esat-6 were obtained by PCR andSOE technique. Various DNA vaccines were constructed with the pcDNA3.1(+): fusion of two genes(pCMA), and of three genes (pCMAE), bivalent combinations (pCA+pCM) and trivalent combinations(pCA+pCM+pCE6). BALB/c mice were vaccinated with this DNA vaccines.The mice injected withBCG were positive control and the mice injected with pCDNA3.1(+) and PBS were negative control.The mice were immunized 3 times with 2-wk intervals. The animals in group BCG were only inoculatedsubcutaneously with 1×10~6 CFU BCG at initial vaccination. The serum IgG titers and IgG isotype weredetermined using iELISA coated with M. bovis PPD and rMAE protein expressed and depurated inprokaryotic expression system every week. Two weeks after each immunization, SLP and IFN~γ, IL-2assay were detected using rMAE protein and M. bovis PPD as stimulator. Three weeks after the 3rdDNA immunization, mice were challenged with 1×10~6 CFU of BCG. Three weeks after the challengethe protective efficacy were evaluated based on immunofluorescence assay, lung tissue bacterial loadsand pathohistologic changes. The data demonstrate that immunization with fusion (of two or three genes) DNA vaccines results in significantly higher serum antibody levels, lymphocyte proliferation (SI value), IFN-γ, and IL-2 levels than immunization with polyvalent DNA vaccines (p<0.05).These index in group BCG were significantly lower than the groups of fusion DNA vaccines and equivalent to groups of polyvalent DNA vaccines when rMAE protein was custodite antigen and stimulator. However, these index in group BCG were significantly higher than other groups when M. bovis PPD was custodite antigen and stimulator. The protective efficacy of the fusion DNA vaccines was surpass the polyvalent DNA vaccines and equivalent to that of the BCG vaccine, suggesting that fusion DNA vaccines represent a promising approach for the prevention of BT. So our experiment may be useful for the development of Bovis tuberculosis vaccine.
引文
1.蔡宏,田震,呼西旦等,结核分枝杆菌四联核酸疫苗免疫原性和保护效率.中国科学(C辑).2003,33:240-246.
    2.范雄林,徐志凯,李元等,结核分枝杆菌Ag85B成熟蛋白基因免疫.第四军医大学学报,2001,22:1283-1286.
    3.高红、戴五星、黄海浪等,人结核杆菌热休克蛋白65重组卡介苗疫苗的构建表达及鉴定.华中科技大学学报(医学版),2004,33:243-246.
    4.郭海晏,龚宝泰,陈有文.海南地区牛结核病调查.中国兽医科技,2002,32:17.
    5.顾田园,蔡宏,田震等,结核分枝杆菌四价DNA疫苗免疫原性和保护效率研究.生物化学与生物物理进展,2005,32:347-352.
    6.居巍,刘君炎,余应龙等,结核分支杆菌HSP65蛋白在真核细胞中的瞬时表达.中国免疫学杂志,2005,21:216-217.
    7.刘思国,王春来,张秀华等,牛结核病病原生态学和流行病学研究.中国畜牧兽医,2005,32:60-62.
    8.骆旭东,朱道银,陈全等,Ag85B与MPT64 DNA疫苗联合免疫对鼠结核分枝杆菌感染的保护作用.中华结核和呼吸杂志,2004,27:611-616.
    9.吕华坤,许卫国,王蓓,人类结核疫苗研究进展.江苏预防医学,2004,15:84-86
    10.罗永惠,易新元,曾宪芳,Sj31与鼠IFN~γ基因融合DNA疫苗免疫保护效果的研究.中国热带医学,2005,7:11-14.
    11.潘怡,蔡宏,李淑霞等,结核分枝杆菌组合DNA疫苗的免疫效果.生物化学与生物物理学报,2003.35:71-76.
    12.史小玲,李晖,钟森等,Hsp70/CD80嵌合DNA疫苗对结核杆菌的治疗作用.中华传染病杂志,2004,22:30-33.
    13.王庆梅,胡振林,周凤娟等,ESAT-6抗原DNA疫苗在小鼠体内诱导的免疫应答.第二军医大学学报,2004,25:642-645.
    14.魏建华.芦小敏等。五种结核病诊断方法的临床应用价值.宁夏医学院学报,2000,22:209-210.
    15.徐美英,刘坦业,钟能荣等,牛分枝杆菌肺结核17例报告.中国人兽共患病杂志,1998,14:76.
