神经免疫调节网络中传入信号和信号传导模式的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经免疫学是二十世纪末期生命科学领域发展最为迅速的学科之一,神经免疫学科的基础理论“神经—内分泌—免疫调节网络”学说已经得到学术界的认同。在“神经—内分泌—免疫调节网络”研究的基础上,相关的实验证明了神经系统与免疫系统间存在功能调节作用。在神经免疫调节网络信号传导的解剖学构筑的研究中,调节网络的功能相关的传入信号和信号传入通路构成是领域研究争论的焦点之一。本论文在课题组前期不同免疫状态大鼠神经免疫调节功能相关脑区的定位研究工作的基础上,应用蛋白质组学研究中的表面加强激光解析电离—飞行时间—质谱技术(SELDI-TOF-MS)和基质辅助激光解析电离—飞行时间—质谱技术(MALDI-TOF-MS)及双向电泳(2-DE)分离技术等方法对不同免疫状态大鼠的外周血清和脑脊液组份进行比对分析,探索参与神经免疫调节的上传信号及传入通路构成模式,为进一步阐明神经免疫调节网络的解剖学构筑提供实验依据。
     SELDI分析结果显示,免疫组动物外周血中观察到221个有显著性差异的信号峰,其中173个为表达量高于对照组的正向表达峰。实验各组大鼠脑脊液的分析结果未见有统计学意义的特异性差异峰表达;在实验组血清中检测到的特异性差异峰也未在脑脊液中观察到相对应的同步变化。在76个最高峰值为免疫2天的免疫功能相关性差异表达的免疫大鼠血清的信号峰中,根据差异信号峰的分子量、pI值和来源细胞在已知的神经介质、神经肽、激素和细胞因子等信号物质中进行分析筛选,推测可能成为神经免疫调节相关的传入信号物质。经2-DE分离和MELDI-TOF-MS进一步分析和鉴定免疫大鼠血清中18KD特异组份,分析报告了18种来源的19个相关肽段序列,共247氨基酸,但相关结果不能满足任何已知物质的氨基酸序列的排序。
     我们的实验结果证明:
     1)本论文采用SELDI技术对不同免疫状态组大鼠和正常对照组大鼠的血清进行对比分析的结果显示实验组表达了221个与免疫功能相关的差异信号峰;差异信号表达峰值的分布在免疫2天的有76个,免疫4天有1个,免疫6天有96个;差异峰值统计学分析具有极显著性差异,某些差异峰的特异性甚至表现为“全或无”的关系。这些实验结果支持了神经免疫调节网络传入信号模式研究中两个重要的代表性假说——“血行传导通路”和“神经传导通路”假说在神经免疫调节网络传入信号通路领域研究中达成的共识,即免疫活性细胞释放功能活动相关信号物质到体液(血液)中,进而启动神经免疫调节功能。
     2)对不同实验组大鼠的脑脊液组份对比分析的结果显示,脑脊液中并不存在与免疫功能变化相关的神经免疫调节功能的传入信号物质,血液中免疫功能相关的信号物质的变化没有在脑脊液中平行反映。神经免疫调节功能相关信号传入模式不是“血液—脑脊液—接触脑脊液的神经元系统—中枢脑区”的血行传导方式。本论文神经免疫调节网络信号传导模式研究结果不支持“血行传导通路”假说。
     3)根据最高峰值在免疫2天的免疫功能相关的差异信号峰的分子量、PI值和来源细胞,在已知的神经介质、神经肽、激素和细胞因子等信号物质中进行比对筛选,推测细胞因子IL-8、IL-15和IL-18等三个组份可能成为免疫系统释放的跨系统传递的神经免疫调节功能相关的传入信号物质。
     4)本论文应用蛋白质组学研究技术的标准方法2-DE-MALDI-TOF-MS技术分析免疫大鼠血清中IL-1分子在神经免疫调节网络传入通路中的地位和作用,发现免疫活性细胞释放到血液中的IL-1不可能成为免疫系统释放的跨系统传递的信号物质,参与神经免疫调节网络功能,否定了“血行传导通路”和“神经传导通路”假说在神经免疫调节网络传入信号通路领域研究中关于IL-1的共识。
     5)对免疫大鼠血清双向电泳分离的分子量约18KD,PI约5.0位置差异点进行质谱鉴定的结果显示,该差异点的氨基酸序列不符合数据库收集的任何已知物质的氨基酸序列,提示神经免疫调节网络传入通路的上传信号中,可能包括我们还不了解的新物质。
Neuroimmunology is one of the most developed subjects in life science at the end of the 20th century. Neuro-endocrine-immunological regulation network theory—the fundamental of neuroimmunology has achieved great identification by academic circles and correlative experiments and researches have also demonstrated the existence of function regulation effect between the system of nerve and immune. Based on research of neuroendocrine regulation network, relative investigation has proved that there is a functional regulatory relationship between the nerve system and immune system.The argument in this investigation field was focused on signal afferent pathway of neuro-immune modulation network. In our prophase stuty, we found that the lateral hypothalamic nucleus (LH) and amygdaloid nuclear complex (AA) of the rat hypothalamus are referred to the neuroimmunomodulation. Based on the prophase study, we contrast analyzed ingredient of peripheral blood and cerebrospinal fluid of different immunized stage rats by Mass Spectrometry technique and Two-dimensional SDS electrophoresis to explore the up-delivering signals and afferent pathway involved in neuroimmunoregulation and provide experiment data to elucidate furtherly the anatomic construction of neuroimmunoregulation network. In our study, we use normal humans' IgG as immunizing antigen to prepair immune animal model by tail injection, take serum and cerebrospinal fluid from rats after immunized 