细胞质雄性不育水稻包穗的激素调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞质雄性不育(Cytoplasmic male sterile,CMS)水稻是生产杂交种过程中广泛应用的不育系。CMS水稻普遍存在包穗问题,包穗是指倒一节间(穗下第一节间)伸长不足而导致穗子不能完全抽出倒一叶的叶鞘。包穗会引起作为母本的CMS水稻不能正常接受花粉,从而使杂交制种产量大幅度下降。
     目前为止,包穗的分子和生理机制还不清楚。本文利用广为应用的CMS水稻珍汕97A(Zhenshan 97A,ZS97A)及其保持系珍汕97B(Zhenshan 97B,ZS97B)作为实验材料,从分子和生理水平对CMS水稻包穗的原因进行了研究。
     在本试验中,我们比较分析了ZS97A和ZS97B穗分化及节间伸长的差异。结果显示:在ZS97A花粉败育之前,ZS97A和ZS97B幼穗分化和节间伸长都没有明显的差异;而伴随着花粉发育受阻至花粉败育之后,ZS97A的节间伸长速率下降,最终导致倒一节间缩短而引起包穗。
     内源激素分析揭示,ZS97A倒一节间中赤霉素A1(Gibberellin A1,GA_1)的含量只有ZS97B倒一节间中GA_1含量的三分之一左右。在抽穗早期,施用外源GA_1能够促进ZS97A倒一节间伸长,从而能解除包穗;而且,施用赤霉素合成抑制剂烯效唑(Uniconazole)能够抑制ZS97B倒一节间伸长,致使倒一节间缩短引起包穗。这些结果提示了GA_1控制着水稻倒一节间伸长生长,GA_1的亏缺是导致ZS97A倒一节间缩短的原因。
     植物体中活性赤霉素的水平不仅受控于合成还受控于钝化。为了找出ZS97A倒一节间缺乏GA_1的原因,我们分析了赤霉素合成及其钝化途径中一些关键基因的表达水平。结果表明:在整体植株中,ZS97A和ZS97B倒一节间中OsGA2ox1(促使活性赤霉素钝化)表达水平没有差异;然而,ZS97A倒一节中OsGA3ox2表达水平显著降低。这些结果暗示了ZS97A倒一节中GA_1的亏缺很有可能是OsGA3ox2表达水平下降,导致赤霉素合成最后一个步骤受阻引起的。
     为了找出ZS97A花粉败育与倒一节间亏缺GA_1的关系,我们分析了穗子及其倒一节间中内源吲哚乙酸(Indole-3-acetic acid,IAA)的含量。结果表明ZS97A的穗子和倒一节间中的IAA含量都显著低于ZS97B相应部位的IAA含量。生长素极性运输抑制剂2,3,5-三碘苯甲酸(2,3,5-triiodobenzoic acid,TIBA)能够显著抑制穗中IAA向倒一节间运输,从而导致倒一节间IAA含量显著下降,并且引起GA_1含量及倒一节伸长速率的下降;去顶(去除穗子)处理能够阻断穗中IAA向倒一节间的运输,导致倒一节间中IAA含量大幅度下降,也引起GA_1的含量及其倒一节间伸长速率的下降。上述结果提示,倒一节间中的IAA主要由穗中IAA极性运输而来,穗源IAA是倒一节间正常伸长所必需的。ZS97A倒一节间GA_1的亏缺可能是由穗源IAA亏缺引起的。
     进一步分析了GA_1和穗源IAA在调控倒一节间伸长生长中的相互关系。去顶处理引起倒一节间中IAA含量下降,并引起OsGA3ox2表达水平下降以及OsGA2ox1表达水平上升,致使GA_1含量下降;在去顶的切口处补充外源IAA能够促进倒一节间中OsGA3ox2表达并抑制OsGA2ox1表达,从而提高GA_1含量。这一结果揭示:穗中IAA极性运输至倒一节间中,通过上调OsGA3ox2并下调OsGA2ox1的表达水平,来维持较高水平的GA_1,从而调控倒一节间正常的伸长生长。
     我们还探讨了ZS97A穗中IAA亏缺的可能原因,结果表明:在花粉发育时期以及抽穗期,ZS97A穗中IAA氧化酶的活性都显著高于同时期ZS97B穗中IAA氧化酶的活性,暗示着ZS97A穗中IAA氧化酶活性的升高是导致穗中IAA亏缺的原因之一。
Cytoplasmic male sterile (CMS) lines are widely used in hybrid rice seed production. However, most of the CMS lines suffer from panicle enclosure. Panicle enclosure means that the panicle is partly or fully enclosed within the flag leaf sheath, which blocks normal pollination and greatly reduces seed production of hybrid rice seed.
     Up to now, the cause of panicle enclosure is still unclear. In this study, Zhenshan 97A (ZS97A), a widely used CMS line, and its maintainer line Zhenshan 97B (ZS97B) were used to investigate the cause of panicle through molecular and physiological methods
     In this study, we compared differences in panicle differentiation and internode elongation between ZS97A and ZS97B. Our result indicated that, before ZS97A pollen abortion, no difference in panicle differentiation and internode elongation between ZS97A and ZS97B was observed. But after the abortion, the development of ZS97A pollen was impaired and the elongation rate decreased, leading to panicle enclosure by shortening the uppermost internode (UI) length.
