NOTCH-1信号通路对脑胶质瘤干细胞增殖与分化调控作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胶质瘤是常见的一种原发于神经系统的恶性肿瘤,是治疗效果最差的肿瘤之一。最大的难点在于复发,这与胶质瘤细胞的无限增殖能力和侵袭性生长有关。近期发现脑胶质瘤中存在胶质瘤干细胞,但仅占细胞成分中的少部分。它具有能自我更新和增殖、分化能力,是形成不同分化程度胶质瘤细胞的“种子”细胞,在胶质瘤的发生、发展和复发中起决定性作用。
     近年来通过对NOTCH-1信号通路的深入研究,发现NOTCH-1信号的异常与人类肿瘤形成有密切的联系。在多种组织肿瘤中均发现NOTCH-1信号通路的异常激活。中枢神经系统中NOTCH-1信号通路的异常激活可能导致脑肿瘤形成。NOTCH-1信号通路在脑胶质瘤的发生中起重要作用,一些胶质瘤和髓母细胞瘤以及相应的模型系统的维持和存活需要NOTCH-1信号通路信号;NOTCH-1信号通路可能参与了胶质瘤的启动,而且通常作用于神经前体细胞或有神经干细胞特性的细胞。NOTCH信号通路通过NOTCH-HES信号转导系统抑制神经干细胞分化为神经细胞和胶质细胞,从而间接维持神经干细胞的未分化状态和自我更新。在此过程中发挥关键的作用的是碱性螺旋-环-螺旋( basic-helix-loop-helix, bHLH)基因。NOTCH-1信号也可通过细胞周期因子、抗凋亡因子调控,或与其他信号通路如SHH通路协同,发挥调控作用,从而影响肿瘤细胞的增殖和存活。
     鉴于NOTCH-1信号通路在NSC或神经前体细胞的自我更新、增殖及分化中起重要作用,而在包括髓母细胞瘤在内的胶质瘤和其它多种肿瘤组织及细胞系中也发现NOTCH-1信号通路的异常活化,我们推测在胶质瘤的种子细胞胶质瘤干细胞中应该也有NOTCH-1信号的异常变化,并可能对胶质瘤的发生、发展起重要作用,但是究竟如何变化?这些变化又是通过何种机制决定胶质瘤干细胞的命运及调控其增殖、分化等生物学行为?目前国内外尚未见报导,值得进一步深入研究。
     在第一部分实验中,采用以CD133为标志,用免疫磁珠法从人脑胶质瘤组织和细胞株中分离脑胶质瘤干细胞并进行体外培养,通过免疫荧光技术检测干细胞标志物CD133、Nestin,诱导分化后检查分化细胞标志物MAP2、GFAP、MBP以及电镜超微结构观察和移植SCID鼠致瘤实验,对其干细胞特性加以鉴定,得到如下结果:
     不同病理分级的新鲜胶质瘤标本和胶质瘤细胞株中存在一小部分CD133+的胶质瘤细胞,能表达干细胞的标志物CD133和Nestin,符合干细胞的超微结构特点,体外培养能连续传代;具有多向分化潜能:诱导分化后能产生MAP2、β-TubulinⅢ、GFAP、MBP染色阳性的细胞;移植SCID鼠后能形成与亲本肿瘤表型一致的移植瘤。因此,这一小部分CD133+胶质瘤细胞具有干细胞的属性,就是胶质瘤中的肿瘤干细胞,即胶质瘤干细胞。
     在第二部分实验中,采用体外分离培养的胶质瘤干细胞作为细胞模型,研究胶质瘤干细胞增殖、分化培养过程中NOTCH-1信号通路基因和蛋白的表达情况,以及脑胶质瘤组织和细胞株中的蛋白表达情况及细胞类型,并分析与脑胶质瘤干细胞增殖、分化的关系。应用免疫荧光技术、RT-PCR、Western Blot和流式细胞术等检测对体外培养的脑胶质瘤干细胞增殖、分化、得到如下结果:
     1、脑胶质瘤组织和细胞株中有NOTCH-1和HES-1表达,而正常成人脑组织中仅能检测到微弱的表达;NOTCH-1和HES-1在高级别胶质瘤组织中的表达强于低级别胶质瘤组织中。
     2、NOTCH-1和HES-1在CD133、MAP2、GFAP和MBP阳性细胞中均可表达,但在CD133阳性细胞中有很强的表达,而在发育较成熟的MAP2、GFAP和MBP阳性细胞中表达减弱或极弱检测不到,提示NOTCH-1和HES-1的表达强弱可能参与了胶质瘤细胞未分化状态的维持和分化的调控。
     3、胶质瘤干细胞增殖过程均能检测到较强的NOTCH-1信号通路基因mRNA和蛋白表达,提示NOTCH-1信号通路的强表达可能参与了脑胶质瘤干细胞增殖过程的调控和干细胞状态的维持。
     4、胶质瘤干细胞分化时NOTCH-1信号通路基因mRNA和蛋白表达逐渐减弱,CD133表达逐渐减弱,MAP2、GFAP和MBP出现表达并逐渐增强,提示NOTCH-1信号通路表达减弱可能参与了胶质瘤干细胞分化的调控。
     在第三部分实验中,在第二部分的基础上构建了针对人NOTCH-1基因的RNA干扰逆转录病毒载体,应用RNAi技术抑制脑胶质瘤干细胞中NOTCH-1信号通路的表达和作用,分析NOTCH-1信号通路对脑胶质瘤干细胞增殖与分化的调控作用,得到如下结果。
     1、成功构建了pSiRNA- NOTCH-1和pSiRNA-NC,并经PT 67细胞包装后生成了相应的逆转录病毒载体。
     2、对NOTCH-1信号通路进行RNAi后,胶质瘤干细胞增殖受到抑制,存活细胞减少;G0/G1期细胞减少,G2/M期细胞增加,凋亡/坏死细胞增加,提示NOTCH-1信号通路对胶质瘤干细胞增殖、细胞分裂和存活有促进作用,该作用可能是通过调控细胞周期以促进细胞分裂、减少细胞凋亡/坏死实现的。
     3、对NOTCH-1信号通路RNAi后,脑胶质瘤干细胞分化受到抑制,死亡细胞明显增加,说明NOTCH-1信号通路促进胶质瘤干细胞分化和存活。
     总之,通过本课题的研究,结果表明: NOTCH-1信号通路的基因和蛋白在脑胶质瘤的增殖、分化和存活的过程中同样表达并发挥重要的调控作用,不仅促进脑胶质瘤干细胞的增殖和存活,同样也促进并调控脑胶质瘤干细胞的分化过程和存活,该作用可能是通过调控细胞周期以促进细胞分裂、减少细胞凋亡、坏死实现的。
     我们也应该看到,NOTCH-1信号仅仅是胶质瘤增殖、分化和存活中起关键作用的信号通路之一,其他的信号通路如、HH、WNT、EGF、bFGF信号通路可能也对胶质瘤增殖、分化和存活起着重要作用,因此,很可能是众多信号通路协同作用,共同完成对胶质瘤干细胞增殖分化和存活的综合调控作用。对这些关键因素的进一步研究,将使我们在更广、更深的层面上认识和理解调控胶质瘤发发病机制。
Glioma, as the most frequently malignant brain tumor in central nervous system (CNS), who is the most important problem in treating, due to its unlimited proliferation and invasive growth. Brain glioma stem cells are found in glioma, but they take up a small portion of tumor population,and are capable of self-renew, proliferation and differention. BGSCs are the "seeds" of glioma cells with any differented degree, play a key role in initiation, progression and recurrence of glioma. That is why we choose BGSCs as a cell model.
