香菇交配型因子次级重组体及与交配型因子连锁的分子标记的鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
香菇(Lentinula edodes)是一种异宗结合的食用蕈菌,具有由两个不连锁的交配型因子(A和B)控制的四极性交配系统。本研究以13个香菇菌株为材料,采用培养基转换培养(OWE-SOJ技术)和核迁移试验等方法对各菌株孢子单核体交配型因子组合进行了准确鉴定,并对其中可能产生了次级重组体的HL01菌株进行了进一步的分析和验证。同时,采用随机扩增多态性DNA/集团分离析(RAPD/BSA)、代表性差异分析(RDA)和简并引物PCR等分子标记技术,搜寻、鉴定了与香菇交配型因子连锁的分子标记,并对所得标记的序列结构、基本属性等作了初步探讨。所得主要研究结果如下:
     在对供试13个香菇菌株进行常规交配型分析的基础上,采用OWE-SOJ技术和核迁移试验对各菌株孢子单核体的交配型因子组合进行了鉴定。结果表明,应用OWE-SOJ技术,可以观察到3种形态明显不同的菌落,即由A≠B≠配对形成的具锁状联合的绒毛状菌落、由A≠B=配对形成的无锁状联合的栅栏型菌落及由A=B≠配对形成的无锁状联合的绒毛状菌落。核迁移试验表明,核迁移仅出现于A=B≠反应中而不出现于A≠B=反应中。由于这两种方法均可清楚区分通常无明确形态差异的A=B≠和A≠B=反应,因此,用于香菇孢子单核体交配型因子的准确鉴定是行之有效的。
     在对上述13个香菇菌株进行交配型分析的过程中发现了一个表现特殊的菌株HL01。在其担孢子随机两两配对的132个组合中,不亲和组合与亲和组合之比为82:50,x~2值为11.00,极显著地偏离不亲和组合与亲和组合之比为3:1的理论x~2值。用4种标准测交菌株进行交配试验表明,在该菌株的189个供试担孢子中,有161个可分别归于4个标准测交菌株A_1B_1、A_2B_2、A_1B_2和A_2B_1所代表的4种正常交配型,但其余疑似次级重组的28个则不能归于其中任何一类。用两两配对法对这28个担孢子进一步进行交配型分析,鉴定出了A_1B_3、A_1B_4、A_2B_3、A_2B_4、A_3B_2和A_3B_5等6种交配型的单核体,表明HL01的A、B交配型因子内部均发生了重组。A、B因子的重组率分别为8.47%、11.64%;A因子至少含有2个亚单位,B因子则可能由不止2个亚单位构成。随后的结实试验显示,至少含有一个这些次级重组体的可亲和配对均具有结实能力。
     为鉴定与香菇交配型因子相关的分子标记,我们采用了RAPD/BSA、RDA和简并引物PCR等方法。其中,利用简并引物PCR获得了一条与香菇HL01菌株B_2交配型因子共分离的DNA片段(773bp)。序列分析显示该片段属于信息素受体,表明香菇中B因子的遗传基础与两种模式蕈菌裂褶菌(Schizophyllum commune)和灰盖鬼伞(Coprinus cinereus)是一样的。同时,利用简并PCR法得到香菇中MIP基因片段(419bp)。已证实在其它许多蕈菌中,MIP基因与A交配型因子是紧密连锁(<1kb)的,因此,本研究利用简并PCR法所获得的香菇的MIP基因片段,为进一步证实香菇中A因子与MIP基因的连锁关系打下了初步的基础。
     最后,我们对已获得的B因子片段及MIP基因片段用TAIL-PCR和反向PCR方法进行了步移。对B_2因子片段由773bp延长到3119bp,通过BLAST搜索GenBank中的类似序列,可以推定我们已经找到一个近乎完整的香菇B因子信息素受体基因组DNA序列。对MIP基因片段,则由449bp延长到2134bp,根据BLAST分析的结果可以推断在香菇中MIP基因与A交配型因子连锁的可能性是很大的,从而为A因子的克隆、测序等工作的开展奠定了较好的基础。
The edible fungus Lentinula edodes is a heterothallic homobasidiomycete whose matingis controlled by a bifactorial incompatibility mating system determined by two unlinkedfactors (the A and B mating type factors). In this study, 13 L. edodes strains were used andmating types of monokaryons derived from each of these strains were exactly identifiedby OWE-SOJ (Oak Wood Extract Agar-Squeezed Orange Juice Agar) technique and bynuclear migration testing. Further analysis and confirmation were carried out upon HL01strain whose progeny may occur recombinants. In addition, taking advantage ofRAPD/BSA, representational difference analysis(RDA) and degenerate PCR, wescreened and identified DNA markers linked to mating type factors of L. edodes, andmade preliminary investigation of the sequences structure and basic properties of themarkers obtained. The main results are as follows.
     Based on the regular mating types analysis of the 13 L. edodes strains, OWE-SOJtechnique and nuclear migration testing were used for identification of mating typefactors of monkaryons derived from each of these strains. The result showed that, usingOWE-SOJ technique, three kinds of typical colony could be observed, e.g. fluffy colonywith clamp connection formed by A≠B≠pairs, barrage colony without clamp connectionformed by A≠B=pairs, and fluffy colony without clamp connection formed by A=B≠pairs. Furthermore, nuclear migration test demonstrated that nuclear migration occurredonly in A=B≠but not in A≠B=. Therefore both of the two methods can discriminatedefinitely mating reactions between A=B≠and A≠B=, and it is effective to use them toexactly identify mating type factors of L. edodes.
     In the process of mating type analysis of the 13 L. edodes strains, one strain HL01appeared exceptive phenotype: 132 random pairs in monokaryons derived from onesporocarp of HL01 were made and the proportion of incompatibility to compatibility was82:50, of which the chi-square value was 11.00, extremely distorted the theoreticalchi-square value that consists with 3:1. Using the four standard tester strains, weidentified the mating type of 189 spore monokaryons derived from HL01 and found that161 out of them could be classified into four normal mating types (A_1B_1, A_2B_2, A_1B_2 andA_2B_1) excepting the other 28 monokaryons that probably occurred secondaryrecombination. By crossing in all pairwise combinations, the 28 monokaryons werefurther analysed and found six mating types(A_1B_3, A_1B_4, A_2B_3, A_2B_4, A_3B_2 and A_3B_5),indicating that secondary recombination occurred in both A factor and B factor. And Afactor is composed of at least two subloci with 8.47% recombination frequency; B factor is composed of more than two subloci with 11.64% recombination frequency. Thesubsequent fruiting test revealed that all the compatible pairs contained at least one of therecombinants had the ability to produce fruiting body.