0, 2, 4, 6, 8 days. Contrast analyzed ingredient of peripheral serum and cerebrospinal fluid of different immunized stage rats by Surface Enhanced Laser Desorption Ionization-Time Of Flight-Mass Spectrometry ( SELDI-TOF-MS) technique, Two-dimensional electrophoresis and Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF-MS) technique are furtherly applied in analyzing the amino acid sequence of 18KD idio-ingredient and determining signal molecules. The core of the empirical study in this thesis is to identify the passible afferent signal and mechanisms of the afferent signal pathway of neuroimmunomodulation network and to provide experiment evidence for illumination the anatomic construction of the neuroimmunologic network.
     Relative results show that there are 221 significant different peaks which have correlations with immunological function discovered in serum of immune animals by SELDI-TOF-MS. Among the total of 221 different peaks, 173 peaks are high expressions in experimental group and the others are reverse—increases in control group. But no special different peak which has statistical significance are found in cerebrospinal fluid of immune animals. Also it can't observe corresponding equal increase between the special different peaks tested in peripheral serum and cerebrospinal fluid of immune animals. we compare and analyze the possible afferent signals of the neuroimmunomodulation network in the known neuromediators、neuropeptides、hormones and cytokines with the connection of 76 positive differential expression ingredients with highest peak value at immuned 2 days in rat serums detected by SELDI-TOF-MS to suppose possible afferent signals of the neuroimmunomodulation network. Analysis results on 18KD specific dot of 2-DE by MALDI-TOF-MS report 19 correlated peptide sequences derived from 18 substances, the total of 247 amino acids. However, the correlated results can't satisfy any amino acid sequence arrangement of the known substances.
     So with the analysis above, we consider that these foregoing results demonstrate that 1) The results of theses research include 221 significant different peaks which have correlations with immunological function discovered in serum of immune animals by SELDI-TOF-MS; there are 76 differential signals with highest peak value expressed at immuned 2 days, 1 differential signal at immuned 4 days, 96 differential signals at immuned 6 days; statistic analysis of differential peak has extremely significant difference, even specificity of some peaks manifests all or none character. All the results have supported the agreement with study on the afferent signal pathway of neuroimmunomodulation network "active immunocytes release relevant functional active signals into blood, then start neuroimmunomodulation work by some way. 2) There is lack of evidence to verify immune modulator could carry out neuro-immune modulation by passing through blood brain barrier directly; 3) Possible afferent signals of the neuroimmunomodulation network such as IL-8、IL-15 and IL-18 supposed with relative factors; 4) IL-1 released by active immunocytes in the blood are not the afferent signal from the immune system to participate in the neuroimmunomodulation; 5) It needs more study on the signal which origins from active immunocytes to trigger the regulatory function of the relevant brain area in neuroimmunomodulation network . The afferent signals may be some unknow subtances.