     NOTCH-1 signaling pathway was found to be correlated with human tumor formation in recent studies. It was detected in many tumors. Overexpression of NOTCH-1 may give rise to brain tumor in CNS. NOTCH-1 signaling may play a key role in the genesis of brain tumor, especially glioma. NOTCH-1 signaling is essential to maintenance and survival of many gliomas, medulloblastomas and the model system; NOTCH-1 signal may participate in ininitiation of glioma, and usually affect neural precursor cells or neural stem cells. NOTCH-1 signaling take effect through NOTCH-HES, and the expression of ( basic-helix-loop-helix,bHLH) is a reliable gene of cell reaction to the NOTCH-1signal. It may also control proliferation and survival of tumor through Cyclins, anti- apoptosis factor and cooperation with other signals, such as HH signaling.
     Since NOTCH-1 signaling pathway plays a key role in self-renew, proliferation and differentiation of NSCs or neural precursor cells, and ectopic activation of NOTCH-1 signal was detected in many gliomas (including medulloblastomas), as well as some other tumors and cell lines, we hypothesized that there may be ectopic activation of NOTCH-1 signal in BGSCs, seeds of glioma, which may play a key role in initiation and progression of glioma. But we must kown how did it happen? How did these changes decide the fate of BGSCs and control its proliferation and differentiation?
     In Part 1 of our research, BGSCs were sorted through immunomagnetic beads marking by CD133 and cultured in vitro, and character as a stem cell was identified by stem cell markers (CD133 and Nestin) and differentiated cell markers MAP2, GFAP and MBP , ultrastructure observing with electron microscope and engrafting to SCID mice for tumorigenesis test.
     The results were as following:
     Only a small subset of CD133+ glioma cells in glioma cell lines and fresh specimens from various pathologic grade could express stem cell markers CD133 and Nestin, view ultrastructure of a stem cell and be capacity of serial passage in culture. These CD133+ cells possese a marked capacity for multipotent differentiation and could differentiate into tumor cells expressing MAP2,β-TubulinⅢ, GFAP and MBP; When engrafted into SCID mice, they can generate and form tumors that phenotypically resembl the tumor from the patient. Therefore, the small fraction of CD133+ cells identified stem cells is BGSCs , so called as tumor stem cells in glioma.
     In Part 2 of the research, BGSCs in vitro were adopted as model. Genes and proteins expression of NOTCH-1 signaling pathway were detected during BGSCs proliferation and differentiation. Proteins expression of NOTCH-1 signaling pathway and cell type were also detected in glioma specimens and cell lines. The relationship between proliferation and differentiation of BGSCs has been analysed. On this basis, a retroviral-mediated expression system containing double strands DNA for RNA interference on human NOTCH-1 gene was constructed. Expression and function of NOTCH-1 signaling pathway in BGSCs were blocked by RNA interference. Immunity fluorescence technique, RT-PCR, Western blot and flow cytometry were used to evaluate effects on proliferation, differentiation, survival and tumorigenesis of BGSCs.
     The results were as following:
     1、Expression of NOTCH-1 and HES-1 protein were detected in glioma specimens and cell lines but small in normal adult brain tissue. More intensity of expression were detected in higher grade glioma.
     2、NOTCH-1 and HES-1 expressed in relativly differentiated and immature cells of CD133,MAP2, GFAP and MBP, especially in the cells of CD133. It implies that expression of NOTCH-1 and HES-1 may be correlated to iniatiation and maintenance of glioma differentiation.
     3、In proliferating BGSCs, NOTCH-1 mRNA and protein were detected strongly, which implies that the maintenance of strong NOTCH-1 signal may be correlated to stem cell state and survival.