     To screen and identify the molecular markers related to mating type factors of L.edodes, several DNA marker techniques, such as RAPD-BSA, RDA and degenerate PCRwere employed. Among these methods, by means of degenerate PCR we obtained one773bp DNA fragment cosegregating with B_2 mating-type factor in L. edodes strain HL01.Sequencing analysis revealed it belongs to pheromone receptor, suggesting the geneticbasis for B factor in L. edodes is the same as in the two model mushroom species,Schizophyllum commune and Coprinus cinereus, structure and function of whose Bincompatibility factors have been studied in detail. Also, by degenerate PCR we identifiedpartial DNA fragment (419bp) of MIP gene coding mitochondrial intermediate peptidasethat has been shown tightly linked to A mating type loci (<1kb) in most other mushroomspecies, including two model organisms. Thus the MIP fragment obtained from HL01establishes preliminary basis for further verification of the linked relationship between Amating loci and MIP gene in L. edodes.
     Finally, we made chromosome walking using TAIL-PCR and inverse PCR based onpartial DNA fragments of B factor and MIP gene obtained above. It walking from 773bpto 3119bp for B2 factor, 449bp to 2134bp for MIP gene. BLAST searches demonstratedthat nearly entirely sequences of B factor of L. edodes are obtained and that the MIP geneare most likely linked to A mating loci, which provides appropriate basis for cloning andsequencing of A factor in L. edodes
引文
1.鲍大鹏,王南,陈明杰.采用AR-DRA和RAPD对柳松菇(Agrocybe aegerita)菌株遗传多样性的分析[J].上海农业学报,2001,17(1):18-22.
    2.陈兰芬,宋思扬,郑忠辉.RT-RAPD技术分析高温诱导双孢蘑菇相关基因片段[J].厦门大学学报,2002,41(1):103-107.
    3.陈明杰,谭琦,汪昭月,冯志勇,贺冬梅,严培兰,关斯民,潘迎捷.应用RAPD技术对香菇融合菌株进行遗传鉴定[J].食用菌学报,1997,4(4):17-20.
    4.陈明杰,谭琦,严培兰.草菇低温诱导基因的分离[J].菌物系统,1998,17(4):327-330.
    5.陈明杰,余智晟,凌霞芬.草菇组织分离物的遗传变异研究[J].食用菌学报,2000,7(2):1-4.
    6.陈作红,张志光,张天晓.鹅膏属真菌RAPD分析及亲缘关系的研究[J].菌物系统,2000,19(1):51-55.
    7.代江红,林芳灿.香菇自然群体中个体间的空间分布及其遗传联系[J].菌物系统,2001,20(1):100-106.
    8.范俊,王淑珍,高雁.松茸过氧化物酶和酯酶同工酶的研究[J].食用菌,2001,23(5):6-7.
    9.贾建航,李传友,金德敏.香菇空间诱变子实体的分子生物学鉴定研究[J].菌物系统,1999,18(1):20-24.
    10.康亚男,钟月金,陈明忠.中国香菇交配型和基因型的分析[J].真菌学报,1992,11(4):14-323.
    11.李莉云,刘国振,贾建航.担子菌交配型位点结构及交配基因功能的研究进展[J].食用菌学报,1998,5(2):57-63.
    12.李荣春,张丽梅.随机扩增多态DNA(RAPD)在野蘑菇杂交育种中的应用[J].微生物学通报,2001,28(5):2-55.
    13.李增智,黄勃,李春如.确定冬虫夏草无性型的分子生物学证据Ⅰ.中国被毛孢与冬虫夏草之间的关系[J].菌物系统,2000,19(1):60-64.
    14.林芳灿,汪中文,孙勇,蔡亚君.中国香菇自然群体的交配型因子分析[J].菌物系统,2003,22(2):235-240.
    15.林芳灿,汪中文,熊再明.OWE-SOJ技术及核迁移试验在香菇交配型因子鉴定中的应用[J].华中农业大学学报,2000,19(6):573-576.
    16.林芳灿,张树庭.中国香菇栽培菌株不亲和性因子的分析[J].华中农业大学学报,1995,14(5):459-466.
    17.林范学,林芳灿.香菇亲本菌株及其杂交后代的RAPD分析[J].菌物系统, 1999,18(3):279-283.
    18.柳李旺,龚义勤,黄浩.新型分子标记—SRAP与TRAP及其应用[J].遗传,2004,25(5):777-781.
    19.刘祖同,罗信昌.食用蕈菌生物技术及应用[M].北京:清华大学出版社,2002:1-64.
    20.黎裕,贾继增,王天宇.分子标记的种类及其发展[J].生物技术通报,1999,4:19-22.
    21.吕作舟.食用菌栽培学[M].北京:高等教育出版社,2006:1-2.
    22.马爱民,潘迎捷,关海山.双孢蘑菇原生质中同核体及杂交异核体的RAPD分析[J].食用菌学报,1998,5(3):1-5.
    23.马富英,罗信昌.28SrDNA PCR-RFLP分析在侧耳属系统发育研究中的应用[J].华中农业大学学报,2002,21(3):201-205.
    24.马志刚.分子标记在侧耳属菌株分类中的应用[D].武汉:华中农业大学硕士研究生论文,2005.
    25.卯晓岚.中国香菇属的种类及香菇的自然分布[J].中国食用菌,1996,15(3):34-36.
    26.孟雨,蒋昌顺,廖问陶.糙皮侧耳的(Pleurotus ostreatus)AFLP指纹图谱分析[J].遗传学报,2003,30(12):1140-1146.
    27.潘迎捷,陈明杰.香菇和虎皮香菇的种间原生质体融合[J].上海农业学报,1992,8(1):9-12.
    28.秦莲花,宋春艳,谭琦,陈明杰,潘迎捷.用ITS和ISSR分子标记技术鉴别香菇生产用种[J].菌物学报,2006,25(1):94-100.
    29.秦莲花,张红,陈明杰,谭琦,潘迎捷.微卫星(TATG)_n在香菇菌种中的验证[J].微生物学报,2004,44(4):474-478.
    30.施庆利,罗信昌.RAPD技术在木耳杂交种及原生质体融合子鉴定分析中的应用[J].中国食用菌,1994,12(6):3-4.
    31.宋思扬,曾伟,陈融.一个与双孢蘑菇子实体品质相关的DNA片段的克隆[J].食用菌学报,2000,7(3):11-15.
    32.孙立夫,杨国亭,秦国夫.用ISSR标记研究高卢蜜环菌系统发生学的尝试[J].植物研究,2003,23(3):317-322.
    33.王键,图力古尔,李玉.香菇属真菌的研究进展兼论中国香菇属的种类资源[J].吉林农业大学学报,2001,23(2):41-45.
    34.王淑珍,白晨,范俊.灵芝与糙皮侧耳原生质体融合子基因组RAPD分析[J].食用菌学报,2003,10(1):1-5.
    35.王泽生,廖建华,陈美元.双孢蘑菇杂交菌株As2796家系的分子遗传研究[J].菌物系统,2001,20(2):233-237.
