N-酰基高丝氨酸内酯酶基因克隆、表达、性质研究与水产养殖应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
N-酰基高丝氨酸内酯酶是一类特异性降解N-酰基高丝氨酸内酯类信号分子(AHLs)的金属蛋白水解酶,广泛存在于多种微生物中。近年来N-酰基高丝氨酸内酯酶作为一种新型抗菌策略(群体感应淬灭策略)的工具酶而成为研究的热点。目前主要是通过构建转基因植物、转基因细菌研究其在群体感应淬灭中的作用机制,而转基因植物或转基因细菌在实际应用中存在生物安全和有效性方面的问题。本研究的目的是利用毕赤酵母表达系统高效表达N-酰基高丝氨酸内酯并将该酶以酶制剂的形式来防治水产养殖中嗜水气单胞菌引起的疾病。
     本论文通过富集培养的方法使用以3-oxo-C6-HSL为唯一碳源的筛选培养基从天津武清池塘底泥分离出一株产N-酰基高丝氨酸内酯酶的菌株,命名为B546,经16s rDNA鉴定为芽孢杆菌。通过设计该种属N-酰基高丝氨酸内酯酶的简并引物,成功克隆了N-酰基高丝氨酸内酯酶基因aiiAB546。aiiAB546片段大小为753 bp,编码250个氨基酸,预测编码蛋白的分子量为28.14 kDa,等电点为4.64,在蛋白的N端预测有一个氮糖基化位点(Asn-Ser-Thr)。
     将aiiAB546连接pPIC9表达载体,转化毕赤酵母GS115感受态细胞并成功表达。通过根癌农杆菌KYC 55活性平板法筛选出高效表达的13号菌株。以3-oxo-C8-HSL为底物,在摇瓶水平上该菌株表达的N-酰基高丝氨酸内酯酶酶活为27.1±3.2 U/mL,通过3.7 L发酵罐高密度发酵,重组蛋白的表达量高达3,558.4±81.3 U/mL,而大肠杆菌表达的酶活仅为0.24 U/mL。毕赤酵母明显提高了N-酰基高丝氨酸内酯酶的表达量,实现了目的蛋白的高效表达。
     毕赤酵母表达的重组蛋白通过硫酸铵沉淀和阴离子柱纯化出33.6 kDa的单一条带。经质谱鉴定为目的蛋白,Endo H处理验证了氮糖基化的存在。纯化的重组AiiAB546的最适pH和温度分别为8.0和20°C,在pH 6.5–8.5范围内,酶活性均能维持在80%以上,在0°C,20°C~37°C,AiiAB546具有60%的酶活力。AiiAB546具有良好的pH和温度稳定性。在pH 6.5–12.0范围内处理60 min后,酶活性均高于100%,说明AiiAB546在中性和碱性条件下非常稳定。AiiAB546在60°C下处理30 min,酶活性基本维持不变,70°C处理15 min,剩余90%以上的酶活,说明AiiAB546在60°C和70°C条件下仍非常稳定。AiiAB546具有非常好的抗胰蛋白酶,α-糜蛋白酶,枯草杆菌蛋白酶,胶原蛋白酶和碱性蛋白酶的能力,AiiAB546与上述蛋白酶共处理60 min,其酶活性均大于100%。此外,大多数离子对AiiAB546无抑制作用。
     AiiAB546和嗜水气单胞菌共注射锦鲤可以明显降低嗜水气单胞菌致死锦鲤的平均累积死亡率为25%,延迟锦鲤的半数致死时间为18 h。单独注射AiiAB546,经长时间观察锦鲤生存状态良好。根据试验结果预测AiiAB546对鱼体无害并且可以降低嗜水气单胞菌致死能力,本试验为潜在机制的研究提供了重要的试验数据。
     本试验不仅在毕赤酵母中成功高效表达了AiiAB546,使低成本获得大量的AiiAB546成为可能,而且以酶制剂的形式通过活体注射的方式成功衰减嗜水气单胞菌在锦鲤中的致死能力。根据所知,这是首次在毕赤酵母中高效表达AiiAB546并通过注射AiiAB546衰减嗜水气单胞菌的毒力。本试验具有潜在的抗菌策略研究与水产养殖应用方面的价值。
N-Acyl homoserine lactonase, widely identified in a range of bacterial species, is a group of metal-hydrolases that can specially hydrolyze N-Acyl homoserine lactone. In recent years, N-Acyl homoserine lactone lactonase has been attracted much attention as a new enzyme in antimicrobial therapeutics (quorum quenching strategy). Transgenic plants and bacteria are used to study the mechanism of quorum quenching; however, application of transgenic plants and bacteria is limited due to problems of safety and efficacy. The objective of this study was to overexpress AHL-lactonase in Pichia pastoris and attenuate the Aeromonas hydrophila virulence with AHL-lactonase to control A. hydrophila-related diseases.