     4、Expression of NOTCH-1 in differentiating BGSCs increased gradually, then tapered to disappearance; Expression of CD133 tapered too, but the expression of MAP2, GFAP and MBP appeared and increased gradually. Which suggests that proteins expression of may participate in initiation and phase control of BGSCs differentiation.
     In part 3 of the research, based on the part 2, A retroviral-mediated expression system containing double strands DNA for RNA interference on NOTCH-1 gene was successfully constructed. And by the technique of RNAi, we can found the change of the expression and function of NOTCH-1 signaling pathway. We can analyse the role of NOTCH-1 signaling pathway in BGSCs proliferation and differentiation.
     The results were as following:
     1、A retroviral-mediated expression system containing double strands DNA for RNA interference on NOTCH-1 gene was successfully constructed.
     2、When NOTCH-1 signaling was blocked by RNAi, proliferation of BGSCs were inhibited and viable cells decreased; Cells in G0/G1 phase decreased, in S phase was exhausted or held up, and apoptotic or necrotic cells increased. Which hints that NOTCH-1 signaling could promote proliferation, cell division and survival, and may implement by controlling cell cycle, promoting cell division and decreasing cell apoptosis or necrosis.
     3、When NOTCH-1 signaling was blocked by RNAi, differentiation of BGSCs were inhibited and dead cells incresed. At the group after RNAi, CD133,β-TubulinⅢ, GFAP and MBP positive cells ratio increased in RNAi group as compared with No-RNAi group and Negative-RNAi group. A inference could be drawn that NOTCH-1 signaling promoted differentiation and survival of BGSCs.
     It was general believed that the expression of genes and proteins of NOTCH-1 signaling pathway plays a key role in proliferating and differentiating BGSCs, Which promoted not only proliferation and survival but also differentation of BGSCs. It may implement by controlling cell cycle, promoting cell division and decreasing cell apoptosis or necrosis. However, NOTCH-1 signaling is not the only key signal pathways in proliferation, differentiation and survival of BGSCs, some other signals such as HH, WNT, EGF and bFGF may also be at work. It is supposed that numerous signals are involved in controlling the proliferation, differentiation and survival of BGSCs. Further deep and extensive studies on these key factors could show new light on control in that initiation, progression and recurrence of glioma at advanced level.
引文
1. American Brain Tumor Association. A Primer of Brain Tumors. Des Plaines, IL (www.abta.org/buildingknowledge5.htm), 2006, pp. 13–17.
    2. Claus EB, Black PM. Survival rates and patterns of care for patients diagnosed with supratentorial low-grade gliomas:Data from the SEER program, 1973-2001. Cancer, 2006; 106: 1358-1363.
    3. Colombo F, Barzon L, Franchin E, Pacenti M, Pinna V, Danieli D, Zanusso M, Palu G. Combined HSV-TK/IL-2 gene therapy in patients with recurrent glioblastoma multiforme:biological and clinical results[J]. Cancer Gene Ther, 2005; 12: 835-848.
    4. Farquhar D, Pan BF, Sakurai M, Ghost A, Mullen CA, Nelson JA. Suicide gene therapy using E.coliβ-galactosidase [J]. Cancer Chemother Pharmacol, 2002; 50: 65-70.
    5. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J and Dirks PB. Identification of a cancer stem cell in human brain tumors [J]. Cancer Res, 2003; 63(18): 5821-5828.
    6. Kondo T, Setoguchi T, Taga T. Persistence of a small subpopulation of cancer stem like cells in the C6 glioma cell line [J]. Proc Natl Acad Sci USA, 2004; 101(3): 781-786.
    7. Galli R, Binda E, Orfanelli U, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma [J]. Cancer Res. 2004, 64: 7011-7021.
    8. Singh SK,Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB. Identification of human brain tumor initiating cells [J]. Nature, 2004, 432(7015): 396-401.
    9.姜晓兵,周凤,姚东晓,刘如愿,张方成,赵洪洋。人脑胶质瘤干细胞的培养及鉴定[J]。脑与神经疾病杂志,2005,13(1):6-8。
    10.尹昌林,吕胜青,唐莉,于春泳,杨辉。免疫磁珠法分选人脑胶质瘤干细胞及其培养和鉴定[J]。中国神经肿瘤杂志,2007,5(4):251-256。
    11.尹昌林,杨辉。脑胶质瘤干细胞的研究进展及应用前景[J]。中国微侵袭神经外科杂志,2006;11(8):370-373。
    12. Wharton KA, Johansen KM, Xu T, et al. Nucleotide sequence from the neurogenic locus notch implies a gene product that shares homology with proteins containing EGF-like repeats [J]. Cell, 1985, 43(3Pt2): 567-581.
    13. Artavanis Tsakonas S, Matsuno K, Fortini ME. Notch signaling [J]. Science, 1995, 268(5208): 225-232.
    14. Lieber T, Kidd S, Alcamo E, et al. Antineurogenic phenotypes induced by truncated Notch proteins indicate a role in signal transduction and may point to a novel function for Notch in nuclei [J]. Genes Dev, 1993, 7(10): 1949-1965.
    15. Struhl G,Fitzgerald K, Greenwald I. Intrinsic activity of the Lin-12 and Notch intracellular domains in vivo [J]. Cell, 1993, 74(2): 331-345.
    16. Logeat F, Bessia C, Brou C, et al. The NOTCH-1 receptor is cleaved constitutively by a furin-like convertase [J]. Proc Natl Acad Sci USA. 1998, 95(14): 8108-8112.
    17. Milner LA, Bigas A. Notch as a mediator of cell fate determination in hematopoiesis : evidence and speculation [J]. Blood, 1999, 93(8): 2431-2448.