    36.吴康云,边银丙.黑木耳种内杂交子的鉴定技术[J].菌物系统,2002,21(2):210-214.
    37.吴学谦,李海波,魏海龙,付立忠,吴庆其,彭华正,朱睦元.SCAR分子标记技术在香菇菌株鉴定上的应用研究[J].菌物学报,2005,24(2):259-266.
    38.肖扬,唐利华,边银丙.应用简并引物扩增黑木耳信息素受体基因片段[J].菌物学报,2006,25(2):316-320.
    39.肖扬,唐利华,边银丙.简并引物在黑木耳交配型因子研究中的应用初报[J].菌物学报,2006,25(4):682-685.
    40.肖在勤,谭伟,彭卫红.金针菇与风尾菇种间原生质体融合研究[J].食用菌学报,1998,5(1):6-12.
    41.阎培尘,罗信昌,周启.利用RAPD技术对木耳属菌株进行分类鉴定的研究[J].菌物系统,2000,19(1):29-33.
    42.阎培生,罗信昌,周启.木耳属真菌rDNA特异性扩增片段的RFLP研究[J].菌物系统,1999,18(2):206-213.
    43.姚方杰,李玉.金顶侧耳交配型系统特性的研究[J].吉林农业大学学报,2002,25(2):61-63.
    44.叶明,叶生梅,潘迎捷.不同来源香菇双.单杂交后代的遗传研究[J].南京农业大学学报,2000,25(1):53-56.
    45.曾伟,宋思扬,王泽生.双孢蘑菇及大肥菇的种内及种间多态性RAPD分析[J].菌物系统,1999,18(1):55-60.
    46.曾荣,张树庭.食用菌灭活原生质体融合及属间融合产物的鉴定分析[J].微生物学报,1995,32(2):149-154.
    47.詹才新,凌霞芬,杨家林.双孢蘑菇性亲和性相关分子标记的初步筛选[J].食用菌学报,2002,9(4):1-8.
    48.詹才新,张引芳,凌霞芬,贺冬梅,严培兰,高红亮.中国主栽双孢蘑菇菌株的DNA多态性[J].食用菌学报,1998,5(2):1-7.
    49.詹才新,朱兰宝,杨新美.利用RAPD技术评估金针菇种质资源[J].食用菌学报,1997,4(1):1-7.
    50.张树庭,林芳灿.蕈菌遗传与育种[M].北京:中国农业出版社,1997:1-181.
    51. Anderson CM, Willits DA, Kosted P J, Ford E J, Martinez-Espinoza AD, Sherwood JE. Molecular analysis of the pheromone and pheromone receptor genes of Ustilago hordei[J]. Gene, 1999, 240: 89-97.
    52. Anderson JB, Petsche DM, Smith ML. Restriction fragment length polymorphisms in biological species ofArmillariae mellea [J]. Mycologia, 1987, 79(1): 69-76.
    53. Anton SMS, Johan JPB, Thomas SPM, Peter JS, Leo JLDV. Abrl, a Transposon-Like Element in Genome of the Cultivated Mushroom Agaricus bisporus (Lange) Imbach [J]. Appl Environ Microbiol, 1999, 65(8): 3347-3353.
    54. Asada Y, Yue C, Wu J. Schizophyllum commune Aα mating-type proteins, Y and Z, form complexes in all combinations in vitro [J]. Genetics, 1997, 147(1): 117-123.
    55. Asante-Owusu RN, Banham AH, Rohnert HU. Heterodimerization between two classes of homeodomain proteins in the mushroom Coprinus cinereus brings together potential DNA-binding and activation domains [J]. Gene, 1996, 172(1): 25-31.
    56. Badrane H, May G. The divergence-homogenization duality in the evolution of the b1 mating type of Coprinus cinereus [J]. Mol Biol Evol, 1999, 16(10): 975-986.
    57. Bakkeren G, Jiang G, Warren RL, Butterfield Y, Shin H, Chiu R, Linning R, Schein J, Lee N, Hu G, Kupfer D M, Tang Y, Roe B A, Jones S, Marra M, Kronstad J W. Mating factor linkage and genome evolution in basidiomycetous pathogens of cereals [J]. Fungal Genetics and Biology, 2006, doi: 10.1016/j.fgb.2006.04.002
    58. Bakkeren G, Kronstad JW. Conservation of the B mating-type gene complex among bipolar and tetrapolar fungi [J]. Plant Cell, 1993, 5(1): 123-136.
    59. Banham AH, Assante-Owusu RN, Gottigens B. An N-terminal dimerization domain permits homeodoain proteins to choose compatible partners and initiate sexual development in the mushroom Coprinus einereus [J]. Plant Cell, 1995, 7(7): 773-783.
    60. Banuett F. Ustilago maydis, the delightful blight [J]. Trends Genet, 1992, 8(2): 174-180.
    61. Bao D, Kinugasa S, Kitamoto Y. The biological species of oyster mushrooms (Pleurotus spp.) from Asia based on mating compatibility tests [J]. Journal of Wood Science, 2004, 50: 162-168.
    62. Bolker M, Kahmann R. Sexual pheromones and mating responses in fungi [J]. Plant Cell, 1993, 5(12): 1461-1469.
    63. Bolker M, Urban M, Kahmann R. The mating-type locus of Ustilago maydis specifies cell-signaling components [J]. Cell, 1992, 68(3): 441-450.
    64. Botstein D, White RL, Skolnick M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms [J]. Am J Hum Genet, 1980, 32: 314-331.
    65. Bunyard BA, Nicholson MS, Royse DJ. Systematic assessment of Morchella using RFLP analysis of the 28S ribosomal RNA gene [J]. Mycologia, 1994, 86(6): 762-772.
    66. Bumett JH. Mycogenetics [M]London: John Wiley & Sons Inc. Press, 1975: 90-94.
    67. Byme M, Murrell JC, Allen B. An integrated genetic linkage map for eucalypts using RFLP, RAPD and isozyme markers [J]. Theor Appl Genet, 1995, 91(6): 869-875.
    68. Casselton LA, Asante-Owusu RN, Banham AH, Kingsnorth CS, Kues U, O'Shea SF, Pardo EH. Mating-type control of sexual development in Coprinus cinereus [J]. Can J Botany, 1995,73 Suppl 1: S266-S272.
    