     Analysis result of endogenous hormone indicated that gibberellin A1 (GA_1) level in ZS97A UI was only one-third of that in ZS97B UI. At the early heading stage, exogenous GA_1 application could eliminate panicle enclosure in ZS97A by promoting UI elongation, while exogenous uniconazole (GA biosynthesis inbhibitor) application could cause panicle enclosure in ZS97B by shortening the UI length. These results suggested that GA_1 plays an important role in UI elongation, and that GA_1-deficiency is the caused of panicle enclosure in ZS97A.
     Active GA level in plant was regulated not only by biosynthesis but also by catabolism. In order to find out the caused of GA_1-deficiency in ZS97A UI, expression levels of some genes involving in GA metabolism pathway were observed. The result showed that, in intact plant, no difference of OsGA2ox1 (converts bioactive GA to inactive GA) transcript level was detected between ZS97A and ZS97B UI, but, OsGA3ox2 transcript level in ZS97A UI decreased obviously. This result suggested that GA_1-deficiency in ZS97A UI might be resulted from the impaired GA biosynthesis by down-regulating OsGA3ox2 transcript level.
     In order to find out the relationship between ZS97A pollen abortion and GA_1-deficeciency in UI, Indole-3-acetic acid (IAA) level in panicle and UI was analyzed. Our result indicated that IAA level in panicle and UI of ZS97A was much lower than that of ZS97B. Treatment of auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA) could inhibited IAA transport from panicle to UI, which caused a strong decrease in IAA level in UI, leading to decreases in GA_1 level and in UI elongation rate. Decapitation (remove the panicle) could inhibit IAA transport from panicle to UI completely, which caused a significant decrease in IAA level in UI, leading to significant decreases in GA_1 level and in UI elongation rate. These results indicated that IAA in UI is mainly transported from panicle, and suggested that IAA-deficiency might be the cause of GA_1-deficiency in ZS97A UI.
     Moreover, we analyzed the relationship between IAA and GA_1 in regulation of UI elongation. Decapitation caused a decrease in IAA level in UI, which led to down-regulation of OsGA3ox2 and up-regulation of OsGA2ox1, resulting in a decrease of GA_1 level. In decapitated plant, exogenous IAA application could up-regulate OsGA3ox2 transcript level and down-regulated OsGA2oxl transcript level, leading to an increasing in GA_1 level.
     In this study, we also analyzed IAA oxidase activity. The result indicated that, IAA oxidase activity in ZS97A panicle was much higher than that in ZS97B panicle either at pollen development stage or at heading stage. This result suggested that higher IAA oxidase activity might be contributed to IAA-deficiency in ZS97A panicle.
引文
1 颜龙安主编(1999)杂交水稻繁制学.中国农业出版社出版p9-11.
    2 袁隆平(1999)杂交水稻选育的回顾、现状与展望.中国稻米4:3-6.
    3 Sabar M, Akhter M (2003) Evaluation of rice germplasm for the development of hybrid rice. Asian J Plant Sci 2:1195-1197.
    4 Yang RC, Huang RH, Zhang QQ, Zhang SB, Liang KJ (2000) Developing eui-cytoplasmic male sterile lines and applying them in hybrid rice breeding. IRRN 25:11-12.
    5 Gangashetti MG, Jena KK, Shenoy VV, Freeman WH (2004) Inheritance of elongated uppermost internode and identification of RAPD marker linked to eui gene in rice. Curr Sci 87: 469-475.
    6 Tamura S (1990) Historical Aspects of Gibberellins In: Gibberellins, Takahashi N, Phinney BO, Macmillan J (ed) Springer, New York Berlin Heidelberg London p1-8.
    7 Ingram TJ, Reid JB, Murfet IC, Gaskin P, Willis CL, MacMillan J (1984) Internode length in Pisum. The Le gene controls the 3β-hydroxylation of gibberellin A20 to gibberellin Al. Planta 160: 455-463.
    8 Zeevaart JAD (1983) Gibberellins and flowering. In: A Crozier, ed. The Biochemistry and. Physiology of Gibberellins, New York: Praeger 2: 333-374.
    9 Rood SB, Mandel R, Pharis RP (1989) Endogenous Gibberellins and Shoot Growth and Development in Brassica napus. Plant Physiol 89: 269-273.
    10 Bensen RJ, Beall FD, Mullet JE, Morgan PW (1990) Detection of Endogenous Gibberellins and Their Relationship to Hypocotyl Elongation in Soybean Seedlings. Plant Physiol 94: 77-84.
    11 Ross JJ (1998) Effects of auxin transport inhibitor on gibberellins in pea. J Plant Growth Regul 17: 141-146.
    12 Wolbang CM, Ross JJ (2001) Auxin promotes gibberellin biosynthesis in decapitated tobacco plants. Planta 214: 153-157.
    13 Wolbang CM, Chandler PM, Smith JJ, Ross JJ (2004) Auxin from the developing inflorescence is required for the biosynthesis of active gibberellins in barley stems. Plant Physiol 134: 769-776.
    14 Ross JJ, O'Neill DP, Rathbone DA (2003) Auxin-gibberellin interactions in pea: Intergrating the old with the new. J Plant Growth Regul 22: 99-108.
    15 Ross JJ, O'Neill DP, Wolbang CM, Symons GM, Reid JB (2002) Auxin-gibberellin interactions and their role in plant growth. J Plant Growth Regul 20: 346-353.
    16 袁隆平,陈烘新著(1988)杂交水稻育种栽培学.湖南科学技术出版社 p79.
    1 潘瑞炽主编(2001)植物生理学(第四版).高等教育出版社.P169.