    16.杨卫冲,焦新安,牛结核病诊断技术的研究进展.中国人兽共患病杂志,2004,20:1090-1093.
    17.张秀华,刘思国等,牛分枝杆菌MPB64基因的克隆、鉴定及表达.中国生物工程杂志,2005,25:43-46。
    18.赵飞骏,吴移谋,张晓红等,梅毒螺旋体融合双价DNA疫苗的构建及其免疫活性的研究.中华皮肤科杂志,2006,5:26-29.
    19. Adam S,Huygen M.Vaccinia expression of Mycobacterium tuberculosis-secreted protein:tissue plasminogen activator signal sequence enhances expression and immunogenicity of M.tuberculosis Ag85. Microbes and infection,2000,2:1677-1685.
    20. Agger EM,Andersen P.Tuberculosis subunit vaccine development:on the role of interferon-γ.Vaccine,2001,19:2298-2302.
    21. Agger EM,Rosenkrands (?),Olsen AW,et al.Protective immunity to tuberculosis with Ag85B-ESAT-6 in a synthetic cationic adjuvant system IC31. Vaccine,2006,24:5452-5460.
    22. Amerein MP,Briel DD,Jaulhac B,et al.Diagnostic value of the indirect immunofluorescence assay in cat scratch disease with Bartonella henselae and Afipia felis antigens.Clin Diagn Lab Immun,1996,3:200-204.
    23. Andersen P,Askgaard D,Cottschau A,et al.Identification of immunodominant antigens during infection with Mycobacterium tuberculosis.Scand J Immunol,1992,36:823-831.
    24. Andersen P,Munk ME,Pollock JM.Specific immune-based diagnosis of tuberculosis.Lancet,2000,356:1099-1104.
    25. Aparna K,Ramandeep S,Shakila H,et al.Elicitation of efficient,protective immune responses by using DNA vaccine against tuberculosis.Vaccine,2005,23:5655-5665.
    26. Baldwin SL,D'Souza C,Robert,AD,et al.Infect Immun,1998,66:2951-2959.
    27. Bange FC,Brown AM,and Jacobs JWR.Leucine Auxotrophy Restricts Growth of Mycobacterium bovis BCG in Macrophages.Infection and Immunity,1996,64:1794-1799.
    28. Bao L,Chen W,Zhang H D,et al.Virulence,Immunogenicity,and protective efficacy of two recombinant Mycobacterium bovis Bacillus Calmette-Guérin strains expressing the antigen ESAT-6 from Mycobacterium tuberculosis.Infect Immun,2003,17:1656-1661.
    29. Biet F,Boschiroli ML,Thorel MF,et al.Zoonotic aspects of Mycobacterium bovis and Mycobacterium avium-intracellulare complex(MAC).Veterinary Research,2005,36:411-436.
    30. Bonato VLD,Lima VMF,Tascon R.E.Identification and characterization of protective T cells in hsp65 DNA-vaccinated and mycobacterium tuberculosis infected mice.Infect Immun,1998,66:169-175.
    31. Brandt L,Cunha JF,Olsen AW,et al.Failure of the Mycobacterium bovis BCG Vaccine:Some Species of Environmental Mycobacteria Block Multiplication of BCG andInduction of Protective Immunity to Tuberculosis.Infect Immun,2002,70:672-678.
    32. Buddie B M,Skinner M A,Wedlock D N,et al.New generation vaccines and delivery systems for control of bovine tuberculosis in cattle and wildlife.Vet Immunol Immunopathol,2002,87:177-185
    33. Buddie BM,Wedlock DN,Denis,M.Progress in development of tuberculosis vaccines for cattle and wildlife.Vet Microbiol,2006,112:191-200.
    34. Cai H,Tian X,Hu XD,et al.Combined DNA vaccines formulated either in DDA or in saline protect cattle from Mycobacterium bovis infection.Vaccine,2005,23:3887-3895.
    35. Casellia E,Bonia M,Di Lucaa DA.combined bovine herpesvirus 1 gB-gD DNA vaccine induces immune response in mice.J.Infect.Dis,2005,28:155-166.
    36. Chamber MA,Williams A,widen D,et al.Identification of a Mycobacterium bovis BCG auxotrophic mutant that protects guinea pigs against M.bovis andhematogenous spread of Mycobacterium tuberculosis without sensitization to tuberculin.Infect Immun,2000,68:7094-7099.