引文
(1) Besedovsky HO,Sork inE.Network of immuno-neuro-endocrine interactions.J Clin Exp Immunol.1977;27:1-6.
    (2) Crews D,Lou W,Fleming A.From gene networks underlying sex determination and gonadal differentiation to the development of neural networks regulating sociosexual behavior.Brain Res.2006;1126(1):109-21.
    (3) Floresco SB.Dopaminergic regulation of limbic-striatal interplay.J Psychiatry Neurosci.2007;32(6):400-11.
    (4) Porges SW.The polyvagal perspective.Biol Psychol.2007;74(2):116-43.
    (5) Modlin IM,Champaneria MC,Bornschein J.Evolution of the diffuse neuroendocrine system—clear cells and cloudy origins.Neuroendocrinoiogy.2006;84(2):69-82.
    (6) Nikitina GM,Kuznetsov YuB,Kulaichev AP.Functional characteristics of the mature and developing brain following neuroimmunization:analysis of short-term plasticity in the rat hippocampus.Neurosci Behav Physiol.1990;20(6):528-35
    (7) Rodriguez A,Mallard BA,Boermans HJ.Variation in the ovine cortisol response to systemic bacterial endotoxin challenge is predominantly determined by signalling within the hypothalamic-pituitary-adrenal axis.Toxicol Appl Pharmacol.2008;1(2):11-6.
    (8) Kavoussi B,Ross BE.The neuroimmune basis of anti-inflammatory acupuncture.Integr Cancer Ther.2007;6(3):251-7.
    (9) Arias C,Sawchenko PE.Evidence for an intramedullary prostaglandin-dependent mechanism in the activation of stressrelated neuroendocrine circuitry by intravenous interleukin-1.J Neurosci.1997;7:7166-7179.
    (10) Fattori E,Cappelletti M,Costa P,et al.Defective inflammatory response in interleukin 6-deficient mice.J Exp Med.1994;180:1243-50.
    (11) Roth J,De Souza GE Fever induction pathways:evidence from responses to systemic or local cytokine formation.Braz J Med Bioi Res.2001;34(3):301-1.
    (12) Besedovsky H,Sorkin E,Keller M,Muller J.Changes in blood hormone levels during immune-response.Proc Soc Exp Biol Med.1975;150:466-70.
    (13) Wiertelak EP,Martin D,Watkins LR.Interleukin-1 mediates the behavioral hyperalgesia produced by lithium chloride and endotoxin.Brain Res.1993;3:321-324.
    (14) Dunn AJ.Role of cytokines in infection-induced stress.Ann NY Acad Sci.1993;97:189-202.
    (15) 高扬,黄以光,林嘉友,王东,林荣安.大鼠免疫相关脑区的定位.中国医学科学院学报.2000:2(6):525-8.
    (16) Ziokovic BV.The blood-brain barrier in health and chronic neurodegenerative disorders.Neuron.2008;57(2):178-201.
    (17) Nagaraja TN,Karki K,Ewing JR.Identification of variations in blood-brain barrier opening after cerebral ischemia by dual contrast-enhanced magnetic resonance imaging and T 1sat measurements.Stroke.2008;9(2):427-32.
    (18) Jaeger CB,Blight AR.Spinal cord compression injury in guinea pigs:structural changes of endothelium and its perivascular cell associations after blood-brain barrier breakdown and repair.Exp Neurol.1997;144(2):381-99.
    (19) Nissen C,Coy DH.Permeability of blood-brain barrier to DSIP peptides.Pharmacol Biochem Behav. 1981;15(6):955-9.
    