    69. Casselton LA, Challen MP (1994) Mating type genes of the basidiomycetes. The Mycota I. Growth, Differentiation, and Sexuality. [M]. (Meinhardt F & Wessels JGH, ed), pp. 307-321. Springer-Verlag, Berlin, Germany.
    
    70. Casselton LA, Kues U. The mating type genes of Homobasidiomycetes [M]. [A]. K. Esser PA. Lemke. The Mycota I, Growth, Differentiation and Sexuality. Springer-Verlag, Berlin, Germany. 1994:307-321.
    
    71. Casselton LA, Olesnicky NS. Molecular genetics of mating recognition in basidiomycete fungi [J]. Microbiol Mol Biol Rev, 1998, 62(1): 55-70.
    
    72. Castle AJ, Horgen PA, Anderson JB. Restriction fragment length polymorphisms in the mushroom Agaricus brunnescens and Agaricus bitorquis [J]. Appl Environ Microbiol, 1987, 53(4): 816-822.
    
    73. Chiu SW, Kwan HS, Chang ST. Application of arbitrarily-primed polymerase chain reaction in molecular studies of mushroom species with emphasis on Lentinula edodes [C]. In: Chang ST, Buswell JA, Miles PG (eds.) Genetics and Breeding of Edible Mushrooms. 1993:265-284.
    
    74. Darmono TW, Burdsall HH. Morphological characteristics of incompatibility reactions and evidence for nuclear migration in Armillaria mellea [J]. Mycologia, 1992, 84: 367-375.
    
    75. Day PR. The structure of the A mating type factor in Coprinus lagopus: Wild alleles [J]. Gene Res, 1963,4(3): 323-325.
    
    76. Eugenio CP, Anderson NA. The genetics and cultivation of Pleurotus ostreatus [J]. Mycologia, 1968, 60: 627-634.
    
    77. Feldbrugge M, Kamper J, Steinberg G, Kahmann R. Regulation of mating and pathogenic development in Ustilago maydis [J]. Current Opinion in Microbiology, 2004, 7: 666-672.
    
    78. Ferriol M, Pico B, Nuez F. Genetic diversity of some accessions of Cucurbita maxima from Spain using RAPD and SBAP markers [J]. Genetic Resources and Crop Evolution, 2003, 50 (3) :227-238.
    
    79. Fincham JRS, Day PR. Comparative Genetics and Physiology of Mating Type, In Fungal Genetics [J]. Blackwell Scientific Publications, Oxford, Britain. 1963, 192-216.
    
    80. Fowler TJ, Mitton MF, Rees EI, Raper CA. Crossing the boundary between the Bα and Bβ mating-type loci in Schizophyllum commune [J]. Fungal Genetics and Biology, 2004,41:89-101.
    
    81. Frankel C, Ellingboe AH. Sexual Incompatibility Factors and Somatic Recombination in Schizophyllum commune [J]. Genetics, 1977, 85: 427-437.
    
    82. Fraser JA, Diezmann S, Subaran RL, Allen A, Lengeler KB, Dietrich FS, Heitman J. Convergent evolution of chromosomal sex-determining regions in the animal and fungal kingdoms [J]. PloS Biology, 2004,2(12): e384.
    