    18. Artavanis Tsakonas S, Rand MD, Lake RJ. Notch signaling : cell fate controland signal integration in development [J]. Science, 1999, 284(5415): 770-776.
    19. Ordentlich P, Lin A, Shen CP,et al. Notch inhibition of E47 supports the existence of a novel signaling pathway [J]. Mol Cell Biol, 1998, 18(4): 2230-2339.
    20. Oswald F, Liptay S, Adler G, et al. NF-κB2 is a putative target gene of activated Notch-1 via RBP-Jκ[J]. Mol Cell Biol, 1998, 18(4): 2077-2088.
    21. Tanigaki K, Nogaki F, Takahashi J, et al . Notch 1 and Notch 3 instructively restrict bFGF-responsive multipotent neural progenitor cells to an astroglial fate [J]. Neuron, 2001, 29(1): 45-55.
    22. Grandbarbe L, Bouissac J, Rand M, et al. Delta-Notch signaling controls the generation of neurons/ glia from neural stem cells in a stepwise process [J]. Development, 2003, 130 (7): 1391-1402.
    23. Morrison SJ, Pere SE, Qiao Z, et al. Transcient notch activation initiates an ineversible switch from neurogenesis to glio genesis by neural stem cells [J]. Cell, 2000, 101(5): 499-510.
    24. Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, Rueger MA, Bae SK, Kittappa R, McKay RD. Notch signalling regulates stem cell numbers in vitro and in vivo [J]. Nature, 2006, 442(7104): 823-826.
    25. Varnum-Finney B, Xu L, Brashem-Stein C, Nourigat C, Flowers D, Bakkour S, Pear WS, Bernstein ID. Pluripotent, cytokine-dependent, haematopoietic stem cells are immortalized by constitutive NOTCH-1 signaling [J]. Nat Med, 2000, 6: 1278–1281.
    26.周小建。Notch信号通路与T淋巴细胞发育[J]。国外医学免疫学分册,2004,27(5):252-255。
    27. Purow BW, Haque RM, Noel MW, Su Q, Burdick MJ, Lee J, Sundaresan T, Pastorino S, Park JK, Mikolaenko I, Maric D, Eberhart CG, Fine HA. Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation [J]. Cancer-Res. 2005, 65(6): 2353-2363.
    28. Zagouras P, Stifani S, Blaumueller CM, et al. Alterations in Notch signalingin neoplastic lesions of the human cervix [J]. Proc Natl Acad Sci USA. 1995, 92(14): 6414-6418.
    29. Leethanakul C, Patel V, Gillespie J, et al. Distinct pattern of expression of differentiation and growth-related genes in squamous cell carcinomas of the head and neck revealed by the use of laser capture microdissection and cDNA arrays [J]. Oncogene, 2000, 19(28): 3220-3224.
    30. Enlund F, Behboudi A, Andren Y, et al. Altered Notch signaling result ing from expression of a WAMTP1-MAML2 gene fusion in mucoepidermoid carcinomas and benign Warthin’stumors [J]. Exp Cell Res, 2004, 292(1): 21-28.
    31. Jundt F, Schulze Proebsting KS, Anagnostopoulos I, et al. Jagged1-induced Notch signaling drives proliferation of multiple myeloma cells [J]. Blood, 2004, 103(9): 3511-3515.
    32. Tonon G, Modi S, Wu L, et al. t (11 ;19) (q21 ;p13) translocation in mucoepidermoid carcinoma creates a novel fusion product that disrupts a Notch signaling pathway [J]. Nat Genet, 2003, 33(2): 208-213.
    33. Nair P, Somasundaram K, Krishna S. Activated NOTCH-1 inhibits p53-induced apoptosis and sustains transformation by human papillomavirus type 16 E6 and E7oncogenes through a PI3K-PKB/Akt-dependent pathway [J]. J Virol, 2003, 77(12): 7106-7112.
    34. Nicolas M, Wolfer A, Raj K, et al. NOTCH-1 functions as a tumor suppressor in mouse skin [J]. Nat Genet, 2003, 33(3): 416-421.
    35.齐润姿,厉永建,安华章,于益芝,杨小妍,曹雪涛。NOTCH-1基因转染对人肝癌细胞Hep3B生长的影响及作用机制的研究[J]。中国肿瘤生物治疗杂志,2003,10(3):180-184。
    36. Hallahan AR, Pritchard JI, Hansen S, Benson M, Stoeck J, Hatton BA, Russell TL, Ellenbogen RG, Bernstein ID, Beachy PA, Olson JM. The SmoA1 mouse model reveals that notch signaling is critical for the growth and survival of sonic hedgehog-induced medulloblastomas [J]. Cancer Res. 2004, 64(21): 7794-7800.
    37.蔡文琴。现代实用细胞与分子生物学实验技术。2003,北京:人民军医出版社。
    38.萨姆布鲁克,拉塞尔(黄培堂等译)。分子克隆。2002,北京:科学出版社。
    39. Ishitsuka K, Hideshima T, Hamasaki M, Raje N, Kumar S, Hideshima H, Shiraishi N, Yasui H, Roccaro AM, Richardson P, Podar K, Gouill SL, Chauhan D, Tamura K, Arbiser J,and Anderson KC. Honokiol overcomes conventional drug resistance in human multiple myeloma by induction caspase-dependent ang–independent apoptosis [J]. Blood, 2005; 106(5): 1794-1800.
    40.陈自强,卞修武,辛榕,殷育松。人脑胶质瘤细胞系CHG-5的建立及其生物学特性的分析[J]。第三军医大学学报,1999,21(12):880-884。
    41. Reya T, Morrison SJ, Clarke MF, et al. Stem cells,cancer and cancer stem cells [J]. Nature, 2001; 414(6859): 105-111.