    (20) Banks WA, Kastin AJ. Peptides and the blood-brain barrier: lipophilicity as a predictor of permeability.Brain Res Bull. 1985;15(3):287-92.
    
    (21) Thompson SE, Cavitt J, Audus KL.Leucine enkephalin effects on paracellular and transcellular permeation pathways across brain microvessel endothelial cell monolayers.J Cardiovasc Pharmacol. 1994;24(5):818-25.
    
    (22) Egleton RD, Mitchell SA, Huber JD.Improved blood-brain barrier penetration and enhanced analgesia of an opioid peptide by glycosylation.J Pharmacol Exp Then 2001;299(3):967-72.
    
    (23) Lee HJ, Zhang Y, Pardridge WM.Blood-brain barrier disruption following the internal carotid arterial perfusion of alkyl glycerols.J Drug Target.2002;10(6):463-7.
    
    (24) Reichel A, Begley DJ, Ermisch A.Arginine vasopressin reduces the blood-brain transfer of L-tyrosine and L-valine: further evidence of the effect of the peptide on the L-system transporter at the blood-brain barrier.Brain Res. 1996;713(l-2):232-9.
    
    (25) Pan W, Kastin A J. Interactions of cytokines with the blood-brain barrier: implications for feeding.Curr Pharm Des. 2003;9(10):827-31.
    
    (26) Czirok SJ, Szabo A, Lukats A, Szel A.The system of cerebrospinal fluid-contacting neurons.Its supposed role in the nonsynaptic signal transmission of the brain.Histol Histopathol.2004;19(2):607-28.
    
    (27) Lin JH.CSF as a surrogate for assessing CNS exposure: an industrial perspective.Curr Drug Metab.2008;9(1):46-59.
    
    (28) Mix E, Goertsches R, Zettl UK.Immunology and neurology.J Neurol. 2007 ;254 Suppl 2:112-7.
    
    (29) Yu WH, Gimeno M, McCann SM. Role of nitric oxide in control of growth hormone release in the rat. Neuroimmunomodulation. 1994; 1(3): 195-200.
    
    (30) Hiramoto NS, Ghanta VK, Hiramoto RN. Lipopolysaccharide and IL-1 alpha activate CNS pathways as measured by NK cell activity. Physiol Behav. 1996;59(3):499-504.
    
    (31) Gordon FJ. Effect of nucleus tractus solitarius lesions on fever produced by interleukin-1beta.Auton Neurosci. 2000;85(3):102-10.
    
    (32) Seelig A. The role of size and charge for blood-brain barrier permeation of drugs and fatty acids. J Mol Neurosci. 2007;33(1):32-41.
    
    (33) Banks WA, Kastin AJ.Relative contributions of peripheral and central sources to levels of IL-1 alpha in the cerebral cortex of mice: assessment with species-specific enzyme immunoassays.J Neuroimmunol. 1997;79(1):22-8.
    
    (34) Pan W, Kastin AJ. Polypeptide delivery across the blood-brain barrier.Curr Drug Targets CNS Neurol Disord. 2004;3(2):131-6.
    
    (35) Blamire AM, Anthony DC, Rajagopalan B, et al. Interleukin-1beta-induced changes in blood-brain barrier permeability, apparent diffusion coefficient, and cerebral blood volume in the rat brain: a magnetic resonance study. J Neurosci. 2000;20(21):8153-9.
    
    (36) Kastin AJ, Hahn K, Zadina JE. Regional differences in peptide degradation by rat cerebral microvessels: a potential novel regulatory mechanism for communication between blood and brain.Life Sci. 2001;69(11):1305-12.
    
    (37) Poduslo JF, Curran GL, Wengenack TM, et al .Permeability of proteins at the blood-brain barrier in the normal adult mouse and double transgenic mouse model of Alzheimer's disease.Neurobiol Dis. 2001;8(4):555-67.
    
    (38) Waguespack PJ, Banks WA, Kastin AJ. Interleukin-2 does not cross the blood-brain barrier by a saturable transport system.Brain Res Bull. 1994;34(2):103-9.
    