    83. Fraser JA, Heitman J. Evolution of fungal sex chromosomes [J]. Mol Microbiol, 2004, 51(2): 299-306.
    
    84. Gen CB. Mating Type in Fungi (Molecular & Organismal Aspects) [J). Plant Pathol Fungal Genet, 2003, 12(3): 26-30.
    
    85. Giasson L, Specht CA, Milgrim C, Novotny CP, Ullrich RC. Cloning and comparison of A alpha mating-type alleles of the Basidiomycete Schizophyllum commune [J]. Molecular and general genetics, 1989, 218, 72-77.
    
    86. Gieser PT, May G Comparison of two b1 alleles from within the A mating-type of the basidiomycete Coprinus cinereus [J]. Gene, 1994,146(1): 167-176.
    
    87. Gillissen B, Bergemann J, Sandmann C. A two-component system for self-non-self recognition in Ustilago maydis [J]. Cell, 1992, 68(5): 647-657.
    
    88. Goutte C, Johnson AD. Yeast al and α2 homeodomain proteins from a DNA-binding activity with properties distinct from those of either protein [J]. J Mol Biol, 1993, 233(3): 359-371.
    
    89. Hajime M, Yasuhiro I, Takashi KA linkage map of the basidiomycete Coprinus cinereus based on random amplified polymorphic DNAs and restriction fragment length polymorphisms [J]. Fungal Genetics and Biology, 2003,40 (11): 93-102.
    
    90. Harlward JA. Use of single primer DNA amplifications in genetic studies of peanut [J]. Pl. Mol. Bio., 1992,18(3): 315-325.
    
    91. Hasebe K. Genetic studies on mutants and agronomic characters in Shiitake, Lentinus edodes [J]. Rept Tottori Mycol Inst (Japan), 1991, 29(1): 1-69.
    
    92. Hubank M, Schatz DG Identifying differences in mRNA expression by representational difference analysis of cDNA [J]. Nucleic Acids Research, 1994, 22(25): 5640-5648.
    
    93. Hu J, Vick BA. Target Region Amplification Polymorphism: A novel marker technique for plant genotyping [J]. Plant Molecular Biology Reporter, 2003, 21: 289-294.
    
    94. Isaya G, Sakati WR, Rollins RA, Shen GP, Hanson LC, Ullrich RC, Novotny CP. Mammalian mitochoridrial intermediate peptidase-structure-function analysis of a new homolog from Schizophyllum commune and relationship to thimet oligopeptidase [J]. Genomics, 1995,28:450-461.
    
    95. Jacobsen KM, Miller OK, Turner BJ. Randomly amplified polymorphic DNA markers are superior to somatic incompatibility tests for discriminating genotypes in natural populations of the ectomycorrhizal fungus Suillus granulatus [J]. Proc Nat Acad Sci USA, 1993,90(19): 9159-9163.
    
    96. James TY, Kues U, Rehner SA, et al. Evolution of the gene encoding mitochondrial intermediate peptidase and its cosegregation with the A mating-type locus of mushroom fungi [J]. Fungal Genet Biol, 2004a, 41(1): 381-390.
    
    97. James TY, Liou SR, Vilgalys R. The genetic structure and diversity of the A and B mating type genes from the tropical oyster mushroom, Pleurotus djamor [J]. Fungal Genetics and Biology, 2004b, 41: 813-825.
    
    98. James TY, Srivilai P, Kues U, Vilgalys R. Evolution of the bipolar mating system of the mushroom Coprinellus disseminatus from its tetrapolar ancestors involves loss of mating-type-specific pheromone receptor function [J]. Genetics, 2006, 172: 1877-1891.
    
    99. Kamper J, Reichmann M, Romeis T. Multiallelic recognition: nonself- dependent dimerization of the bE and bW homeodomain proteins in Ustilago maydis [J]. Cell, 1995,81(1):73-83.
    
    100. Kerrigan RW, Royer JC, Bailer LM. Meiotic behavior and linkage relationships in the secondarily homothallic fungus Agaricus bisporus [J]. Genetics, 1993, 133(2): 225-236.
    
    101. Khush RS, Becker E, Wach M. DNA amplification polymorphisms of the cultivated mushroom Agaricus bisporus [J]. Appl Envion Mcrobiol, 1992, 58(6): 2971- 2977.
    
    102. Kniep H. Uber erbliche Anderungen von Geschlechtsfaktoren bei Pilzen. Z. I. A. V. [J]. 1923,31:170-183.
    
    103. KoltinY. Genetic structure of incompatibility factors-the ABC of sex. In Schwalb M. N. and Miles P.G. (Eds), Genetics and Morphogenesis in the Basidiomycetes [J]. Academic Press, New York. 1978:31-54.
    
    104. Kothe E. Mating-type genes for basidiomycete strain improvement in mushroom farming [J]. Applied Microbiology and Biotechnology, 2001,56: 602-612.
    