    42. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell [J]. Nature Med, 1997; 3(7): 730-737.
    43. Matsui W, Huff CA, Wang Q, et al. Characterization of clonogenic multiple myeloma cells [J]. Blood, 2004; 103(6): 2332-2336.
    44. Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells [J]. Proc Natl Acad Sci USA, 2003; 100(7): 3983-3988.
    45. Grynfeld A, Pahlman S, Axelson H. Induced neuroblastoma cell differentiation, associated with transient HES1 activity and reduced HASH1 expression, is inhibited byNotch1 [J]. Int J Cancer, 2000; 88(3): 401-410.
    46. Stockhausen MT, Sjolund J, Manetopoulos C, et al. Effects of the histone deacetylase inhibitor valp roic acid on Notch signal lingin human neuroblastoma cells [J]. Br J Cancer, 2005; 92(4): 751-759.
    47. Cuevas IC, Slocum AL, Jun P, et al. Meningioma transcript profiles reveal deregulated Notch signaling pathway [J]. Cancer Res; 2005, 65(12): 5070-5075.
    48. Fan X, Mikolaenko I, Elhassan I, et al. Notch1 and notch2 have opposite effects on embryonal brain tumor growth [J]. Cancer Res; 2004, 64(21): 7787-7793.
    49.易海波。Notch-1在人脑胶质瘤中的表达及其意义的研究[D]。福建医科大学硕士学位论文,2006。
    50. Ageyama R, Ohtsuka T, Hatakeyama J, et al. Roles of bHLH genes in neural stem cell differentiation [J]. Exp Cell Res; 2005, 306: 343-348.
    51. Hatkeyama J, Bessho Y, Katoh, et al. Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation [J]. Development; 2004, 131: 5539-5550.
    52. Wang Z, Zhang Y, Li Y, et al. Down-regulation of Notch-1 contributes to cell growth inhibition and apop tosis in pancreatic cancer cells[ J ]. Mol Cancer Ther, 2006, 5: 483-493.
    53. Hess KR, Broglio KR, Bondy ML. Adult glioma incidence in the United States, 1977-2000[J]. Cancer, 2004; 101(10): 2293-2299.
    54. Baron M. An overview of the Notch signalling pathway [J]. Semin Cell Dev Biol, 2003, 14: 113-119.
    55. Andratschke N, Grosu AL, Molls M, et al. Perspectives in the treatment of malignant gliomas in adults [J].Anticancer Res, 2001; 21(5): 3541-3550.
    56. Zhang W,Nwagwu C,Couldwell WT:Innovative treatment for intracranial gliomas. In: Batjer HH, Loftus CM. Eds. Textbook of Neurological Surgery: Principles and Practice (Vol.2). Philadelphia: Lippincott Williams and Wilkins, 1292-1303, 2003.
    57. Tuschl T, Zamore PD, Lehmann R ,et al. Targeted mRNA degradation by double-stranded RNA in vitro [J]. Genes Dev, 1999; 13(24): 3191-3197.
    58. Brummelkamp TR, Bernards R, Agami R. A system for stable expression of shortinterfering RNAs in mammalian cells [J]. Science, 2002; 296(5567): 550-553.
    59.杨媛,王蒙,粟永萍。RNAi作用机制研究进展及其应用[J]。免疫学杂志,2005;21(6):543-545。
    60. Fan QW,Weiss WA. RNA interference against a glioma-derived allele of EGFR induce blockade at G2M [J]. Oncogene, 2005; 24(5): 829-837.
    61. Friese MA,Wischhusen J,Wick W,et al. RNA interfernce targeting transforming growth factor-beta enhances NHG2D-mediated antiglioma immune response,inhibits glioma cell migration and invasiveness,and abrogates tumorigenecity in vivo [J].Cancer Res, 2004; 64(20): 7596-7603.
    62. Gondi CS,Lakka SS,Dinh DH,et al.RNAi-mediated inhibition of cathepsin B and uPAR leads to decreased cell invasion,angiogenesis and tumor growth in gliomas [J]. Oncogene, 2004; 23(52): 8486-8496.
    63.尹昌林,吕胜青,黄轶,李光辉,唐莉,杨辉。pSiRNA-Shh逆转录病毒载体的构建及对恶性脑胶质瘤细胞作用的离体实验研究[J]。中国实验诊断学,2007;11(5):598-602。
    64.尹昌林。SHH信号通路对脑胶质瘤干细胞增殖与分化调控作用的实验研究[D]。第三军医大学博士学位论文,2007。
    65. Franceschini IA, Feigenbaum-Lacombe V, Casanova P, et al . Efficient gene transfer in mouse neural precursors with a bicistronic retroviral vector [J]. J Neurosci Res, 2001; 65(3): 208-219.
    66.尹昌林,吕胜青,黄轶,李光辉,唐莉,杨辉。pSiRNA-NOTCH-1逆转录病毒载体的构建及对恶性脑胶质瘤细胞的作用[J]。第三军医大学学报,2007,29(12):1211-1214。
    67. Clement V, Sanchez P, de Tribolet N, et al. Hedgehog-GLI1 signalling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity [J]. Current Biology, 2007; 17(2): 165-177.
    1. Lendahl U, Zimmerman LB, Mckay RD. CNS stem cell express a new class of intermediate filament protein [J]. Cell, 1990,60(4): 585-595.
    2. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell [J]. Nat Med, 1997; 3(7): 730-737.