    (39) Duvernoy HM, Risold PY. The circumventricular organs: an atlas of comparative anatomy and vascularization.Brain Res Rev. 2007;56(1):119-47.
    
    (40) Alunni A, Auger H, Kano S, Retaux S.Windows of the brain: towards a developmental biology of circumventricular and other neurohemal organs.Semin Cell Dev Biol.2007;18(4):512-24.
    
    (41) Fry M, Ferguson AV. The sensory circumventricular organs: brain targets for circulating signals controlling ingestive behavior.Physiol Behav. 2007;91(4):413-23.
    (42) Maness LM, Kastin AJ, Banks WA. Relative contributions of a CVO and the microvascular bed to delivery of blood-borne IL-lalpha to the brain.Am J Physiol. 1998;275(1):207-12.
    
    (43) Banks WA, Kastin AJ, Durham DA. Bidirectional transport of interleukin-1 alpha across the blood brain barrier. Brain Res Bull .1989; 23: 433-7.
    
    (44) Gutierrez EG, Banks WA, Kastin AJ. Murine tumor necrosis factor-alpha is transported from blood to brain in the mouse. J Neuroimmunol .1993; 47: 169-76.
    
    (45) Gordon FJ. Effect of nucleus tractus solitarius lesions on fever produced by interleukin-1 beta.Auton Neurosci. 2000;85(1-3):102-10.
    
    (46) Sugano H, Bembry J, Lenz FA, et al .Adrenergic mediation of TNF alpha-stimulated ICAM-1 expression on human brain microvascular endothelial cells.Acta Neurochir Suppl.2000;76:117-20.
    
    (47) Pan W, Maness LM, Banks WA.Peptides crossing the blood-brain barrier: some unusual observations.Brain Res. 1999;848( 1 -2):96-100.
    
    (48) Albayati ZF, Crooks PA, Dwoskin LP, et al. Carrier-mediated transport of the quaternary ammonium neuronal nicotinic receptor antagonist n,n'-dodecylbispicolinium dibromide at the blood-brain barrier.J Pharmacol Exp Ther. 2008;324(1):244-50.
    
    (49) Chappa AK, Audus KL, Lunte SM,et al .Characteristics of substance P transport across the blood-brain barrier.Pharm Res. 2006;23(6):1201-8.
    
    (50) Banks WA, Kastin AJ .Blood to brain transport of interleukin links the immune and central nervous systems. Life Sci. 1991;48(25):PL117-21.
    
    (51) Ruhle HJ, Kretzschmar R, Baethmann A.On the blood-brain barrier to peptides: specific binding of atrial natriuretic peptide in vivo and in vitro.Brain Res. 1991;554(2):209-16.
    
    (52) Wang X, Liu J, Waalkes MP, et al. Molecular mechanism of distorted iron regulation in the blood-CSF barrier and regional blood-brain barrier following in vivo subchronic manganese exposure.Neurotoxicology. 2006;27(5):737-44.
    
    (53) Gaillard PJ, Visser CC, de Boer AG , et al. Targeted delivery across the blood-brain barrier.Expert Opin Drug Deliv. 2005;2(2):299-309.
    
    (54) Wan J, She Z, Jiang X ,et al .Brain delivery property and accelerated blood clearance of cationic albumin conjugated pegylated nanoparticle.J Control Release. 2007 ;118(1):38-53.
    
    (55) Vinters HV, Wu D, Pardridge WM ,et al .Enhanced neuroprotective effects of basic fibroblast growth factor in regional brain ischemia after conjugation to a blood-brain barrier delivery vector.J Pharmacol Exp Ther. 2002;301(2):605-10.
    
    (56) Bickel U, Yoshikawa T, Pardridge WM ,et al .Delivery of peptides and proteins through the blood-brain barrier.Adv Drug Deliv Rev. 2001;46(l-3):247-79.
    