     A strain, denoted as B546, producing AHL-lactonase was isolated from the mud of a fish pond at Wuqing, Tianjin, China using minimal medium containing 3-oxo-C6-HSL as the sole carbon source and was identified as Bacillus sp. by its 16S rDNA sequence. Based on the conserved amino acid sequences of AHL-lactonases from Bacillus sp., a degenerate primer set was designed. Using the degenerate primers, the full-length 753-bp AHL-lactonase gene, aiiAB546, was cloned from Bacillus sp. B546. aiiAB546 encoded a 250-amino acid polypeptide with a calculated molecular mass of 28.14 kDa and a pI of 4.64. One potential N-glycosylation site (Asn-Ser-Thr) was identified at the N terminus.
     The recombinant plasmid pPIC9-aiiAB546 was constructed and transformed into P. pastoris GS115 competent cells. Positive transformants were screened using well-diffusion assays with reporter strain Agrobacterium tumefaciens KYC 55, and clone 13 with highest enzyme activity was selected for further assay. In the shake-flask level, AHL-lactonase activity was up to 27.1±3.2 U/mL. In the 3.7 L fermenter, the expression level of recombinant AiiAB546 reached 3,558.4±81.3 U/mL after induction, which was significantly higher than that expressed in Escherichia coli (0.24 U/mL). Expression of aiiAB546 in P. pastoris enhanced the production of AiiAB546 significantly.
     Recombinant AiiAB546 in P. pastoris was purified to electrophoretic homogeneity by ammonium sulfate precipitation and anion exchange chromatography. The molecular weight of the purified recombinant AiiAB546 was 33.6 kDa. Further LC-ESI-MS/MS analysis and deglycosylation of AiiA with Endo H confirmed the identity of the objective band and the occurrence of N-glycosylation. Purified recombinant AiiAB546 showed optimal activity at pH 8.0 and 20°C, retained more than 80% of the maximum activity at pH 6.5–8.5. At 0 and 20–37°C, the enzyme maintained more than 60% of the highest activity. AiiAB546 exhibited excellent pH stability, retaining more than 100% activity after pre-incubation at 37°C, pH 6.5–12.0 for 1 h. AiiAB546 was thermostable at 60°C and 70°C, retaining more than 100% and 90% of the initial activity after pre-incubation at 60°C for 30 min and 70°C for 15 min, respectively. The purified recombinant AiiAB546 was protease-resistant. After incubation with trypsin, subtilisin A, collagenase and proleather at 37°C for 60 min, the enzyme retained almost all of the enzymatic activity. In addition, AiiAB546 was also resistant to many metal ions.
     Co-injection of AiiAB546 and A. hydrophila decreased the mortality rate of common carp by nearly 25%. Compared with the fish injected with A. hydrophila, the LT50 of the fish with co-injection of AiiAB546 and A. hydrophila was delayed 18 h. After injection with AiiAB546 alone, the fish displayed no signs of stress or disease and no mortalities were observed. The results indicate that AiiAB546 is safe for carp and can attenuate A. hydrophila virulence, and provide more novel data for further study.
     This study not only achieves overexpression of AiiAB546 in P. pastoris and makes it possible to mass-produce AHL-lactonase at low cost, but also opens up a promising foreground of application of AHL-lactonase in fish to control A. hydrophila disease by regulating its virulence. To our knowledge, this is the first report on heterologous expression of AHL-lactonase in P. pastoris and attenuating A. hydrophila virulence by co-injection with AHL-lactonase. This study has potential values for antimicrobial strategies and aquaculture applications.
引文
1.黄天培,杨梅,姚帆,黄张敏,俞晓敏,黄志鹏,黄必旺.腊质芽孢杆菌基因的克隆及融合表达.福建农林大学学报, 2006, 35(3): 292-297.