    3. Cox CV, Evely RS, Oakhill A, et al. Characterization of acute lymphoblastic leukemia progenitor cells[J]. Blood, 2004; 104(9): 2 919
    4. Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells [J].Proc Natl Acad Sci USA, 2003; 100(7): 3983-3988.
    5. Richardson GD, Robson CN, Lang SH, et al. CD133, a novel marker for human prostatic epithelial stem cells[J]. J Cell Sci , 2004; 117(16): 35-39
    6. Hemmati HD, Nakano I, Lazareff JA, et al. Cancerous stem cells can arise from pediatric brain tumors [J]. Proc Natl Acad Sci USA, 2003; 100(25): 15178-15183.
    7. Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors [J]. Cancer Res, 2003; 63(18): 5821-5828.
    8. Yuan, X, Curtin J, Xiong Y, et al. Isolation of cancer stem cells from adult glioblastoma multiforme [J]. Oncogene, 2004, 23 (58): 9392-9400.
    9. Galli R, Binda E, Orfanelli U, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma [J]. Cancer Res, 2004; 64(9): 7011-7021.
    10. Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors [J]. Cancer Res, 2003; 63(18): 5821-5828.
    11. Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stem cells [J]. Nature, 2001; 404 (6859): 105-111.
    12.尹昌林,杨辉。脑胶质瘤干细胞的研究进展及应用。中国微侵袭神经外科杂志,2006; 11(8): 370-373.
    13. Recht L, Jang T, Savarese T, et al. Neural stem cells and neuro-oncology: quo vadis [J] J Cell Biochem, 2003, 88(1): 11-19.
    14. Betschinger J, Mechtler K, Knoblich JA. The par complex directs asymmetric cell division by phosphorylating the cytoskeletal protein Lg1 [J]. Nature, 2003; 422(6929):326-330.
    15. Berger F, Gay E, Pelletier, et al. Development of gliomas: potential role of asymmetrical cell division of neural stem cells [J]. Lancet Oncol, 2004; 5(8): 511-514.
    16. Beachy PA, Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis [J]. Nature, 2004; 432 (7015): 324-331.
    17.陈骅,黄强,董军,等.肿瘤起源细胞学说与争论[J].癌症,2006; 25(6): 779-784.
    18. Al-Hajj M, Clarke MF. Self-renewal and solid tumor stem cells [J]. Oncogene, 2004; 23(43): 7274-7282.
    19.季晓燕,黄强,董军,等.脑肿瘤干细胞体外分化的形态、标志物及细胞增殖动力学特征[J].中华医学杂志, 2006; 86(23): 16-21.
    20. Li XN, Du ZW, Huang Q, et al. Growth-inhibitory and differentiation-inducing activity of dimethylformamide in cultured human malignant glioma cells [J]. Neuosurgery, 1997; 40(6): 1250-1259.
    21.黄强,施铭岗,董军,等.诱导分化、化疗和免疫治疗在荷人脑胶质瘤动物体内序贯组合研究[J].中华神经外科杂志, 2003; 19(1): 10-13.
    22.孙立军,黄强,兰青,等.胶质瘤细胞诱导分化后的凋亡现象[J].中国肿瘤, 2001; 10(5): 301-303.
    23. Ruiz I Altaba A ,Palma V ,Dahmane N1 Hedgehog2Gli signalling and the growth of the brain [J ] Nat Rev Neurosci ,2002 ,3 :24-33
    24. Lai K, Kaspar BK, Gage FH1 Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo [J ] Nat Neurosci ,2003 ,6 : 21-27
    25. Wechsler2Reya RJ1 Analysis of gene expression in the normal and malignant cerebellum [J ] Recent Prog Horm Res12003 ,58 :227-248
    26. Berman DM1 Karhadkar SS1 Hallahan AR1 Medulloblastoma growth inhibition by hedgehog pathway blockade [J] Science ,2002 ,29 :1559-1561
    27. Dahmane N, Sanchez P, Gitton Y1 The Sonic Hedgehog2Gli pathway regulates dorsal brain growth and tumorigenesis [J ] Development ,2001 , 128 :5201-5212
    28. Machold R , Hayashi S , Rutlin M1 Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches [J ]. Neuron ,2003 ,39 :937-950
    29. Molofsky AV, Pardal R, Iwashita T1 Bmi21 dependence distinguishes neural stem cell self2renewal from progenitor proliferation [J ] Nature , 2003 ,425 :962-967
    30. Leung C , Lingbeek M, Shakhova O1 Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas [J ].Nature ,2004 ,428 :337-341
    31. Reya T ,Morrison SJ , Clarke MF1 Stem cells , cancer , and cancer stem cells [J ]Nature ,2001 ,414 :105-111
    32. Chenn A ,Walsh CA1 Regulation of cerebral cortical size by control of cell cycle exit in neural precursors [J ]1 Science ,2002 ,297 :365-369
    33. Howng SL ,Wu CH ,Cheng TS1 Differential expression of Wnt genes ,beta2 catenin and E2cadherin in human brain tumors [J ]Cancer Lett ,2002 , 183 :95-101
    34. Koch A ,Waha A ,Tonn JC1 Somatic mutations of WNT/ wingless signaling pathway components in primitive neuroectodermal tumors [J ] Int J Cancer ,2001 ,93 :445-449
    35. Rasheed BK,Stenzel TT ,McLendon RE1 PTEN gene mutations are seen in high2grade but not in low2grade gliomas [J] Cancer Res ,1997 ,57 : 4187-4190
    36. Kato H ,Kato S ,Kumabe T1 Functional evaluation of p53 and PTEN gene mutations in gliomas [J ] Clin Cancer Res ,2000 ,6 :3937-3943
    37. Wen S ,Stolarov J ,Myers MP1 PTEN controls tumor2induced angiogenesis [J ] Proc Natl Acad Sci USA ,2001 ,98 :4622-4627
    38. Tunici P , Bissola L , Lualdi E1 Genetic alterations and in vivo tumorigenicity of neurospheres derived from an adult glioblastoma [J ]Mol Cancer ,2004 ,3 :25
    39. Holland EC ,Celestino J ,Dai C1 Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice [J ] Nat Genet ,2000 ,25 :55-57
    40. Uhrbom L ,Dai C , Celestino JC1 Ink4a2Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt [J ]Cancer Res ,2002 ,62 :5551-5558.