    37. Chamber MA,Stagg D,Gavier WD,et al.A DNA vaccine encoding MPB83 from Mycobacterium bovis reduces M.bovis dissemination to the kidney pf mice and is expressed in primary cell cultures of the Europan badger.Res Vet Sci,2001,71:119-126.
    38. Cooper,A.M.,Dalton,D.K.,Stewart,T.A.Disseminated tuberculosis in interferon-γ gene disrupted mice.Exp Med,1993,178:2243-2247.
    39. Cosivi O,Grange JM,Daborn CJ,et al.Zoonotic Tuberculosis due to Mycobacterium bovis in Developing Countries.Emerging Infectious Diseases,1998,4:59-70.
    40. Costello AML,Kumar A,Narayan V,et al.Does antibody to mycobacterial antigens,including lipoarabinomannan,limit dissemination in childhood tuberculosis? Trans R Soc Trop Med Hyg,1992,86:686-692.
    41. Cousins D.V.Mycobacterium bovis infection and control in domestic livestock.Rev Sci Tech Oie,2001,20:71-85.
    42. Denis O,Tanghe A,Palfliet K,et al.Vaccination with plasmid DNA encoding mycobacterial antigen 85A stimulates a CD4+ and CD8+ T-cell epitope repertoire broader than that stimulated by Mycobacterium tuberculosis H37Rv infection.Infect Immun,1998,66:1527-1533.
    43. Derrick SC,Yang AL,Morri SL.A polyvalent DNA vaccine expressing an ESAT-6-Ag85B fusion protein protects mice against a primary infection with Mycobacterium tuberculosis and boosts BCG-induce protective immunity.Vaccine,2004,23:780-788.
    44. Dietrich G,Viret JF,Hess J.Mycobacterium bovis BCG-based vaccines against tuberculosis:Novel developments.Vaccine,2003,21:667-670.
    45. Elhay MJ,Oettinger T and Andersen P.Delayed type hypersensitivity responses to ESAT-6 and MPT64 from Mycobacterium tuberculosis in the guinea pig.Infect Immun,1998;66:3454-3456.
    46. Erb KJ,Kirman J,Woodfield L,et al.Indentification of potential CD8~+ T cell epitopes of the 19KDa and AhpC proteins from Mycobacterium tuberculosis.No evidence for CD8~+ T cell priming against the identified peptides after DNA vaccination of mice.Vaccine,1998,19:192-697.
    47. Feng CG,Palendira U.Priming by DNA immunization augments protective efficacy of Mycobacterium bovis bacille calmette-guerin against tuberculosis.Infect Immun,2001,6:174-4176.
    48. Florido M,Goncalves A,Silva RA.Resistance of virulent Mycobacterium avium to gamma interferon-mediated activity suggests additional signals for induction of mycobacteriostasis.Infect Immun,1999,67:610-618.
    49. Freiji R,Lee FK,Inostroza J,et al.BCG induces polysaccharide antibodies in children<3 years of age-possible protective mechanism against disseminated tuberculosis.Rev Esp,1997,10:107-108.
    50. Gao Q,Kripke K,Arinc Z,et.al.Comparative expression studies of a complex phenotype:cord formation in Mycobacterium tuberculosis.Tuberculosis,2004,84:188-196.
    51. Garapin AC,Ma L,Pescher P,et al.Mixed immune response induced in rodents by two naked DNA genes coding for mycobacterial glycosylated protein.Vaccine,2001,19:2830-2841.
    52. Georgia D,Jefferey S,Jamie L,et al.A fusion DNA vaccine that targets antigen-presenting cells increases protection from viral challenge.PNAS,2000,97:6676-6680.
    53. Glatman-Freedman A.The role of the antibody-mediated immunity against Mycobacterium tuberculosis:Advances toward a novel vaccine strategy.Clin Microbiol,1998,11:514-532.
    54. Grange JM,Yates MD.Zoonotic aspects of Mycobacterium bovis infection.Veterinary Microbiology,1994,40:137-151.
    55. Guleria (?),Teitelbaum R.Auxotrophic vaccines for tuberculosis.Nat Med,1996,2:334-337.
    56. Harboe M,Oettinger T,Wiker HG,et al.Evidence for occurrence of the ESAT-6 protein in Mycobacterium tuberculosis and virulent Mycobacterium bovis and for its absence in Mycobacterium bovis BCG.Infect Immun,1996;64:16-22.
    57. Hernandez YL,Corona DY,Rodriguez SS,et al.Immunization of mice with Mycobacterium tuberculosis genomic expression library results in lower bacterial load in lungs after challenge with BCG Tuberculosis,2006,86:247-254.