    2 Sauter M, Kende H (1992) Gibberellin-induced growth and regulation of the cell division cycle in deepwater rice. Planta 188: 362-368.
    3 Asahina M, Iwai H, Kikuchi A, Yamaguchi S, Kamiya Y, Kamada H, Satoh S (2002) Gibberellin produced in the cotyledon is required for cell division during tissue reunion in the cortex of cut cucumber and tomato hypocotyls. Plant Physiol 129: 201-210.
    4 Yang T, Davies PJ, Reid JB (1996) Genetic dissection of the relative roles of auxin and gibberellin in the regulation of stem elongation in intact light-grown peas. Plant Physiol 110:1029-1034.
    5 Cowling RJ, Harberd NP (1999) Gibberellins control Arabidopsis hypocotyl growth via regulation of cellular elongation. J Exp Bot 50: 1351-1357.
    6 Masuda Y (1969) Auxin-induced cell expansion in relation to cell wall extensibility. Plant Cell Physiol 10: 1-9.
    7 Yanagishima N, Shimoda C (1968) Auxin-induced expansion growth of cells and protoplasts of yeast. Physiol Plant 21:1122-1128.
    8 Nooden LD (1968) Studies on the role of RNA synthesis in auxin induction of cell enlargement. Plant Physiol 43: 140-150.
    9 Masuda Y, Wada S (1966) Requirement of RNA for the auxin-induced elongation of oat coleoptile. Physiol Plant19: 1055-1063.
    10 Huizen RV, Ozga JA, Reinecke DM (1996) Influence of auxin and gibberellin on in vivo protein synthesis during early pea fruit growth. Plant Physiol 112: 53-59.
    11 Ross JJ (1998) Effects of auxin transport inhibitor on gibberellins in pea. J Plant Growth Regul 17: 141-146.
    12 Wolbang CM, Ross JJ (2001) Auxin promotes gibberellin biosynthesis in decapitated tobacco plants. Planta 214: 153-157.
    13 Ross JJ, O'Neill DP, Wolbang CM, Symons GM, Reid JB (2002) Auxin-gibberellin interactions and their role in plant growth. J Plant Growth Regul 20: 346-353.
    
    14 Wolbang CM, Chandler PM, Smith JJ, Ross J J (2004) Auxin from the developing inflorescence is required for the biosynthesis of active gibberellins in barley stems. Plant Physiol 134:769-776.
    15 Kende H, Knaap EVD, Cho H-T (1998) Deepwater rice: A model plant to study stem elongation. Plant Physiol 118:1105-1110.
    16 Lee S, Cheng H, King KE, Wang W,He Y, Hussain A, Lo J, Harberd NP, Peng Jinrong (2002) Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Plant Physiol 16: 646-658.
    17 Bultynck L, Lambers H (2004) Effects of applied gibberellic acid and paclobutrazol on leaf expansion and biomass allocation in two Aegilops species with contrasting leaf elongation rates. Physiol Plant 122: 143-151.
    18 Lange T (1998) Molecular biology of gibberellin synthesis. Planta 204: 409-419.
    19 Singh DP, Jermakow AM, Swain SM (2002) Gibberellins are required for seed development and pollen tube growth in Arabidopsis. Plant Cell 14: 3133-3147.
    20 Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K (2004) dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. Plant J 37: 720-729.
    21 Fu X, Richards DE, Fleck B, Xie D, Burton, N, Harberd NP (2004) The Arabidopsis mutant sleepyl~(gar2-1) protein promotes plant growth by increasing the affinity of the SCF~(SLY1) E3 ubiquitin ligase for DELLA protein substrates. Plant Cell 16: 1406-1418.
    22 Hiatt AJ, Evans HJ (1960) Influence of Certain Cations on Activity of Acetic Thiokinase from Spinach Leaves. Plant Physiol 35: 673-677.
    23 Clinkenbeard KD, Sugiyama T, Moss J, Reed WD, Lane MD (1973) Molecular and catalytic properties of cytosolic acetoacetyl coenzyme A thiolase from avian liver. J Biol Chem 248: 2275-2284.
    24 Clinkenbeard KD, Sugiyama T, Reed WD, Lane MD (1975) Cytoplasmic 3-hydroxy-3-methylglutaryl coenzyme A synthase from liver. Purification, properties, and role in cholesterol synthesis. J Biol Chem 250: 3124-3135.
    25 Peter H (1999) Recent advances in gibberellins biosynthesis. J Exp Bot 50: 553-563.
    26 Schwender J, Seemann M, Lichtenthaler HK, Rohmer M (1996) Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus. Biochem J 316:73-80.
    27 Lichtenthaler HK, Rohmer M, Schwender J (1997) Two independent biochemical pathways for isopentenyl diphosphate biosynthesis in higher plants. Physiol Plant 101: 643-652.
    28 Hedden P, Proebsting WM (1999) Genetic analysis of gibberellin biosynthesis. Plant Physiol 119: 365-370.
    29 Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S (2003) Gibberellin Biosynthesis and Response during Arabidopsis Seed Germination. Plant Cell 15:1591-1604.
    30 Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K (2004) dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. Plant J 37: 720-729.
    31 Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Agrawal GK, Takeda S, Abe K, Miyao A, Hirochika H, Kitano H, Ashikari M, Matsuoka M (2004) An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol 134: 1642-1653.
    32 Srivastava LM (2002) Plant Growth and Development (Hormones and Environment) In; Gibberellins, Srivastava LM (ed) Academic Press p171 -190.