    1. Artavanis-Tsakonas S, Rand MD , Lake RJ. Notch signaling: cell fate control and signal integration in development. Science. 1999 , 284: 770-776.
    2. Allman D , Aster JC, Pear WS. Notch signaling in hematopoiesis and early lymphocyte development. Immunol Rev. 2002 , 187: 75-86.
    3. Schroeder T,Just U.mNotchl signaling reduces proliferation of myeloid progenitor cell by altering cell—cycle kinetics[J].Exp Hematol,2000,28:1206-1213.
    4. Schroeder T , Just U . Notch signaling via RBP-J promotes myeloid diferentiation[J].EMBO J,2000,19(11):2558-2568.
    5. Mumm JS,Schroeter EH,Saxena M'I’,et a1.A ligand-induced extracellular cleavage regulates(-Secretase-like proteolytic activation of Notchl [J].Mol Cell,2000,5:197-206.
    6. Milner LA,Bigas A,Kopan R,et a1.Inhibition of granulocytic diferentiation by mNotchl [J].Proc Natl Acad Sci USA,1996,93:13014-13019.
    7. Artavanis-Tsakomas, Rand M D, LakerR J, et al. Notch signaling: cell fate control and signal integration in development[ J ]. Science, 1999, 284: 770-776.
    8. Ross SE , Greenberg ME , Stiles CD. Basic helix-loop-helix factors in cortical development. Neuron , 2 0 0 3 , 3 9 ( 1 ) : 1 3-2 5.
    9. Giagtzoglou N , Alifragis P , Koumbanakis KA , et al. Two modes of recruitment of E ( sp l ) rep ressors onto target genes. Development , 2 0 0 3 , 1 3 0 ( 2 ) : 2 5 9 -2 7 0.
    10. Ageyama R, Ohtsuka T, Hatakeyama J, et al. Roles of bHLH genes in neural stem cell differentiation[ J ]. Exp Cell Res, 2005, 306: 343-348.
    11. Hatkeyama J, Bessho Y, Katoh, et al. Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation[ J ]. Development,2004, 131: 5539-5550.
    12. Ito T, Udaka N, Yazawa T, et al. Basic helix-loop-helix transcript tion factors regulate the neuroendocrine differentiation of fetal mouse pulmonary ep ithelium[ J ]. Development, 2000, 127:3913-3921.
    13. Rooman I, De Medts N, Baeyens L, et al. Exp ression of the Notch signaling pathway and effect on exocrine cell p roliferation in adult rat pancreas [ J ]. Am J Pathol, 2006,169: 1206-1214.
    14. Mclaughlin K A, Ronesm S, Mercola M, et al. Notch regulates cell fate in developing pronephros[ J ]. DevBiol, 2000,227: 567-580.
    15. Piscione T D, Wu M Y, Quaggin S E, et al. Exp ression of hairy/ enhancer of sp lit genes, Hes1 and Hes5, during murine nephron morphogenesis[ J ]. Gene Exp r Patterns, 2004, 4: 707-711.
    16. Karlsson C, Jonsson M, Asp J, et al. Notch and HES5 are regulated during human cartilage differentiation [ J ]. Cell Tissue Res, 2007, 327: 539-551.
    17. Wang X D, Leow C C, Zha J, et al. Notch signaling is required for normal p rostatic ep ithelial cell p roliferation and differentiation[ J ].Dev Biol, 2006, 290: 66-80.
    18. Nickoloff BJ , Osborne BA , Miele L. Notch signaling as a therapeutic target in cancer: a new app roach to the development of cell fate modifying agents. Oncogene. 2003 , 22 ( 42 ) : 6598-6608.
    19. Talora C, Sgroi DC, Crum CP, et al. Specific down-modulation of Notch1 signaling in cervical cancer cells is required for sustained HPV-E6 / E7 exp ression and late step s of malignant transformation. Genes Dev. 2002 , 16 ( 17 ) : 2252-2263.
    20. Purow BW , Haque RM, Noel MW , et al. Exp ression of Notch-1 and its ligands, Delta2like21 and Jagged-1 , is critical for glioma cell survival and p roliferation. Cancer Res. 2005 , 65 ( 6 ) : 2353-2363.
    21. Fan X, Mikolaenko I, Elhassan I, et al. Notch1 and notch2 have opposite effects on embryonal brain tumor growth. Cancer Res. 2004 , 64 ( 21 ) : 7787-7793.
    22. Grynfeld A , Pahlman S, Axelson H. Induced neuroblastoma cell differentiation, associated with transient HES1 activity and reduced HASH1 expression, is inhibited by Notch1. Int J Cancer. 2000 , 88 ( 3 ) : 401-410.
    23. Stockhausen MT, Sjolund J , Manetopoulos C, et al. Effects of the histone deacetylase inhibitor valp roic acid on Notch signal lingin human neuroblastoma cells. Br J Cancer. 2005 , 92 ( 4 ) : 751-759.