    2.郭嘉亮,陈卫民.细菌群体感应信号分子与抑制剂研究进展.生命科学, 2007, 19(2): 224-232.
    3.李晶,赵晓祥,沙长青.甲醇酵母基因表达系统的研究进展.生物工程进展, 1999, 19(2): 17-20.
    4.欧阳立明,张惠展,张嗣同.巴斯德毕赤酵母的基因表达系统研究进展.生物化学与生物物理进展, 2000, 27(2): 151-154.
    5.王建华,权春善,李新.细菌群体感应的信号转导机制及其对抗生素生产的影响.中国生物工程杂志, 2008, 28(4): 87-92.
    6.温晓芳,黄俊生.细菌的群体感应与其信号分子.华南热带农业大学学报2005, 11(1): 32~34.吴清平,吴葵,叶应旺,董晓辉,张菊梅.群体感应及其在动物病原菌致病中的作用.微生物学报, 2009, 49(7): 853-858.
    7.吴清平,吴葵,叶应旺,董晓辉,张菊梅.群体感应及其在动物病原菌致病中的作用.微生物学报, 2009, 49(7): 853-858.
    8.杨晟,黄鹤,章如安.重组人血清蛋自在Pichia pastoris中分泌表达影响因素的研究.生物工程学报, 2000, 16(6): 675-678.
    9.朱洪伟,朱战波,崔玉东.葡萄球菌毒力调控中的群体感应系统.细胞生物学杂志, 2007, 29: 356-360.
    10. Austin B, Austin D. Bacterial Fish Pathogens. Disease in Farmed and Wild Fish (Third Revised Edition). Ellis Horwood, Chichester, 1987.
    11. Arnold K., Bordoli L., Kopp J., Schwede T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics, 2006, 22: 195-201.
    12. Blanchard V, Gadkari RA, George AV, Roy S, Gerwig GJ, Leeflang BR, Dighe RR, Boelens R, Kamerling JP. High-level expression of biologically active glycoprotein hormones in Pichia pastoris strains-selection of strain GS115, and not X-33, for the production of biologically active N-glycosylated 15N-labeled phCG. Glycoconj Journal, 2008, 25: 245-257.
    13. Bjarnsholt T, Jensen P?, Jakobsen TH, Phipps R, Nielsen AK, Rybtke MT, Tolker-Nielsen T, Givskov M, H?iby N, Ciofu O; Scandinavian Cystic Fibrosis Study Consortium. Quorum sensing and virulence of Pseudomonas aeruginosa during lung infection of cystic fibrosis patients. PLoS One, 2010, 5(4): e10115.
    14. Blanchard V, Gadkari RA, George AV, Roy S, Gerwig GJ, Leeflang BR, Dighe RR, Boelens R, Kamerling JP. High-level expression of biologically active glycoprotein hormones in Pichia pastoris strains-selection of strain GS115, and not X-33, for the production of biologically active N-glycosylated 15N-labeled phCG. Glycoconj Journal, 2008, 25: 245-257.
    15. Boucher C, Genin S, Arlat M. Current concepts on the pathogenicity of phytopathogenic bacteria.C R Acad Sci III, 2001, 324(10): 915-22.
    16. Cameron AD, Ridderstr?m M, Olin B, Mannervik B. Crystal structure of human glyoxalase II and its complex with a glutathione thiolester substrate analogue.Structure, 1999, 7(9): 1067-1078.
    17. Chun CK, Ozer EA, Welsh MJ, Zabner J, Greenberg EP. Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia. Proc Natl Acad Sci, 2004, 101: 3587-3590.
    18. de la Sierra-Gallay IL, Pellegrini O, Condon C.Structural basis for substrate binding, cleavage and allostery in the tRNA maturase RNase Z. Nature, 2005, 433(7026): 657-661.
    19. Draganov DI, Teiber JF, Speelman A, Osawa Y, Sunahara R, La Du BN. Human paraoxonases (PON1, PON2, and PON3) are lactonases with overlapping and distinct substrate specificities. Journal of Lipid Research, 2005, 46: 1239–1247.
    20. Dong YH, Gusti AR, Zhang Q, Xu JL, Zhang LH.Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Applied Environment and Microbiology, 2002, 68(4): 1754-17549.
    21. Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF, Zhang LH. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature, 2001, 411: 813-817.
    22. Dong YH, Wang LY, Zhang LH. Quorum-quenching microbial infections: mechanisms and implications. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 2007, 362: 1201-1211.