    (57) Sato H, Hirai K, Tsuji A ,et al. In vivo transport of a dynorphin-like analgesic peptide, E-2078, through the blood-brain barrier: an application of brain microdialysis. Pharm Res.1991;8(7):815-20.
    
    (58) Carter JL, Wood CA, Bellinger DL ,et al. Bidirectional communication between the brain and the immune system: implications for physiological sleep and disorders with disrupted sleep.Neuroimmunomodulation. 2006; 13(5-6):357-74.
    
    (59) Zhang H, Belevych N, He L, et al.Endothelial-specific knockdown of interleukin-1 (IL-1) type 1 receptor differentially alters CNS responses to IL-1 depending on its route of administration. J Neurosci. 2007;27(39): 10476-86.
    
    (60) Pinteaux E, Rothwell NJ.Regulation of expression of the novel IL-1 receptor family members in the mouse brain.J Neurochem. 2005;95(2):324-30.
    
    (61) Wieczorek M, Dunn AJ. Effect of subdiaphragmatic vagotomy on the noradrenergic and HPA axis activation induced by intraperitoneal interleukin-1 administration in rats.Brain Res.2006;1101(l):73-84.
    
    (62) Konsman JP, Dantzer R.How the immune and nervous systems interact during disease-associated anorexia.Nutrition. 2001;17(8):664-8.
    
    (63) Goehler LE, Fleshner M, Watkins LR. The role of the vagus nerve in cytokine-to-brain communication.Ann N Y Acad Sci. 1998;840:289-300.
    
    (64) Goehler LE , Relton JK , Dripple D, et al.Vagal paraganglia bind biotinylated interleukin-1 receptor antagonist: a possible mechanism for immune-to-brain communication .[J] Brain Res Bull. 1997;4(3):57-64.
    
    (65) Berthoud HR, Kressel M, Neuhuber WL, et al. Vagal afferent innervation of rat abdominal paraganglia as revealed by anterograde Diltracing and confocal microscopy. Acta Anat.l995;2:127-132.
    
    (66) Akita S, Akino K, Hirano A, et al .Acceleration of sensory neural regeneration and wound healing with human mesenchymal stem cells in immunodeficient rats.Stem Cells.2007;25(11):2956-63.
    
    (67) Akama KT, Nacher J, McEwen BS,et al. Differential expression of suppressors of cytokine signaling-1, -2, and -3 in the rat hippocampus after seizure: implications for neuromodulation by gp130 cytokines.Neuroscience. 2003;122(2):349-58.
    
    (68) Gil K, Zurowski D, Nowak L,et al .Melatonin and serotonin effects on gastrointestinal motility.J Physiol Pharmacol. 2007;58 Suppl 6:97-103.
    
    (69) Hu Y, Cadman S, Bouloux P, et al .Diversity in fibroblast growth factor receptor 1 regulation: learning from the investigation of Kallmann syndrome.J Neuroendocrinol. 2008;20(2):141-63.
    
    (70) Boschetti E, Santambien P, Brenac V, et al. Surface-enhanced laser desorption-ionization retentate chromatography mass spectrometry (SELDI-RC-MS): a new method for rapid development of process chromatography conditions.J Chromatogr B Analyt Technol Biomed Life Sci.2002;782(2):307-16.
    
    (71) Wang M, Christiani D, Lin X.Quantitative quality-assessment techniques to compare fractionation and depletion methods in SELDI-TOF mass spectrometry experiments.Bioinformatics. 2007;23( 18):2441 -8.
    
    (72) Watkins LR, Maier SF, Goehler LE, et al .Cytokine-to-brain communication: a review & analysis of alternative mechanisms. Life Sci. 1995;57(11):1011-26.
    
    (73) Masterman D, Swanson SJ, Moxness MS ,et al. Development of a maturing T-cell-mediated immune response in patients with idiopathic Parkinson's disease receiving r-metHuGDNF via continuous intraputaminal infusion.J Clin Immunol. 2007;27(6):620-7.
    