    105. Kues U. Life history and developmental processes in the basidiomycete Coprinus cinereus [J]. Microbiol Mol Biol Rev, 2000, 64(3): 316-353.
    106. Kues U, James TY, Vilgalys R~ Challen MP. The chromosomal region containing pab-l, mip, and the A mating type locus of the secondarily homothallic homobasidiomycete Coprinus bilanatus [J]. Curr Genet, 2001, 39(1): 16-24.
    107. Kues U, Rachel NAO, Mutasa ES, Pardo EH, O'Shea SF, Gottgens B, Casselton LA. Two classes of homeodomain proteins specify the multiple A mating types of the mushroom Coprinus cinereus [J]. Plant Cell, 1994a, 6(12): 1467-1475.
    108. Kues U, Tymon AM, Richardson WV, May G, Gieser PT, Casselton LA. A mating type factor of Coprinus cinereus has variable numbers of specificity genes encoding two classes of homeodomain proteins [J]. Mol Gen Genet, 1994b, 245(1): 45-52.
    109. Kues U, Wendy V J, Tymon AM, Mutasa ES, Gottgens B, Gaubatz S, Gregoriades A, Casselton LA. The combination of dissimilar alleles of the Aα and Aβ gene complexes, whose proteins contain homeodomain motifs, determines sexual development in the mushroom Coprinus cinereus [J]. Gene, 1992, 4(5): 568-577.
    110. Kuo CY, Chuo SY, Ling CH, Chen CS, Hseu RS, Huang CT. Cloning and sequence analysis of the glyceraldehydes-3-phosphate dehydrogenase gene in Flammulina velutipes [C]. In: Romaine, Keil, Rinker & Royse (eds. ), Science and Cultivation of Edible and Medicinal Fungi, Penn State, 2004. Penn: Penn State Publishers, 2004: 85-92.
    111. Larraya LM, Alfonso M, Pisabarro AG, Ramirez L. Mapping of genomic regions (Quantitative Trait Loci) controlling production and quality in industrial cultures of the edible basidiomyeete Pleurotus ostreatus [J]. Appl Envion Mcrobiol, 2003, 69(6): 3617-3625.
    112. Larraya LM, Idareta E, Arana D, Ritter E, Pisabarro AG, Ramirez L. Quantitative trait loci controlling vegetative growth rate in the edible basidiomyeete Pleurotus ostreatus [Jl. Appl Envion Mcrobiol, 2002, 68(3): 1109-1114.
    113. Larraya LM, Penas M, Perez G, Santos C, Ritter E, Pisabarro AG, Ramirez L. Identification of incompatibility alleles and characterization of molecular marker genetically linked to the A incompatibility locus in the white rot fungus Pleurotus ostreatus [J]. Curr. Genet. 1999, 34: 486-493.
    114. Larraya LM, Perez G, Iribarren I, Blanco JA, Alfonso M, Pisabarro AG, Ramirez L. Relationship between monokaryotic growth rate and mating type in the edible basidiomycete Pleurotus ostreatus [J]-Appl. Environ. Microbiol., 2001, 67: 3385-3390.
    115. Larraya LM, Perez G, Ritter E Genetic Linkage Map of the Edible Basidiomyeete Pleurotus ostreatus [J]. Appl Environ Mcrobiol, 2000, 66(12): 5290-5300.
    
    116. Lee N, Bakkeren G, Wong K, Sherwood JE, Kronstad JW. The mating-type and pathogenicity locus of the fungus Ustilago hordei spans a 500-kb region [J]. Proc. Natl. Acad. Sci. USA, 1999,96(26): 15026-15031.
    
    117. Lee N, D'Souza CA, Kronstad JW. Of smuts, blasts, mildews, and blights: cAMP signaling in phytopathogenic fungi [J]. Annu Rev Phytopathol, 2003, 41: 399—427.
    
    118. Lee YK, Chang H, Kim JS. Lignocellulolytic mutants of Pleurotus ostreatus induced by gamma ray radiation and their genetic similarities [J]. Rad Phys Chem, 2000, 57(2): 145-150.
    
    119. Lengeler KB, Fox DS, Fraser JA, Allen A, Forrester K, Dietrich FS, and Heitman J. Mating-type locus of cryptococcus neoformans: a step in the evolution of sex chromosomes [J]. Eukaryotic Cell, 2002,1(5): 704-718.
    
    120. Li AZ, Xu XF, Lin FX, Cheng SM, Lin FC. Cloning and identification of partial DNA fragment for the B mating factor in Lentinula edodes using degenerate PCR [J]. World Journal of Microbiology and Biotechonology. 2006, DOI: 10.1007/s11274-006-9239-9
    
    121. Li G, Quiros CF. Sequence-related amplified polymorphism (SRAP), A new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica [J]. Theor Appl Genet, 2001, 103:455-461.
    
    122. Li T, Stark MR, Johnson AD. Crystal structure of the MATallMATa2 homeodomain heterodimer bound to DNA [J]. Science, 1995,270(2): 262-269.
    
    123. Lian CL, Hogetsu T, Matsushita N, et al. Development of microsatellite markers from an ectomycorrhizal fungus, Tricholoma Matsutake, by an ISSR-suppression-PCR method[J]. Mycorrhiza, 2003,13 (1):27-31.
    
    124. Liang Y, Guo LD, Ma KP. Population genetic structure of an ectomycorrhizal fungus Amanita manginiana in a subtropical forest over two years [J]. Mycorrhiza, 2005,15(2):137-142.
    
    125. Lin FC, Wang ZW, Yang XM. Cultivation of the black oak mushroom- Lentinula edodes in China [C]. In: Van Griensen L J L D (eds.), Science and Cultivation of Edible Fungi, Rotterdam, 2000. Rotterdam: Balkema Publishers, 2000: 955-958.
    
    126. Lin X, Kaul S, Rounsley S, Shea TP, Benito M-I, Town CD, Fujii CY, Mason T, Bowman CL, Barnstead M, Feldblyum T, Buell CR, Ketchum KA, Ronning CM, Koo H, Moffat K, Cronin L, Shen M, Pai G, Van Aken S, et al. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana [J]. Nature, 1999, 402:761-768.
    
    127. Lisitsyn N, Lisitsyn N, Wigler M. Cloning the differences between two complex genomes [J]. Science, 1993,259: 946-951.
    
    128. Liu YG, Whittier RF. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking [J]. Genomics, 1995, 25: 674-681.
    
    129. Liu YG, Mitsukawa N, Oosumi T, Whittier RF. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR [J]. The Plant Journal, 1995, 8(3): 457-463.
    