    33 Sun T-P, Kamiya Y (1994) The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis. Plant Cell 6: 1509-1518.
    34 Thomas SG, Sun T-P (2004) Update on gibberellin signaling. A tale of the tall and the short. Plant Physiol 135: 668-676.
    35 Yamaguchi S, Sun T-P, Kawaide H, Kamiya Y (1998) The GA2 locus of Arabidopsis theliana encodes ent-kaurene synthase of gibberellin biosynthesis. Plant Physiol 116:1271-1278.
    36 Helliwell CA, Poole A, Peacock WJ, Dennis ES (1999) Arabidopsis ent-kaurene oxidase catalyzes three steps of gibberellin biosynthesis. Plant Physiol 119: 507-510.
    37 Yamaguchi S (2006) Gibberellin biosynthesis in Arabidopsis. Phytochem Rev 5: 39-47.
    38 Huang S, Raman AS, Ream JE, Fujiwara H, Cerny RE, Brown SM (1998) Overexpression of 20-oxidase confers a gibberellin-overproduction phenotype in Arabidopsis. Plant Physiol 118: 773-781.
    39 Zhu Y, Nomura T, Xu Y, Zhang Y, Peng Y, Mao B, Hanada A, Zhou H, Wang R, Li P, Zhu X, Mander LN, Kamiya Y, Yamaguchi S, He Z (2006) ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell 18: 442-456.
    40 Schomburg FM, Bizzell CM, Lee DJ, Zeevaart JAD, Amasino RM (2003) Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. Plant Cell 15:151-163.
    41 Sakamoto T, Kobayashi M, Itoh H, Tagiri A, Kayano T, Tanaka H, Iwahori S, Matsuoka M (2001) Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. Plant Physiol 125: 1508-1516.
    42 Peng J, Carol P, Richards DE, King KE, Cowling RJ, Murphy GP, Harberd NP (1997) The Arabidopsis GAI gene defines a signalling pathway that negatively regulates gibberellin responses. Genes Dev 11:3194-3205.
    43 Silverstone AL, Ciampaglio CN, Sun T-p (1998) The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell 10: 155-169.
    44 Dill A, Sun T-p (2001) Synergistic de-repression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana. Genetics 159: 777-785.
    45 Peng J, Harberd NP (2002) The role of GA-mediated signalling in the control of seed germination. Curr Opin Plant Biol 5: 376-381.
    46 Thomas S, Sun T-p (2004) Update on gibberellin signaling. A tale of the tall and the short. Plant Physiol 135:668-676.
    47 Pysh LD, Wysocka-Diller JW, Camilleri C, Bouchez D, Benfey PN (1999) The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J 18:111-119.
    48 Silverstone AL, Mak PYA, Casamitjana Martinez E, Sun T-p (1997) The new RGA locus encodes a negative regulator of gibberellin response in Arabidopsis thaliana. Genetics 146: 1087-1099.
    49 Wen C-K, Chang C (2002) Arabidopsis RGL1 encodes a negative regulator of gibberellin responses. Plant Cell 14: 87-100.
    50 Dill A, Jung H-S, Sun T-p (2001) The DELLA motif is essential for gibberellin-induced degradation of RGA. Proc Natl Acad Sci USA 98: 14162-14167.
    51 Sun T-p (2000) Gibberellin signal transduction. Cuur Opin Plant Biol 3: 374-380.
    52 Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Matsuoka M, Yamaqguchi J (2001) slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the Height-regulating gene GAI/RGA/RHT/D18. Plant Cell 13: 999-1010.
    53 Mcginnis KM, Thomas SG, Soule JD, Strader LC, Zale JM, Sun T-p, Steber CM (2003) The Arabidopsis SLEEPY1 gene encodes a putative F-Box subunit of an SCF E3 Ubiquitin ligase. Plant Cell 15: 1120-1130.
    54 Fu X, Richards DE, Fleck B, Xie D, Burton N, Harberd NP (2004) The Arabidopsis mutant sleepyl~(gar2-1) protein promotes plant growth by increasing the affinity of the SCF~(SLY1) E3 Ubiquitin ligase for DELLA protein substrates. Plant Cell 16:1406-1418.
    55 Dill A, Thomas SG, Hu J, Steber CM, Sun T-p (2004) The Arabidopsis F-Box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation. Plant Cell 16: 1392-1405.
    56 Bleecker AB, Schuette JL, Kende H (1986) Anatomical analysis of growth and developmental patterns in the internode of deepwater rice. Planta 169: 490-497.
    57 Lorbiecke R, Sauter M (1998) Induction of cell grown and cell division in the intercalary meristem of submerged deepwater rice (Oryza Sativa L.). Planta 204:140-145.
    58 Sauter M, Seagull RW, Kende H. 1993. Internodal elongation and orientation of cellulose microfibrils and microtubules in deep-water rice. Planta 190: 354-362.
    59 季兰,杨仁催(2002)水稻茎伸长生长与植物激素.植物学通报 19(1):109-115.
    60 Potter L, Fry SC (1993) Xyloglucan endotransglycosylase activity in pea internodes. Plant Physiol 103: 235-241.
    61 Uozu S, Tanaka-Ueguchi M, Kitano H, Hattori K, Matsuoka M (2000) Characterization of XET-related genes of rice. Plant Physiol 122: 853-859.
    62 Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407 (6802): 321-324.
    63 Cho HT, Kende H (1997) Expression of expansin genes is correlated with growth in deepwater rice. Plant Cell 9: 1661-1667.