    (74) Abe M, Matsuura B, Hiasa Y, et al .Impaired dendritic cell functions because of depletion of natural killer cells disrupt antigen-specific immune responses in mice: restoration of adaptive immunity in natural killer-depleted mice by antigen-pulsed dendritic cell.Clin Exp Immunol.2008;152(1):174-81.
    
    (75) Das G, Devadas S.Granulocyte-macrophage colony-stimulating factor (GM-CSF) and T-cell responses: what we do and don't know.Cell Res. 2006;16(2):126-33.
    
    (76) Tang ZY, Uemura T.Screening serum hepatocellular carcinoma-associated proteins by SELDI-based protein spectrum analysis.World J Gastroenterol. 2008; 14(8): 1257-62.
    
    (77) Wang P, Rothwell NJ.Interleukin-1 and inflammatory neurodegeneration.Biochem Soc Trans.2007;35(Pt 5): 1122-6.
    
    (78) Hopkins SJ .Central nervous system recognition of peripheral inflammation: a neural,hormonal collaboration.Acta Biomed. 2007;78 Suppl 1:231-47.
    
    (79) Anthony Ceramic.Inflammation.Immunology and Immunopathology.1992;2(1):3-5.
    
    (80) Peveri P.A novel neutrophil activating factor produced by human mononuclear phagocytes [J].J Exp Med.l988;167:1883.
    
    (81) YoshikoS, Tadashi K, YujiY, et al.Stimulation of okadaic acid and vanadate in a human promyelocyte cell line, an HL-60 Subline. [J] J Biolchem.l997;272:15366.
    
    (82) Larondelle Y, Schneider YJ.Influence of deoxynivalenol on NF-kappaB activation and IL-8 secretion in human intestinal Caco-2 cells.Toxicol Lett. 2008;177(3):205-14.
    
    (83) Berghuis BD, Young JJ, Zhang Z, et al .Mitogen-activated protein kinase kinase signaling promotes growth and vascularization of fibrosarcoma.Mol Cancer Then 2008;7(3):648-58.
    
    (84) Berman JW. CD40-CD40 ligand interactions in human microglia induce CXCL8 (interleukin-8) secretion by a mechanism dependent on activation of ERK1/2 and nuclear translocation of nuclear factor-kappaB (NFkappaB) and activator protein-1 (AP-1). J Neurosci Res. 2008;86(3):630-9.
    (85) Maheshwari A,Misiuta I,Fox SE.Neutrophil-specific chemokines are produced by astrocytic cells but not by neuronal cells.Brain Res Dev Brain Res.2005;155(2):127-34.
    (86) Lee HK,Kim D,Choi SY,et al.TLR3-mediated signal induces proinflammatory cytokine and chemokine gene expression in astrocytes:differential signaling mechanisms of TLR3-induced IP-10 and IL-8 gene expression.Gila.2006;53(3):248-56.
    (87) 曹秋云,潘旭东.大鼠局灶性脑缺血IL-8变化的研究.中风与神经疾病杂志.2000;4(17):21-6.
    (88) Ozdemir O,Ravindranath Y,Savasan S.Mechanisms of superior anti-tumor cytotoxic response of interleukin 15-induced lymphokine-activated killer cells.J Immunother.2005;28(1):44-52.
    (89) Liew FY,McInnes IB.Role of interleukin 15 and interleukin 18 in inflammatory response.Ann Rheum Dis.2002;1(2):10-12.
    (90) Paquet ME,Paquin R,Beaulieu AD,et al.Differential effects of interleukin-15(IL-15) and IL-2 on human neutrophils:modulation of phagocytosis,cytoskeleton rearrangement,gene expression,and apoptosis by IL-15.Blood.1996;88(8):3176-84.
    (91) Perera LP,Goldman CK,Waldmann TA.IL-15 induces the expression of chemokines and their receptors in T lymphocytes.J Immunol.1999;162(5):2606-12.
    (92) Waldmann TA,Tagaya Y.The multifaceted regulation of interleukin-15 expression and the role of this cytokine in NK cell differentiation and host response to intracellular pathogens.A nnu Rev Immunol.1999;17:19-49.
    (93) Pita-Thomas DW,Nieto-Sampedro M.Interleukin 15 expression in the CNS:blockade of its activity prevents glial activation after an inflammatory injury.Glia.2008;56(5):494-505.
    (94) Laure-Kamionowska M,Kaliszek A,Makarewicz D,et al.Proinflammatory cytokines in injured rat brain following perinatal asphyxia.Folia Neuropathol.2002;40(4):177-82.
    (95) Kuida K,Tsutsui H,Ku G,et al.Activation of interferon-gamma inducing factor mediated by interleukin-1 beta converting enzyme.Science.1997;275(5297):206-9.
    (1) Van Dam AM, Bauer J,Tilders FJ, et al.Endotoxin-induced appearance of immunoreactive interleukin-1 beta in ramified microglia in rat brain: a light and electron microscopic study.Neuroscience. 1995;65(3):815-26.
    