    130. Loftus MG, Lodder SC, Legg EJ. Molecular mushroom breading [C]. In: Elliott T J (ed.), Science and Cultivation of Edible Fungi, Rotterdam, 1995. Rotterdam: Balkema Publishers, 1995: 3-9.
    
    131. Luo Y, Ullrich RC, Novotny CP. Only one of the paired Schizophyllum commune Aα mating-type, putative homeobox genes encodes a homeodomain essential for Aα-regulated development [J]. Mol Gen Genet, 1994, 244(2): 318-324.
    
    132. Magae Y, Novotny CP, Ullrich RC. Interaction of the Aa Y and Z mating-type homeodomain proteins of Schizophyllum commune by the two-hybrid system [J]. Biochem Biophys Res Commu, 1995,211(10): 1071-1076.
    
    133. May G, Chevanton LLe, Pukkila PJ. Molecular analysis of Coprinus cinereus mating type-A factor demonstrates an unexpectedly complex structure [J]. Genetics, 1991, 128(7): 529-538.
    
    134. May G, Matzke E. Recombination and variation at the A mating-type of Coprinus cinereus [J]. Molecular Biology and Evolution, 1995,12: 794-802.
    
    135. Miles PG, Chang ST. Application of biotechnology in strain selection and development of edible mushrooms [J]. Asean Food J, 1986,2: 3-10.
    
    136. Miles PG, Chang ST. The collection and conservation of genes of Lentinus [J]. Proc. In Sym: Scientific and technical Aspects of Cultivating Edible Fungi. Amsterdam: Elsevier Science Publisher, 1987: 227-232.
    
    137. Miyazaki Y, Nakamura M, Babasaki K. Molecular cloning of developmentally specific genes by representational difference analysis during the fruiting body formation in the basidiomycete Lentinula edodes [J]. Fungal Genetics and Biology, 2005,42:493-505.
    
    138. Molina FI, Shen P, Jong SH. Molecular evidence supports the separation of Lentinula edodes from Lentinus and related genera [J]. Can J Bot, 1992, 70(8): 2446-2452.
    