    23. Dong YH, Zhang XF, Xu JL, Zhang LH. Insecticidal Bacillus thuringiensis silences Erwinia carotovora virulence by a new form of microbial antagonism, signal interference. Applied Environment and Microbiology, 2004, 70(2): 954-960.
    24. Dong YH, Zhang LH. Quorum sensing and quorum-quenching enzymes. Journal of Microbiology, 2005, 43: 101–109.
    25. Fray RG, Throup JP, Daykin M, Wallace A, Williams P, Stewart GS, Grierson D. Plants genetically modified to produce N-acylhomoserine lactones communicate with bacteria. National Biotechnology 1999, 17: 1017-1020.
    26. Froquet R, Cherix N, Burr SE, Frey J, Vilches S, Tomas JM, Cosson P: Alternative host model to evaluate Aeromonas virulence. Applied Environmetnal Microbiology 2007, 73:5657-5659.
    27. Fuqua C, Greenberg EP: Self perception in bacteria. Quorum sensing with acylated homoserine lactones. Current Opinion of Microbiology, 1998, 1: 183–189.
    28. Henke JM, Bassler BL. Three parallel quorum2sensing systems regulate gene expression in Vibrio harveyi . Journal of Bacteriology, 2004, 186: 6902-6914.
    29. Hernanz Moral C, Fla?o del Castillo E, López Fierro P, Villena Cortés A, Anguita Castillo J, Cascón Soriano A, Sánchez Salazar M, Razquín Peralta B, Naharro Carrasco G. Molecular characterization of the Aeromonas hydrophila aroA gene and potential use of an auxotrophic aroA mutant as a live attenuated vaccine. Infection and Immunity, 1998, 66: 1813-1821.
    30. Huang JJ, Han JI, Zhang LH, Leadbetter JR.Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1.Appl Environ Microbiology, 2003, 69(10): 5941-5949.
    31. Hu JY, Fan Y, Lin YH, Zhang HB, Ong SL, Dong N, Xu JL, Ng WJ, Zhang LH. Microbial diversity and prevalence of virulent pathogens in biofilms developed in a water reclamation system.Res Microbiology, 2003, 154(9): 623-629.
    32. Jangid K, Kong R, Patole MS, Shouche YS. luxRI homologs are universally present in the genus Aeromonas. BMC Microbiology, 2007, 7: 93.
    33. Kern G, Schülke N, Schmid FX, Jaenicke R. Stability, quaternary structure, and folding of internal, external, and core-glycosylated invertase from yeast. Protein Science, 1992, 1: 120-131.
    34. Kocken CH, Dubbeld MA, Van Der Wel A, Pronk JT, Waters AP, Langermans JA, Thomas AW. High-level expression of Plasmodium vivax apical membrane antigen 1 (AMA-1) in Pichia pastoris: strong immunogenicity in Macaca mulatta immunized with P. vivax AMA-1 and adjuvant SBAS2. Infection and Immunity, 1999, 67: 43-49.
    35. Kocken CH, Withers-Martinez C, Dubbeld MA, van der Wel A, Hackett F, Valderrama A, Blackman MJ, Thomas AW. High-level expression of the malaria blood-stage vaccine candidate Plasmodium falciparum apical membrane antigen 1 and induction of antibodies that inhibit erythrocyte invasion. Infected Immunity, 2002, 70: 4471-4476.
    36. Kievit TR, Iglewski BH. Bacterial quorum sensing in pathogenic relationships. Infection and Immunity, 2000, 68(9): 4839-4849.
    37. Kim MH, Choi WC, Kang HO, Lee JS, Kang BS, Kim KJ, Derewenda ZS, Oh TK, Lee CH, Lee JK. The molecular structure and catalytic mechanism of a quorum-quenching N-acyl-L-homoserine lactone hydrolase. Proceedings of National Academy of Sciences USA, 2005, 102: 17606-17611.
    38. Leadbetter JR, Greenberg EP. Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. Journal of Bacteriology, 2000, 182: 6921-6926.
    39. Lee SJ, Park SY, Lee JJ, Yum DY, Koo BT, Lee JK. Genes encoding the N-acyl homoserine lactone-degrading enzyme are widespread in many subspecies of Bacillus thuringiensis. Applied Environment and Microbiology, 2002, 68: 3919-3924.