    58. Hewinson,R.G.,Vordermeier,H.M.,Buddle,B.M.Use of the bovine model of tuberculosis for the development of improved vaccines and diagnostics.Tuberculosis,2003,83:119-130.
    59. Horwitz MA,Harth G,Dillon BJ,et.al.Recombinant bacillus Calmette-Guérin(BCG)accines expressing the Mycobacterium tuberculosis 30-kDa major secretory protein induce greater protective immunity against tuberculosis than conventional BCG vaccines in a highly susceptible animal model.PNAS,2000,97:13853-13858
    60. Huygen,K.Plasmid DNA vaccination.Microbes Immun,2005,7:932-938.
    61. Jackson M,Phalen SW,Lagranderie M,et al.Persistence and protective efficacy of a Mycobacterium tuberculosis auxotroph vaccine.Infect Immun,1999,67:2867-2873.
    62. Kamath AT,Feng CG,Macdonald M,et al..Differential protective efficacy of DNA vcaccine expressing secreted proteins of Mycobacterium tuberculosis.Infect.Immun,1999,67:1702-1707.
    63. Khera A,Singh R,Shakila H,et al.,2005. Elicitation of efficient,protective immune responses by using DNA vaccines against tuberculosis.Vaccine 23,5655-5665.
    64. Krieg AM,Hartmann G,Yi AK.Mechamism of action of CpG DNA.Microbiol Immunlo,2000,247:1-21.
    65. Ju W,Liu JY,Yu YL.Expression of HSP65 from Mycobacterial tuberculosis in Eukaryotic Cell System.Immunol,2005,21:216-217.
    66. Denis O,Wit L,et al.Cloning of the gene encoding a 22 kilodalton cell surface antige of Mycobacterium bovis BCG and analysis of its potential for DNA vaccination against tuberculosis.Infect.Immun,2000,68:1040-1047.
    67. Liberek K,Georgopoulos C and Zylicz M.1988. Role of the Escherichia coli DnaK and DnaJ heat shock proteins in the initiation of bacteriophage λDNA replication.Proc Natl Acad Sci USA,85:6632-6636.
    68. Lima KM,Santos S A,Lima V M F,et al.Single dose of a vaccine based on DNA encoding mycobacterial HSP65 protein plus TDM21oaded PLGA microspheres protects mice against a virulent strain of Mycobacterium tuberculosis.Gene Therapy,2003,10:6782685.
    69. Liu SG,Guo SP,Wang CL,et al.A novel fusion protein based indirect enzyme-linked immunosorbent assay for detection of bovine tuberculosis.Tuberculosis,2007,in press.
    70. Liu SG,Tu CC,Wang CL,et al.The protective immune response induced by B cell epitope of classical swine fever virus glycoprotein E2. Viro Methods,2006,134:125-129.
    71. Li Z,Howard A,Kelley C,et al.The immunogenicity of DNA vaccine expressing tuberculosis proteins fused to TPA signal sequences.Infect Immun,1999,162:4780-4786.
    72. Lowrie DB,Silva CL,Colston MJ,et al.Protection against tuberculosis by a plasmid DNA vaccine.Vaccine,1997,15:834-838.
    73. Lowrie DB.DNA vaccines for therapy of tuberculosis:Where are we now? Vaccine,2006,24:1983-1989.
    74. Lozes E,Denis O,Tanghe A,et al.Immunogenicity of a tuberculosis DNA vaccine encoding a secreted or a mature form of antigen 85A as compared to vaccination with live M.bovis BCG. Immunol Letters,1997,56:359-360.
    75. Lozes E,Huygen K,Content J,et al.Immunogenicity and efficacy of a tuberculosis DNA vaccine encoding the components of the secreted antigen 85 complex.Vaccine,1997,15:830-833.
    76. Manabe YC,Dannenberg Jr.AM,Tyagi SK,et al.Different Strains of Mycobacterium tuberculosis Cause Various Spectrums of Disease in the Rabbit Model of Tuberculosis.Infec Immun,2003,71:6004-6011.
    77. Mauea AC,Watersb WR,Palmerb MV,et al.CD80 and CD86,but not CD154,augment DNA vaccine-induced protection in experimental bovine tuberculosis.Vaccine,2004,23:769-779.
    78. Mauricio and Yolanda.A second-generation anti TB vaccine is long overdue.Annals of clinical Microbiology and Antimicrobials,2004,3:10.