    139. Mori K, Zennyozi A, Kugimiya N. Analysis of the incompatibility factors in natural population of Lentinus edodes [J]. Jap J Genet, 1972,47(5): 359
    140. Muraguchi H, Kamada T. The ich1 gene of the mushroom Coprinus cinereus is essential for pileus formation in fruiting [J]. Development, 1998, 125(16): 3133-3141.
    141. Olson M, Hood L, Cantor C, Botstein D. A common language for physical mapping of the human genome [Jl. Science Washington D C, 1989, 254: 1434-1435.
    142. Palmer GE, Horton JS. Mushrooms by magic: making connections between signal transduction and fruiting body development in the basidiomycete fungus Schizophyllum commune [J]- FEMS Microbiol Lett, 2006, doi: 10.1111/j. 1574-6968. 2006.00341.x
    143. Papazian HP. The incompatibility factors and related gene in Schizophyllum commune [J]. Genetics, 1951, 36(3): 441-459.
    144. Paran I, Michelmore RW. Develeopment of reliable PCR-based markers linked to downy mildew resistance genes in Lettuc [J]. Theor Appl Genet, 1993, 85: 985-993.
    145. Pukkila-Worley R, Alspaugh JA Cyclic AMP signaling in Cryptococcus neoformans [J]. FEMS Yeast Res, 2004, 4: 361-367.
    146. Qin LH, Tan Q, Chen M J, Pan YJ. Use of intersimple sequence repeats markers to develop strain-specific SCAR marker for Lentinula edodes [J]. FEMS Microbiol Lett, 2006, 257: 112-116.
    147. Ramirez L, Muez V, Alfonso M. Use of molecular markers to differentiate between commercial strains of the button mushroom Agaricus bisporus [J]. FEMS Microbiol Lett, 2001, 198(1): 45-48.
    148. Raper CA. Sexuality and breeding. In: Chang ST, Hayes WA.(Eds), The Biology and Cultivation of Edible Mushroom[M]. Academic Press, New York, San Francisco, London, 1978: 83-117.
    149. Raper JR. Genetics of Sexuality in Higher Fungi [M]. 1966. Ronald Press, New York
    150. Raper JR, Baxter MG, Ellingboe AH. The genetic structure of the incompatibility factors of Schizophyllum commune: the A factor[J]. Proc.Natl.Acad Sci. USA. 1960, 46: 833-842.
    151. Raper JR, Krongelb GS, Baxter MG. The number and distribution incompatibility factors in Schizophullum commune [J]. A mer Nat. 1958, 92: 221-232.
    152. Raper JR, Raper CA. Genetics regulation of sexual morphologenesis in Schizophyllum commune [J]. J. Elisha Mitchell Sci Soc, 1968, 84(3): 267-273.
    153. Rieseberg LH. Homology among RAPD fragments in interspecific comparisons [J]. Mol. Ecol., 1996, 5(1): 99-105.
    154. Riquelme M, Challen MP, Casselton LA, Brown AJ. The origin of multiple B mating specificities in Coprinus cinereus [J]. Genetics, 2005 (Published Articles Ahead of Print, published on May 6, 2005 as 10.1534/genetics. 105.040774)
    155. Ruiters MHJ. Expression of Dikaryon specific mRNAs of Schizophyllum commune in relation to incompatibility genes, light, and fruiting [J]. Exper Mycol, 1988, 12(1): 60-69.
    156. Sagawa I, Moriyama Y, Yanagi SO. Rapid discrimination of mitochondria DNA type and use of results to study mitochondria inheritance in Pleurotus spp [J]. Biosci biotechnol Biochem, 1998, 62(4): 769-772.
    157. Schulz B, Banuett BF, Dahl M. The b alleles of U maydis, whose combinations program pathogenic development code for polypeptides containing a homeodomian-related motif [J]. Cell, 1990, 60(2): 295-306.
    158. Scott MP, Tamkun JW, Hartzell GW. The structure and function of the homeodomain [Jl. Biochem Biophys Acta, 1989, 989(1): 25-48.
    159. Shen GP, Park DC, Ullrich RC. Cloning and characterization of a Schizophyllum gene with Aβ6 mating-type activity [Jl. Curt Genet, 1996, 29(1): 136-142.
    160. Sonnerberg AS, de Groot PW, Schaap PJ. Isolation of expressed sequence tags of Agaricus bisporus and their assignment to chromosomes [J]. Appl Environ Microbiol, 1996, 62(12): 4542-4547.
    161. Specht CA. Isolation of the Ba and Bβ mating-type loci of Schizophyllum commune [JI. Current Genetics, 1995, 28:374-379.
    162. Specht CA, Stankis M, Giasson L, Novotny CP, Ullrich RC. Functional analysis of the homeodomain related proteins of the Aα locus Schizophyllum commune [J]. Proc Natl Acad Sci USA, 1992, 89(11): 7174-7178.
    163. Stankis MM, Specht CA, Yang H, Giasson L, Ullrich RC, Novotny CP. The Aα mating locus of Schizophyllum commune encodes two dissimilar multiallelic homeodomain proteins [J]. Proc Natl Acad Sci USA, 1992, 89(11): 7169-7173.
    164. Takemaru T. Genetically studies on fungi Ⅸ: The mating system in Lentinus edodes [J]. Rept Tottori Mycol Inst, 1961, 7(1): 61-68.
    165. Takemaru T, Suzuki M, Mgaki N. Isolation and genetic of auxotrophic mutants in Flammuliua velutipes [J]. Trans Mycol Soc Japan, 1995, 36(1): 152-157.
    166. Tanaka A, Miyazaki K, Murakami H, Shiraishi S. Sequence characterized amplified region markers tightly linked to the mating factors of Lentinula edodes [J].. Genome, 2004, 47:156-16.
    167. Terashima K, Matsnmoto T, Hayashi E, Fuknmasa-Nakai. Y. A genetic map of Lentinula edodes (shiitake), based on AFLP markers [J]. Mycol Res, 2002, 106(8): 911-917.
    168. Tokimoto K, Komastsu M, Takemaru T. Incompatibility factors in natural population of Lentinus edodes in Japan [J]. Rept Tottori Mycol Inst, 1973, 10(4): 371-376.
    169. Tymon AM, Kues U, Richardson WVJ. A fungal mating type protein that regulates sexual and asexual development contains a POU-related domain [J]. EMBO J, 1992, 11(6): 1805-1813.
    170. Vaillancourt IJ, Raudaskoski M, Spetch CA. Multiple genes encoding pheromones and a pheromone receptor define the BR1, mating-type specificity in Schizophyllum commune [J]. Genetics, 1997, 146: 541-551.
    171. Vos P, Hogers R, Bleeker M et al. AFLP: a new technique for DNA fingerprinting [J]. Nucleic Acids Research, 1995, 23 (21): 4407-4414.
    172. Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers [J]. Nuc Acid Res, 1990, 18: 7213-7218.
    173. Wendland J, Vaillancourt LJ, Iegner B. The mating-type locus Bat of Schizophyllum commune contains a pheromone-receptor and putative pheromone genes [J]. EMBO J, 1995, 14(18): 5271-5278.
    174. Whitehouse HLK. Multiple-allelomorph heterothaUism in the fungi [J]. Lbw Phytol, 1949, 48(2): 212-244.
    175. Williams TGK, Kubelik AR, Livak KJ, et al. DNA polymorphism amplified by arbitrary primers are useful as genetic markers [J]. Nucleic Acids Res, 1990, 18: 6531-6535.
    176. Wu J, Ullrich RC, Novotny CP. Regions in the Z5 mating gene of Schizophyllum commune involved in Y-Z binding and recognition [J]. Mol Gen Genet, 1996, 252(5): 739-745.
    177. Xu J, Kerrigan RW, Horgen PA. Localization of the mating type gene in Agaricus bisporus [J]. Appl Environ Microbiol, 1993, 59(7): 3044-3049.
    178. Yan PS, Jiang J H. Preliminary research of the RAPD molecular marker-assisted breeding of the edible basidiomycete Stropharia rugoso-annulata [J]. World Journal of Microbiology and Biotechnology, 2005, 21: 559-563.
    179. Yee AR, Kronstad JW. Construction of Chimerical alleles with altered specificity at the incompatibility locus of Ustilago rnaydis [J]. Proc Natl Acad Sci USA, 1993, 90(3): 664-668.
    180. Yokoyama E, Yamagishi K, Hara A. Development of a PCR-based mating-type assay for Clavicipitaceae [J]. FEMS Microbiology Letters, 2004,237:205-212.
    
    181. Yue C, Osier M, Novotny CP. The specificity determinant of the Y mating-type proteins of Schizophyllum commune is also essential of Y-Z protein binding [J]. Genetics, 1997,145(1): 253-260.
    
    182. Zeng R, Liu ZT. Inactivated protoplast electro-fusion of edible mushrooms and characterization of intergeneric fusion products [C]. In: Broderick, A.J. and Nair N.G (eds), Abstracts of 3rd International Conference of Mushroom Biology and Mushroom Products, Sydney, 1999. Sydney: University of Western Sydney Hawkesbury, 1999: 51-56.
    
    183. Zhao J, Chang ST. Monokaryotization by protoplast heterothallic species of edible mushroom [J]. World J Microbiol Biotech, 1993,9(5): 538-543.
    
    184. Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification [J]. Genomes, 1994, 20:176-183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700