    24. Cuevas IC, Slocum AL , Jun P, et al. Meningioma transcript profiles reveal deregulated Notch signaling pathway. Cancer Res. 2005 , 65 ( 12 ) : 5070-5075.
    25. Sriuranpong V, Borgesm W, Ravir K, et al. Notch signaling induces cell cycle arrest in small cell lung cancer cells[ J ].Cancer Res, 2001, 61: 3200-3205.
    26. Q IR, An H, Yu Y, et al1 Notch signaling inhibits growth of hepatocellular carcinoma though induction cell cycle arrest and apoptosis[ J ].Cancer Res, 2003, 63: 8323-8329
    27. Wang Z, Zhang Y, Li Y, et al. Down-regulation of Notch-1 contributes to cell growth inhibition and apop tosis in pancreatic cancer cells[ J ]. Mol Cancer Ther, 2006, 5: 483-493
    28. O’neil J, Calvo J, Mckenna K, et al. Activating Notch1 mutation in mouse models of T - ALL [ J ] 1 Blood, 2006, 107:781-785.
    29. Kunnmalaiyaan M, Vaccaro A M, ND Iayema, et al. Overexp- ression of the Notch1 intracellular domain inhibits cell proliferation and alters the neuroendocrine phenotype ofmedullary thyroid cancer cells[ J ]. Biol Chem, 2006, 281: 39819-39830.
    30. Nakakura E K, Sriuranpong V R, Kunn Imalaiyaan M, et al. Regulation of neuroendocrine differentiation in gastrointestinal carcinoid tumor cells by notch signaling[ J ] .J Clin EndocrinoMetab, 2005, 90: 4350-4356.
    31. Purow B W, HaqueR M, Noel M W, et al. Exp ression of Notch1 and its ligands, delta-like-1 and jagged-1, is critical for glioma cell survival and p roliferation[ J ]. Cancer Res, 2005, 65:2353-2363
    32. Yao J, Duan L, Fanm, et al. Notch1 induces cell cycle arrest and apoptosis in human cervical cancer cells: involvement of nuclear factor kappa B inhibition[ J ]. Int J Gynecol Cancer, 2007, 17: 502-510
    33. Nicolasm, Wolfer A, Rajk, et al. Notch1 functions as a tumor suppressor in mouse skin [ J ].Nat Genet, 2003, 33: 416-421.
    34. Liu Z J, Xiao M, Balint K, et al. Notch1 signaling promotes primary melanoma progression by activating mitogen activated protein kinase /phosphatidylinositol
    32kinase-Akt pathways and upregulating N-cadherin expression [ J ].Cancer Res, 2006, 66:4182-4190.
    35. Duan L, Yao J, Wu X, et al. Growth suppression induced by Notch1 activation involves Wnt2beta2catenin down2regulation in human tongue carcinoma cells [ J ]. Biol Cell, 2006, 98: 479-490.
    1. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J and Dirks PB. Identification of a cancer stem cell in human brain tumors [J]. Cancer Res, 2003; 63(18): 5821-5828.
    2. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB. Identification of human brain tumor initiating cells [J]. Nature, 2004, 432(7015): 396-401.
    3. Jiang Xiaofeng,Zhou Feng, Yao Xiaodong et.al.Human the brain glimoa stem cell : the development and authenticate[J].Brain and nerve disease magazine, 2005, 13:(1)6-8.
    4. Yin Changlin, Yang Hui.The research of the brain glioma stem cell make progress and applied foreground[J].China is tiny to encroach upon a neurosurgery magazine, 2006;11:(8)370-373.
    5. Cai Wenqin.Modern and practical cell and molecular biology test a technique.2003, Peking:People military surgeon publisher.
    6. American Brain Tumor Association. A Primer of Brain Tumors. Des Plaines, IL (www.abta.org/buildingknowledge5.htm), 2006, pp. 13–s 17.
    7. Claus EB, Black PM. The low-grade of the supratentorial of the diagnosed with of the for patients of the and patterns of the Survival rates of care gliomas:Data from the SEER program, 1973-2001. Cancer, 2006; 106: 1358-1363.
    8. Artavanis Tsakonas S, Matsuno K, Fortini ME. NOTCH signaling [J]. Science, 1995, 268(5208): 225-232.
    9. Stockhausen MT, Sjolund J, Manetopoulos C, et al. Effects of the histone deacetylase inhibitor valp roic acid on NOTCH signal lingin human neuroblastoma cells [J]. Br J Cancer, 2005; 92(4): 751-759.
    10. Fan X, Mikolaenko I, Elhassan I, et al. NOTCH1 and NOTCH2 have opposite effects on embryonal brain tumor growth [J]. Cancer Res; 2004, 64(21): 7787-7793.
    11. Oswald F, Liptay S, Adler G, et al. The via NOTCH-1 of the activated of the putative target of the NF-κB2 is a gene of RBP-Jκ[J]. Mol Cell Biol, 1998, 18(4): 2077-2088.
    12. Tuschl T, Zamore PD, Lehmann R ,et al. Targeted mRNA degradation by double-stranded RNA in vitro [J]. Genes Dev, 1999; 13(24): 3191-3197.
    13. Yin Changlin,Lv Shengqing et.al.The pSiRNA-Shh converses to record virus to carry glioma cell function of a body experiment research[J].The experiment in China diagnosis learn, 2007;11:(5)598-602.
    14. Yin Changlin.The SHH signal pathway proliferations the brain gum quality glioma stem cell and differentiations to adjust an experiment research of control the function[D].The third military university Ph.D. degree thesis, 2007.
    15. Clement V, Sanchez P, de Tribolet N, et al. Hedgehog-GLI1 signalling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity [J]. Current Biology, 2007; 17(2): 165-177.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700