    40. Lowther WT, Orville AM, Madden DT, Lim S, Rich DH, Matthews BW. Escherichia coli methionine aminopeptidase: implications of crystallographic analyses of the native, mutant, and inhibited enzymes for the mechanism of catalysis.Biochemistry, 1999, 38(24):7678-7688.
    41. Li N, Shi P, Yang P, Wang Y, Luo H, Bai Y, Zhou Z, Yao B. Cloning, expression, and characterization of a new Streptomyces sp. S27 xylanase for which xylobiose is the main hydrolysis product. Applied Biochemistry and Biotechnology, 2009, 159: 521-531.
    42. Li Y, Cao H, He S, Yang X. Isolation and identification of Aeromonas hydrophila strain X1 from Acipenser baerii and its antibiotic sensitivity. Institute of Microbiology, CAS 2008, 38: 1186-1191.
    43. Lin YH, Xu JL, Hu J, Wang LH, Ong SL, Leadbetter JR, Zhang LH. Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenchingenzymes. Mol Microbiol, 2003, 47(3): 849-860.
    44. Liu D, Lepore BW,Petsko GA, Thomas PW, Stone EM, Fast W, Ringe D. Three-dimensional structure of the quorum-quenching N-acyl homoserine lactone hydrolase from Bacillus thuringiensis. Proceedings of Natational Academy of Sciences USA, 2005, 102(33): 11882-11887.
    45. Liu YY, Woo JH, Neville DM Jr: Overexpression of an anti-CD3 immunotoxin increases expression and secretion of molecular chaperone BiP/Kar2p by Pichia pastoris. Applied Environment and Microbiology, 2005, 71: 5332-5340.
    46. Livermore DM.The need for new antibiotics. Clinical Microbiology and Infection, 2004, 4: 1-9.
    47. Loukas A, Bethony JM, Mendez S, Fujiwara RT, Goud GN, Ranjit N, Zhan B, Jones K, Bottazzi ME, Hotez PJ. Vaccination with recombinant aspartic hemoglobinase reduces parasite load and blood loss after hookworm infection in dogs. PLoS Medicine, 2005, 2: e295.
    48. Lowther WT, Orville AM, Madden DT, Lim S, Rich DH, Matthews BW. Escherichia coli methionine aminopeptidase: implications of crystallographic analyses of the native, mutant, and inhibited enzymes for the mechanism of catalysis.Biochemistry. 1999, 38(24):7678-7688.
    49. Luo H, Li J, Yang J, Wang H, Yang Y, Huang H, Shi P, Yuan T, Fan Y, Yao B. A thermophilic and acid stable family-10 xylanase from the acidophilic fungus Bispora sp. MEY-1. Extremophiles, 2009, 13(5): 849-857
    50. Lv H, Zhou Z, Rudeaux F, Respondek F. Effects of dietary short chain fructo-oligosaccharides on intestinal microflora, mortality and growth performance of O. nilotica♀×O. aurea♂. Chinese Journal of Animal Nutrition, 2007, 19: 691-697.
    51. Lynch MJ, Swift S, Kirke DF, Keevil CW, Dodd CE, Williams P. The regulation of biofilm development by quorum sensing in Aeromonas hydrophila. Environmental Microbiology, 2002, 4: 18–28.
    52. M?e A, Montesano M, Koiv V, Palva ET. Transgenic plants producing the bacterial pheromone N-acyl-homoserine lactone exhibit enhanced resistance to the bacterial phytopathogen Erwinia carotovora. Molecular Plant and Microbe Interaction, 2001, 14: 1035-1042.
    53. Mazon AF, Huising MO, Taverne-Thiele AJ, Bastiaans J, Verburg-van Kemenade BM. The first appearance of Rodlet cells in carp (Cyprinus carpio L.) ontogeny and their possible roles during stress and parasite infection. Fish and Shellfish Immunology, 2007, 22: 27-37.
    54. Molina L, Constantinescu F, Michel L, Reimmann C, Duffy B, Défago G. Degradation of pathogen quorum-sensing molecules by soil bacteria: a preventive and curative biological control mechanism. FEMS Microbiol Ecol, 2003, 45(1): 71-81.
    55. Mi S, Meng K, Wang Y, Bai Y, Yuan T, Luo H, Yao B. Molecular cloning and characterization of a novelα–galactosidase gene from Penicillium sp. F63 CGMCC 1669 and expression in Pichia pastoris. Enzyme and Microbial Technology, 2007, 7848: 1-8.