    64 苑博华,廖祥儒,郑晓洁,吴立峰,赵慧(2005) 吲哚乙酸在植物细胞中的代谢及其作用.生物学通报 40(4):21-23.
    65 Cohen JD, Slovin JP, Hendrickson AM (2003) Two genetically discrete pathways convert tryptophan to auxin: more redundancy in auxin biosynthesis. Trends Plant Sci 8: 197-199.
    66 Baldi BG, Maher BR, Slovin JP, Cohen JD (1991) Stable isotope labeling, in vivo, of d- and 1-tryptophan pools in Lemna gibba and the low incorporation of label into indole-3-acetic acid. Plant Physiol. 95: 1203-1208.
    67 Wright AD, Moehlenkamp CA, Perrot GH, Neuffer MG, Cone KC (1992) The maize auxotrophic mutant orange pericarp is defective in duplicate genes for tryptophan synthase beta. Plant Cell 4: 711-719.
    68 Normanly J, Cohen JD, Fink GR (1993) Arabidopsis thaliana auxotrophs reveal a tryptophan-independent biosynthetic pathway for indole-3-acetic acid. Proc Natl Acad Sci USA 90: 10355-10359.
    69 Radwanski ER, Barczak AJ, Last RL (1996) Characterization of tryptophan synthase alpha subunit mutants of Arabidopsis thaliana. Mol Gen Genet 253: 353-361.
    70 Woodward AW, Bartel B (2005) Auxin: Regulation, Action, and Interaction. Ann Bot 95: 707-735.
    71 王冰,李家洋,王永红 (2006) 生长素调控植物株型形成的研究进展.植物学通报 23(5):443-458.
    72 Romano CP, Robson PR, Smith H, Estelle M, Klee H (1995) Transgene-mediated auxin overproduction in Arabidopsis: hypocotyl elongation phenotype and interactions with the hy6-1 hypocotyl elongation and axr1 auxin-resistant mutants. Plant Mol Biol 27: 1071-1083.
    73 Ross J J, O'Neill DP, Rathbone DA (2003) Auxin-gibberellin interactions in pea: Intergrating the old with the new. J Plant Growth Regul 22: 99-108.
    74 李宗霆,周燮 (1996) 植物激素及其免疫检测技术.江苏科学技术出版社.P43-46.
    75 Hoson T, Masuda Y, Sone Y, Misaki A (991) Xyloglucan Antibodies Inhibit Auxin-Induced Elongation and Cell Wall Loosening of Azuki Bean Epicotyls but Not of Oat Coleoptiles. Plant Physiol 96:551-557.
    76 Maclachlan GA (1977) In: Pilet PE ed. Plant Growth Regulation. Springer-Verlag, Berlin, p. 13-20.
    77 Fry SC (1989) Cellulases, hemicelluloses and auxin-stimulated growth: a possible relationship. Physiol Plant 75: 532-536.
    78 Wakabayashi K, Sakurai N, Kuraishi S (1991) Differential Effect of Auxin on Molecular Weight Distributions of Xyloglucans in Cell Walls of Outer and Inner Tissues from Segments of Dark Grown Squash (Cucurbita maxima Duch.) Hypocotyls. Plant Physiol 95: 1070-1076.
    79 潘瑞炽,董愚得编著 (1999) 植物生理学(第三版).高等教育出版社 p188-189.
    80 Hoffmann-Benning S, Kende H (1992) On the role of abscisic acid and gibberellin in the regulation of growth in rice. Plant Physiol 99:1156-1161.
    81 宋平,高胜红,曹显祖,谢迎兰 (1998) 不同籼稻品种的矮生性与内源ABA水平及其结合蛋白的关系.西北植物学报 18(3):380-385.
    82 Romano CP, Cooper ML, Klee HJ (1993) Uncoupling auxin and ethylene effects in transgenic tobacco and arabidopsis plants. Plant Cell 5: 181-189.
    83 Suge H, Tokairin H (1982) Plant response to wind as affected by genetic backgrounds in rice plants. Japan Jour Crop Sci 51(3): 380-385.
    84 Meudt WJ (1987) In: Fuller G, Nes WD ed. Ecology and Metabolism of Plant Lipids. ACS Symp Series 325: p53-75.
    85 Sasse JM (1990) Brassinolide-induced elongation and auxin. Physiol Plant 80: 401-408.
    86 Zurek DM, Rayle DL, McMorris TC, Clouse SD (1994) Investigation of gene expression, growth kinetics, and wall extensibility during brassinosteroid-regulated stem elongation. Plant Physiol 104: 505-513.
    87 Mandava NB (1988) Plant growth-promoting brassinosteroids. Ann Rev Plant Physiol &. Plant Mol Biol 39:23-52.
    88 Mandava. NB, Thompson MJ, Yopp JH (1987) Effects of selected putative inhibitors of RNA and protein synthesis on brassinosteroid-induced growth in mung bean epicotyls. J Plant Physiol 128: 63-68.
    1 Sabar M, Akhter M (2003) Evaluation of rice germplasm for the development of hybrid rice. Asian J Plant Sci 2:1195-1197.
    2 张启发 (2005) 绿色超级稻培育的战略设想.作物育种信息 11:1-2.
    3 杨伟文,贺明刚 (2007) 杂交水稻种子市场营销现状及对策.杂交水稻 22(1):6-9.
    4 Shen ZT, Yang CD, He ZH (1987) Studies on eliminating panicle enclosure in WA type MS line of rice Oryza sativa subsp, indica. Chinese J Rice Sci 1: 95-99.