    79. Mcshane H,Brookes R,Gilbert SC,et al.Infect Immun,2001,69:681-686.
    80. Miller R,Kaneene JB.Evaluation of historical factors influencing the occurrence and distribution of Mycobacterium bovis infection among wildlife in Michigan.American Journal of Veterinary Research,2006,67:604-615.
    81. Moigne VL,Robreau G,Borot C,et al.Expression,immunochemical characterization and localization of the Mycobacterium tuberculosis protein p27. Tuberculosis,2005,85:213-219.
    82. Mollenkopf HJ,Triebkorn DG,Andersen P,et al.Protective efficacy against tuberculosis of ESAT-6 secreted by a live Salmonella typhimurium vaccine carrier strain and expressed by naked DNA.Vaccine,2001,19:4028-4035.
    83. Morris S,Kelley C,Howard A,et al.The immunogenicity of single and combination DNA vaccines against tuberculosis.Vaccine,2000,18:2155-2163.
    84. Nagai S,J Matsumoto,and Nagasuga T.1981. Specific skin-reactive protein from culture filtrate of Mycobacterium bovis BCG.Infect Immun,31:1152-1160.
    85. Natio M,Matsuoka M,Ohara N.The antigen 85 complex vaccine against experimental Mycobacterium leprae infection in mice.Vaccine,1999,18:795-798.
    86. Olsen AW,Van Pinxteren LAH,Okkels LM,et al.Protection of Mice with a Tuberculosis Subunit Vaccine Based on a Fusion Protein of Antigen 85B and ESAT-6. Infection and Immunity,2001,69:2773-2778.
    87. Orme IM,Mcmurray DN,Belisle JT.Tuberculosis vaccine development:recent progress.Trends Microbiol,2001,9:115-118.
    88. Orme,IM.Current progress in tuberculosis vaccine development.Vaccine,2005,23:2105-2108.
    89. Pollock JM,Girvin RM,Lightbody KA,et al.Assessment of defined antigens for the diagnosis of bovine tuberculosis in skin test-reactor cattle.Vet Rec,2000,146:659-665.
    90. Pollock JM,Neill SD.Mycobacterium bovis infection and tuberculosis in cattle.Vet J,2002,163:115-127.
    91. Ravn PA,Demissie T,Eguale H.et al.Human T cell responses to the ESAT-6 antigen from Mycobactehum tuberculosis.Infect Dis,1999,179:637-645.
    92. Reilly L.M.,Daborn C.J.The epidemiology of Mycobactehum bovis infection in animals and man:A review.Tubercle and Lung Diseases,1995,76:1-46.
    93. Sambrook J,Russell D.Molecular cloning:A laboratory manual,3rd ed.Cold Spring Harbour,NY:Cold Spring Harbour Laboratory Press,2001.
    94. Sheldon M,Cynthia K,Angela H,et al.The immunogenicity of single and combination DNA vaccines against tuberculosis.Vaccine,2000,18:2155-2163.
    95. Sinha RK,Verma I,Khuller GK,et al.Immunobiological properties of a 30KD secretory protein of Mycobactehum tuberculosis H37RV.Vaccine,1997,15:689-699.
    96. Skinner MA,Wedlock DN,Buddie B.M.Vaccination of animals against Mycobactehum bovis.Rev Sci Tech Oie,2001,20:112-132.
    97. Skinner M,Buddie BM,Wedlock N,et al.A DNA Prime-BCG boost vaccination strategy in cattle induces protection against bovis tuberculosis.Infect Immun,2003,71:4901-4907.
    98. Smith TA.comparative study of bovine tubercle bacilli and of human bacilli from sputum.Exp Med,1898,3:451-511.
    99. Smith DA.Parish T,Stoker NG,et al.Characterization of Auxotrophic Mutants of Mycobactehum tuberculosis and Their Potential as Vaccine Candidates.Infection and Immunity.2001,69:1142-1150.
    100. Sonnerberg MG,Belisle JT.Definition of Mycobactehum tuberculosis culture filtrate proteins by two-dimensional polyacrylamide gel electrophoresis,N-teminal amino acid sequencing,and electrospray mass spectrometry.Infect Immun,1997,65:4515-4524.
    101. Tanghe A,Dsouza S,Rosseels V,et al.Improved immunogenicity and protective efficacy of a tuberculosis DNA vaccine encoding Ag85 by protein boosting.Infect Immun,2001,69:3041-3047.