    56. Oh KB, Miyazawa H, Naito T, Matsuoka H. Purification and characterization of an autoregulatory substance capable of regulating the morphological transition in Candida albicans. Proc Natl Acad Sci U S A , 2001, 98(8): 4664-8.
    57. Ozer EA, Pezzulo A, Shih DM, Chun C, Furlong C, Lusis AJ, Greenberg EP, Zabner J. Human and murine paraoxonase 1 are host modulators of Pseudomonas aeruginosa quorum-sensing. FEMS Microbiology Letters, 2005, 253: 29-37.
    58. Park SY, Lee SJ, Oh TK, Oh JW, Koo BT, Yum DY, Lee JK. AhlD, an N-acylhomoserine lactonase in Arthrobacter sp., and predicted homologues in other bacteria. Microbiology, 2003, 149: 1541-1550.
    59. Passador L, Cook JM, Gambello MJ, Rust L, Iglewski BH. Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science, 1993, 260(5111): 1127-1130.
    60. Pirhonen M, Flego D, Heikinheimo R, Palva ET.A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. EMBO J, 1993, 12(6): 2467-2476.
    61. Primrosse SB, Derbyshire P, Jones IM. Hereditary instability of recombinant DNA molecules. Soc Gen microbial, 1983, 10: 63-67.
    62. Pumbwe L, Skilbeck CA, Wexler HM. Presence of quorum-sensing systems associated with multidrug resistance and biofilm formation in Bacteroides fragilis. Microb Ecol, 2008, 56(3): 412-419.
    63. Reimmann C, Ginet N, Michel L, Keel C, Michaux P, Krishnapillai V, Zala M, Heurlier K, Triandafillu K, Harms H, Défago G, Haas D. Genetically programmed autoinducer destruction reduces virulence gene expression and swarming motility in Pseudomonas aeruginosa PAO1. Microbiology, 2002, 148: 923-932.
    64. Reith ME, Singh RK, Curtis B, Boyd JM, Bouevitch A, Kimball J, Munholland J, Murphy C, Sarty D, Williams J, Nash JH, Johnson SC, Brown LL: The genome of Aeromonas salmonicida subsp. salmonicida A449: insights into the evolution of a fish pathogen. BMC Genomics, 2008, 9: 427.
    65. Sha J, Pillai L, Fadl AA, Galindo CL, Erova TE, Chopra AK. The type III secretion system and cytotoxic enterotoxin alter the virulence of Aeromonas hydrophila. Infection and Immunity, 2005, 73: 644-6457.
    66. Schauder S, Bassler BL. The languages of bacteria. Genes Dev. 2001, 15(12): 1468-80.
    67. Shental-Bechor D, Levy Y. Effect of glycosylation on protein folding: a close look at thermodynamic stabilization. Proceedings of Natational Academy of Sciences USA, 2008, 105: 8256-8261.
    68. Seshadri R, Joseph SW, Chopra AK, Sha J, Shaw J, Graf J, Haft D, Wu M, Ren Q, Rosovitz MJ, Madupu R, Tallon L, Kim M, Jin S, Vuong H, Stine OC, Ali A, Horneman AJ, Heidelberg JF: Genome sequence of Aeromonas hydrophila ATCC 7966T: jack of all trades. Journal of Bacteriology, 2006, 188: 8272-8282.
    69. Sha J, Pillai L, Fadl AA, Galindo CL, Erova TE, Chopra AK. The type III secretion system and cytotoxic enterotoxin alter the virulence of Aeromonas hydrophila. Infection and Immunity, 2005, 73: 6446–6457.
    70. Shih PC, Huang CT. Effects of quorum2sensing deficiency on Pseudomonas aeruginosa biofilm formation and antibiotic resistance. The Journal of Antimicrobial Chemotherapy, 2002, 49: 309 - 314.
    71. Swift S, Lynch MJ, Fish L, Kirke DF, Tomás JM, Stewart GS, Williams P: Quorum sensing-dependent regulation and blockade of exoprotease production in Aeromonas hydrophila. Infection and Immunity, 1999, 67: 5192-5199.