    5 Yang RC, Huang RH, Zhang QQ, Zhang SB, Liang KJ (2000) Developing eui-cytoplasmic male sterile lines and applying them in hybrid rice breeding. IRRN 25:11-12.
    6 Yang RC, Zhang SB, Huang RH, Yang SL, Zhang QQ (2002) Breeding technology of eui hybrids of rice. Scientia Agr Siniea 35: 233-237.
    7 Gangashetti MG, Jena KK, Shenoy VV, Freeman WH (2004) Inheritance of elongated uppermost intemode and identification of RAPD marker linked to eui gene in rice. Curr Sci 87: 469-475.
    8 Hoshikawa K (1989a) Panicle differentiation and development. In: Hoshikawa K, ed. The growing rice plant, Nobunkyo, Tokyo, Japan, 209-236.
    9 Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate- phenol-chloroform extraction. Analytical Biochem 162:156-159.
    10 Ashikari M, Wu J, Yano M, Sasaki T, Youshimura A (1999) Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the α-subunit of GTP-binding protein. Proc Natl Acad Sci USA 96: 10284-10289.
    11 Spielmeyer W, Ellis MH, Chandler PM (2002) Semidwarf (sd-1), "green revolution" rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA 99: 9043-9048.
    12 Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K (2004) dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. Plant J 37: 720-729.
    13 Mcginnis KM, Thomas SG, Soule JD, Strader LC, Zale JM, Sun T-p, Steber CM (2003) The Arabidopsis SLEEPY1 gene encodes a putative F-Box subunit of an SCF E3 Ubiquitin ligase. Plant Cell 15: 1120-1130.
    14 Kobayashi M, Yamaguchi I, Murofushi N, Ota Y, Takahashi N (1988) Fluctuation and localization of endogenous gibberellins in rice. Agr Bio Chem 52:1189-1194.
    15 Kobayashi M, Sakurai A, Saka H, Takahashi N (1989) Quantitative analysis of endogenous gibberellins in normal and dwarf cultivars of rice. Plant Cell Physiol 30: 963-969.
    16 Kobayashi M, Gaskin P, Spray CR, Phinney BO, MacMillan J (1994) The metabolism of gibberellin A_(20) to gibberellin A_1 by tall and dwarf mutants of Oryza sativa and Arabidopsis thaliana. Plant Physiol 106: 1367-1372.
    17 Fleet CM, Sun T-P (2005) A DELLA care balance: the role of gibberellin in plant morphogenesis. Curr Opin Plant Biol 8: 1-9.
    18 Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Agrawal GK, Takeda S, Abe K et al (2004) An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol 134: 1642-1653.
    19 Li ZB, Xiao YH, Zhu YG, Li RQ, Liu CL, Wan JM (1982) WA-type CMS rice. In: Li ZB, ed. Study and practice of hybrid rice, Shanghai science and technology press, China p143-150.
    20 Huang J, Hu J, Xu X, Li S, Yi P, Yang D, Ren F, Liu X, Zhu Y (2003) Fine mapping of the nuclear fertility restorer gene for HL cytoplasmic male sterility in rice. Botanical Bulletin of Academia Sinica 44: 285-289.
    21 盖钧镒主编 (1998) 作物育种学各论.中国农业出版社 p27-29.
    22 孙宗修,程式华主编 (1994) 杂交水稻育种.中国农业科技出版社 p36-40.
    23 刁操铨主编 (1999) 作物栽培学各论(南方本).中国农业出版社 p16-56.
    24 Bleecker AB, Schuette JL, Kende H (1986) Anatomical analysis of growth and developmental patterns in the internode of deepwater rice. Planta 169: 490-497.
    25 Kende H, Knaap EVD, Cho H-T (1998) Deepwater rice: A modal plant to study stem elongation. Plant Physiol 118:1105-1110.
    26 Tamura S (1990) Historical Aspects of Gibberellins In: Gibberellins, TakahashiN, Phinney BO, Macmillan J (ed) Springer, New York Berlin Heidelberg London p1-8.
    27 Ingram TJ, Reid JB, Murfet IC, Gaskin P, Willis CL, MacMillan J (1984) Internode length in Pisum. The Le gene controls the 3β-hydroxylation of gibberellin A20 to gibberellin Al. Planta 160: 455-463.
    28 Zeevaart JAD (1983) Gibberellins and flowering . In: A Crozier, ed . The Biochemistry and. Physiology of Gibberellins, New YoTk: Praeger. 2: 333-374.
    29 Rood SB, Mandel R, Pharis RP (1989) Endogenous Gibberellins and Shoot Growth and Development in Brassica napus. Plant Physiol 89: 269-273.
    30 Bensen RJ, Beall FD, Mullet JE, Morgan PW (1990) Detection of Endogenous Gibberellins and Their Relationship to Hypocotyl Elongation in Soybean Seedlings. Plant Physiol. 94: 77-84.
    31 Ross JJ, Davies NW, Reid JB, Muffet IC (1990) Internode length. in Lathyrus odoratus. Effects of mutants l and lb on gibberellin metabolism and levels. Physiol Plant 79: 453-458.
    32 Rood SB, Zanewitch KP, Bray DF (1990) Growth and development of Brassica genotypes differing in endogenous gibberellin content. II. Gibberellin content, growth analyses and cell size. Physiol Plant 79: 679-685
    33 Sauter M, Kende H (1992) Gibberellin-induced growth and regulation of the cell division cycle in deepwater rice. Planta 188: 362-368.