    102. Tanghe A,Lefevre P,Denis O.Immunogenicity and protective efficacy of tuberculosis DNA vaccine encoding putative phosphate transport receptors.Immunol,1999,162:1113-1119.
    103. Tascon RE,Colston MJ,Ragno S,et al.Vaccination against tuberculosis by DNA injection.Nat Med,1996,2:888-892.
    104. Thierry G,Karin E,Jean-Christophe C,et al.The complete genome sequence of Mycobactehum bovis.PNAS/Microbiology,2003;100:7877-7882.
    105. Tollefsen S,Tjelle TE,Schneider J,et al.Improved cellular and humoral immune responses against Mycobacterium tuberculosis antigens after intramuscular DNA immunisation combined with muscle electroporation.Vaccine,2002,20:3370-3378.
    106. Tollefsen S,Vordermeier M,Olsen I,et al.DNA injection in combination with electroporation:a novel method for vaccination of farmed ruminants.Scand.Immunol,2003,57:229-238.
    107. Turner OC,Roberts AD,Frank AA,et al.Lack of protection on mice and necrotizing bronchointerstitial pneumonia with bronchiolitis in guinea pigs immunized with vaccines directed against the hsp60 molecule of Mycobacterium tuberculosis.Infect Immun,2000,68:3674-3679.
    108. Van-Crevel R,Ottenhoff THM,Vander-Meer JWM.Innate immunity to Mycobacterium tuberculosis.Clin Microbiol Rev,2002,15:294-309.
    109. Vipond J,Vipond R,Allen-Vercoe E,et al.,Shuttleworth,H.,Minton,N.P.Selection of novel TB vaccine candidates and their evaluation as DNA vaccines against aerosol challenge.Vaccine,2006,24:6340-6350.
    110. Vordermeier M,Cockle PJ,Whelan AO,et al.Effective DNA vaccination of cattle with the mycobacterial antigens MPB83 and MPB70 does not compromise the specificity of the omparative intradermal tuberculin skin test.Vaccine,2001,19:1246-1255.
    111. Vordermeier HM,Chambers MA,Cockle PJ,et al.Correlation of ESAT-6 specific gamma interferon production with pathology in cattle following Mycobacterium bovis BCG vaccination against experimental bovine tuberculosis.Infect Immun,2002,70:3026-3032.
    112. Vordermeier HM,Chambers MA,Buddie BM,et al.Progress in the development of vaccines and diagnostic reagents to control tuberculosis in cattle.Vet,2006,17:229-244.
    113. Wang QM,Sun SH,Hu ZL,et al.Improved immunogenicity of a tuberculosis DNA vaccine encoding ESAT6 by DNA priming and protein boosting.Vaccine,2004,22:3622-3627.
    114. Wang Q M,Sun S H,Hu Z L,et al.Epitope DNA Vaccines Against Tuberculosis:Spacers and Ubiquitin Modulates Cellular Immune Responses Elicited by Epitope DNA Vaccine.Scand J Immunol,2004,60:219-225.
    115. Wards BJ,Lisle GW and Collins DM.An esat6 knockout mutant of Mycobacterium bovis produced by homologous recombination will contribute to the development of a live tuberculosis vaccine.Tubercle and Lung Disease,2000,80:185-189.
    116. Wedlock DN,Vesosky B,Skinner MA,et al.Vaccination of cattle with Mycobacterium bovis culture filtrate proteins and interleukin-2 for protection against bovis tuberculosis.Infect Immun,2000,68:5809-5815.
    117. Wedlock DN,Keen DL,McCarthy AR,et al.Effect of adjuvants on immune responses of cattle vaccinated with culture filtrate proteins from Mycobacterium tuberculosis.Vet Immunol Immunop,2002,86:79-88.
    118. Wedlock DN,Skinner MA,Pariane NA,et al.Vaccination with DNA vaccines encoding MPB70 or MPB83 or a MPB70 DNA prime-protein boost does not protect cattle against bovis tuberculosis.Tuberculosis,2003,83:339-349.
    119. Xue T,Stavropoulos E,Yang M,et al.RNA Encoding the MPT83 Antigen Induces Protective Immune Responses against Mycobacterium tuberculosis Infection.Infect Immun,2004,72:6324-6329.
    120. Zhu DY,Jiang SH,Luo XD.Therapeutic effects of Ag85B and MPT64 DNA vaccines in a murine model of Mycobacterium tuberculosis infection.Vaccine,2005,23:4619-4624.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700