    72. Swift S, Karlyshev AV, Fish L, Durant EL, Winson MK, Chhabra SR, Williams P, Macintyre S, Stewart GS. Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicida: identification of the LuxRI homologs AhyRI and AsaRI and their cognate N-acylhomoserine lactone signal molecules. Journal of Bacteriology, 1997, 179: 5271-5281.
    73. Tang HB, DiMango E, Bryan R, Gambello M, Iglewski BH, Goldberg JB, Prince A. Contribution of specific Pseudomonas aeruginosa virulence factors to pathogenesis of pneumonia in a neonatal mouse model of infection. Infection and Immunity, 1996, 64(1): 37-43.
    74. Ulrich RL. Quorum quenching: enzymatic disruption of NAcylhomoserine lactone-mediated bacterial communication in Burkholderia thailandensis. Applied Environment and Microbiology, 2003, 70: 6173-6180.
    75. Uroz S, D'Angelo-Picard C,Carlier A, Elasri M, Sicot C. , Petit A, Oger P, Faure D, Dessaux Y. Novel bacteria degrading N-acylhomoserine lactones and their use as quenchers of quorum-sensing-regulated functions of plant-pathogenic bacteria. Microbiology, 2004, 149: 1981-1989.
    76. Vivas J, Carracedo B, Ria?o J, Razquin BE, López-Fierro P, Acosta F, Naharro G, Villena AJ. Behavior of an Aeromonas hydrophila aroA live vaccine in water microcosms. Applied Environment and Microbiology, 2004, 70: 2702-2708.
    77. Von Bodman SB, Bauer WD, Coplin DL. Quorum sensing in plant-pathogenic bacteria. Annu Rev Phytopathol, 2003, 4: 455-482.
    78. Wang LH, Weng LX, Dong YH, Zhang LH. Specificity and enzyme kinetics of the quorum-quenching N-Acyl homoserine lactone lactonase (AHL-lactonase). Journal of Biological Chemistry, 2004, 279: 13645-13651.
    79. Wegner EH. Biochemical conversions by yeast fermentation at high–cell dendities, US. Patent, 1983, 441432.
    80. Williams P. Quorum sensing: an emerging target for antibacterial chemotherapy? Expert Opinion on Therapeutic Targets, 2002, 6: 257-274.
    81. Williams P, Winzer K, Chan W, Ca′mara M. Look who’s talking: communication and quorum sensing in the bacterial world. Philosophical Transactions of the Royal Society B, 2007, 362: 1119-1134.
    82. Winzer K, Williams P. Quorum sensing and the regulation of virulence gene expression in pathogenic bacteria. Int J Med Microbiol, 2002, 91(2): 131-143.
    83. Xu X J, Ferguson M R, Popov V L, Houston C W, Peterson J W, Chopra A K. Role of a CytotoxicEnterotoxin in Aeromonas-Mediated Infections: Development of Transposon and Isogenic Mutants. Infection and Immunity, 1998, 66(8): 3501-3509.
    84. Yang F, Wang LH, Wang J, Dong YH, Hu JY, Zhang LH. Quorum quenching enzyme activity is widely conserved in the sera of mammalian species. FEBS Letters, 2005, 579: 3713-3717.
    85. Zhang HB, Wang LH, Zhang LH.Genetic control of quorum-sensing signal turnover in Agrobacterium tumefaciens. Proceedings of Natational Academy of Sciences USA, 2002, 99(7): 4638-43.
    86. Zhang HB, Wang C, Zhang LH. The quormone degradation system of Agrobacterium tumefaciens is regulated by starvation signal and stress alarmone (p)ppGpp. Mol Microbiol, 2004, 52(5): 1389-401.
    87. Zhang HB, Wang LH, Zhang LH. Genetic control of quorum-sensing signal turnover in Agrobacterium tumefaciens. Proceedings of Natational Academy of Sciences USA 2002, 99(7): 4638-43.
    88. Zhang LH. Quorum quenching and proactive host defense. Trends in Plant Science 2003, 8: 238-244.
    89. Zhang LH, Dong YH. Quorum sensing and signal interference: diverse implications. Mol Microbiology, 2004, 53(6): 1563-1571.
    90. Zhu J, Chai Y, Zhong Z, Li S, Winans SC. Agrobacterium bioassay strain for ultrasensitive detection of N-acylhomoserine lactone-type quorum-sensing molecules: detection of autoinducers in Mesorhizobium huakuii. Applied Environment and Microbiology, 2003, 69: 6949-6953.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700