    34 Yang T, Davies PJ, Reid JB (1996) Genetic dissection of the relative roles of auxin and gibberellin in the regulation of stem elongation in intact light-grown peas. Plant Physiol 110: 1029-1034.
    35 Asahina M, Iwai H, Kikuchi A, Yamaguchi S, Kamiya Y, Kamada H, Satoh S (2002) Gibberellin produced in the cotyledon is required for cell division during tissue reunion in the cortex of cut cucumber and tomato hypocotyls. Plant Physiol 129: 201-210.
    36 Ska FB, Parker JS, Barlow PW (1993) A role for gibberellic acid in orienting microtubules and regulating cell growth polarity in the maize root cortex. Planta 191: 149-157.
    37 Knaap EVD, Kim JH, Kende H (2000) A novel gibberellin-induced gene from rice and its potential regulatory role in stem growth. Plant Physiol 122: 695-704.
    38 Mita T, Katsumi M (1986) Gibberellin control of microtubule arrangement in the mesocotyl epidermal cells of the d_5 mutant of Zea mays L. Plant Cell Physiol 27: 651-659.
    39 Sauter M, Seagull RW, Kende H (1993) Internodal elongation and orientation of cellulose microfibrils and microtubules in deep-water rice. Planta 190: 354-362.
    1 Sakurai N, Masuda Y (1978) Auxin-induced extension, cell wall loosening and changes in the wall polysaccharide content of barley coleoptile segments. Plant Cell Physiol 19:1225-1233.
    2 Morikawa H, Kitamura S, Senda M (1978) Effect of auxin on changes in the oriented structure of wall polysaccharides in response to mechanical extension in oat coleoptile cell walls. Plant Cell Physiol 19: 1553-1556.
    3 Inouhe M, Nevins DJ (1991) Inhibition of Auxin-Induced Cell Elongation of Maize Coleoptiles by Antibodies Specific for Cell Wall Glucanases. Plant Physiol 96:426-431.
    4 Maclachlan GA (1977) In: Pilet PE ed. Plant Growth Regulation. Springer-Verlag, Berlin, p. 13-20
    5 Fry SC (1989) Cellulases, hemicelluloses and auxin-stimulated growth: a possible relationship. Physiol Plant 75: 532-536.
    6 Wakabayashi K, Sakurai N, Kuraishi S (1991) Differential Effect of Auxin on Molecular Weight Distributions of Xyloglucans in Cell Walls of Outer and Inner Tissues from Segments of Dark Grown Squash (Cucurbita maxima Duch.) Hypocotyls. Plant Physiol 95: 1070-1076.
    7 Ross JJ (1998) Effects of auxin transport inhibitor on gibberellins in pea. J Plant Growth Regul 17: 141-146.
    8 Wolbang CM, Ross JJ (2001) Auxin promotes gibberellin biosynthesis in decapitated tobacco plants. Planta 214: 153-157.
    9 Ross JJ, O'Neill DP, Wolbang CM, Symons GM, Reid JB (2002) Auxin-gibberellin interactions and their role in plant growth. J Plant Growth Regul 20: 346-353.
    10 Mills VM, Todd GW (1973) Effects of water sress on the indoleacetic acid oxidase activityin wheat leaves. Plant Physiol 51: 1145-1146.
    11 Wolbang CM, Chandler PM, Smith JJ, Ross JJ (2004) Auxin from the developing inflorescence is required for the biosynthesis of active gibberellins in barley stems. Plant Physiol 134: 769-776.
    12 Bryant SD, Lane FE (1979) Indole-3-acetic acid oxidase from peas. Plant Physiol 63: 696-699.
    13 Pandey D, Pathak RK (1981) Effects of rootstocks, IBA and phenolic compounds on the rooting of apple cuttings. Propagation Hort 13: 105-110.
    14 Kochhar S, Kochhar VK, Singh SP, Katiyar RS, Pushpangadan P (2005) Differential rooting and sprouting behaviour of two Jatropha species and associated physiological and biochemical changes. Curr Sci 89: 936-939.
    15 孟金陵,刘定富,罗鹏,张金发,范志中,薛勇标,夏涛,蔡德田 (1997) 植物生殖遗传学.北京:科学出版社 p147-167.
    16 Aloni R (1988) In: Davies PJ ed. Plant Hormones and Their Role in Plant Growth and Development. Kluwer Academic Publishers, Dordrecht, p363-374.
    17 黄厚哲,楼士林,王侯聪,陈如铭 (1984) 植物生长素亏损与雄性不育的发生.厦门大学学报(自然科学版) 23(1):82-97.
    18 Jacobsell SE, Olszewski NE (1991) Characterization of the arrest in anther development associated with gibberellins deficiency of the gib-1 mutant of tomato. Plant Physiol 97:401-414.
    19 李英贤,张爱民 (1995) 植物雄性不育激素调控的研究进展.中国农学通报 11(3):25-28.
    20 何之常,徐乃瑜 (1995) 不同细胞质雄性不育系小麦叶片中IAA和Cpox的研究.中国农业科学 28(增刊):7-13.
    21 李英贤,张爱民,黄铁城 (1996) 小麦细胞质雄性不育与花药组织内源激素的关系.农业生物技术学报 4(4):307-313.
    22 徐孟亮,刘文芳,肖翊华 (1990) 湖北光敏核不育水稻幼穗发育中内源IAA的变化.华中农业大学学报 9(4):381-386.
    23 黄少白,周燮 (1994) 水稻细胞质雄性不育与内源GA_(1+4)和IAA的关系.华北农学报 9(3):16-2.
    24 田长恩,段俊 (1998) 水稻细胞质雄性不育系及其保持系幼穗发育过程中内源激素的变化.热带亚热带植物学报 6(2):137-143.
    25 Kojima K (1997) Changes of ABA,IAA and GAs levels in reproductive organs of citrus.Japan Agr Res 31(4): 271-280.
    26 陈竹君,张明方,汪炳良,董伟敏,黄素青 (1995) 榨菜胞质雄性不育及其农艺性状的研究.园艺学报 22(1):40-46.
    27 夏涛,刘纪麟 (1994) 生长素和玉米素与玉米细胞质雄性不育性关系的初步研究.作物学报 20(1):26-31.
    28 高夕全,张子学,夏凯,周燮 (2001) 雄性不育辣椒中几种内源植物激素的含量变化(简报).植物生理学通讯 37(1):31-32.
    29 Skorupska HT, Desamero NV. Palmer RG (1994) Developmental hormonal expression of apetalous male-sterile mutations in soybean (Glycine max L.). Merr Ann Bio 10(1): 152-164.
    30 Hamdi S (1988) Regulation of IAA-oxidase activities correlation with sex genes, sterility determinants and IAA levels in Mercurialis annua. Plant Physiol Biochem 26: 639-644.
    31 Hamdi S, Teller G, Louis JP (1987) Master regulatory genes, auxin level, and sexual organogenesis in the dioecious Plant Mercurialis annua.Plant Physiol 85: 393-399.
    32 Spena A, Estruch JJ, Prinsen E Nacken W, Van Onckelen H, Sommer H (1992) Anther-specific expression of the rolB gene of Agrobacterium rhizogenes increases IAA content inanthers and alters anther development and whole flower growth. TAG 84: 520-527.
    33 Singh S, Sawhney VK, Pearee DW (1992) Temperature effects on endogenous indole-3-acetic acid levels and stamen of the normal and male sterile stemenless-2 mutant of tomato (LycoPerrsicon esculentum Mill). Plant Cell Environ 85: 23-29.
    34 Singh S, Sawhney VK (1992) Endogenous hormones in seeds, germination behaviour and early seedling characteristics in a normal and ogura cytophsmic male sterile line of rapeseed (Brassica napus L.). J Exp Bot 43(5): 1497-1505.
    35 王淑华,魏毓堂,冯辉,佟景春 (1998) 大白菜雄性不育株和可育株花蕾生理生化特性比较分析.沈阳农业大学学报 29(2):132-137.
    36 Shukla A, Sawhney VK (1993) Metabolism of dihydrozeatin in floral buds of wild-type and a genic male sterile line of rapeseed (Brassica napus L.). J Exp Bot 44(266): 1497-1505.
    37 Homer H (1973) Microsporogenesis in normal and cytoplasmic male sterile pepper. Am J Bot 60(4 supplement): 7.
    38 Alagarswamy S, Djanaguiraman M, Kalarani MK, Babu RC (2004) Changes in the activity of enzymes associated with fertility alteration in thermosensitive genic male sterile (TGMS) rice (Oryza sativa L.) genotypes. Trop Agr Res 16: 242-252.
    39 Roystephen and Thangaraj M (2000) Biochemical alternations leading to male sterility in TGMS rice. Abst. Pub. In: National Seminal on Recent Advances in Plant Biology, Kasaragod, Kerala, p 10.
    40 张能刚,周燮 (1992) 三种内源酸性植物激素与农垦58s育性转换的关系.南京农业大学学报 15(3):7-12.
    41 张花,何之常,徐乃瑜 (1996) 不同细胞质雄性不育小麦阳离子过氧化物酶和IAA-氧化酶活性的研究.武汉大学学报(自然科学版) 42(6):719-723.
    42 Davies PJ (1973) The uptake and elution of indoleacetie acid by pea stem sections in relation to auxin induced growth. Tokyo: Hirokawa Publishing. p767-779.
    43 Galston AW, Kaur R (1961) Comparative studies on the growth and light sensitivity of green and etiolated pea stem sections. Baltimore: John Hopkins Press. p687-705.
    44 Brian PW, Hemming HG (1958) Complementary action of gibberellin acid and auxins in pea internode extension. Ann Bot 22:1-17.
    45 Ockerse R, Galston AW (1967) Gibberellin-auxin interaction in pea stem elongation. Plant Physiol 42: 47-54.
    46 Yang T, Davies PJ, Reid JB. (1996). Genetic dissection of the relative role of auxin and gibberellin in the regulation of stem elongation in intact light-grown peas. Plant Physiol 110:1029-1034.
    47 Vlitos A J, Meudt W (1957) Relationship between shoot apex and effect of gibberellin acid on elongation of pea stems. Nature 180: 284.
    48 Kuraishi S, Muir RM (1964) The mechanism of gibberellin action in the dwarf pea. Plant Cell Physiol 5: 259-271.
    49 Law DM (1987) Gibberellin-enduced indole-3-acetic biosynthesis: D-tryptophan as the precursor of indole-3-acetic acid. Physiol Plant 70: 626-632.
    50 Law DM, Hamilton RH (1989) Reduction in the free indole-3-acetic acid level in Alaska pea by the gibberellin biosynthesis inhibitor uniconazole. Physiol Plant 76: 535-538.
    51 Ross JJ, O'Neill DP, Rathbone DA (2003) Auxin-gibberellin interactions in pea: integrating the old with the new. J Plant Growth Regul 22: 99-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700