    (2) Propes MJ, Johnson RW. Role of corticosterone in the behavioral effects of central interleukin-1 beta.Physiol Behav. 1997;61(1):7-13.
    
    (3) Sirko S, Bishai I, Coceani F. Prostaglandin formation in the hypothalamus in vivo: effect of pyrogens.Am J Physiol. 1989; 256(2):616-24.
    
    (4) Murakami N, Sakata Y, Watanabe T. Central action sites of interleukin-1 beta for inducing fever in rabbits. J Physiol. 1990;428:299-312.
    
    (5) Bhattacharjee S,Majumder N, Bhattacharyya P, et al. Immunomodulatory role of arabinosylated lipoarabinomannan on Leishmania donovani infected murine macrophages.Indian J Biochem Biophys. 2007;44(5):366-72.
    
    (6) Johansen P ,Senti G, Maria Martinez Gomez J, et al. Medication with antihistamines impairs allergen-specific immunotherapy in mice.Clin Exp Allergy. 2008;38(3):512-9.
    
    (7) Ericsson A, Kovacs KJ, Sawchenko PE, et al. A functional anatomical analysis of central pathways subserving the effects of interleukin-1 on stress-related neuroendocrine neurons. J Neurosci. 1994;14(2):897-913.
    
    (8) Simi A, Tsakiri N, Wang P, et al . Interleukin-1 and inflammatory neurodegeneration.Biochem Soc Trans. 2007; 35(5): 1122-6.
    
    (9) Konsman JP, Drukarch B, Van Dam AM, et al. (Peri)vascular production and action of pro-inflammatory cytokines in brain pathology.Clin Sci (Lond). 2007; 112(1):1-25.
    
    (10) Gill PS, Porter-Gill PA, Kasckow JW, et al. Interleukin-1 regulation of corticotropin-releasing factor (CRF), glucocorticoid receptor, c-fos and c-jun messenger RNA in the NPLC-KC cell line.Mol Cell Endocrinol. 1998;137(1):31-9.
    
    (11) Zhang Y, Taveggia C, Melendez-Vasquez C, et al.Interleukin-11 potentiates oligodendrocyte survival and maturation, and myelin formation.J Neurosci. 2006 ;26(47):12174-85.
    
    (12) Plotkin SR , Banks WA , Kastin AJ, et al . Comparison of saturable transport and extracellular pathways in the passage of interleukin-1 alpha across the blood-brain barrier. J Neuroimmunol.1996;67(1):41-7.
    
    (13) Konsman JP, Luheshi GN, Bluthe RM, et al. The vagus nerve mediates behavioural depression,but not fever, in response to peripheral immune signals; a functional anatomical analysis. Eur J Neurosci. 2000;12(12):4434-46.
    
    (14) Wieczorek M, Swiergiel AH, Pournajafi-Nazarloo H, et al. Physiological and behavioral responses to interleukin-1 beta and LPS in vagotomized mice. Physiol Behav.2005;85(4):500-11.
    
    (15) Bartfai T, Sanchez-Alavez M, Andell-Jonsson S, et al. Interleukin-1 system in CNS stress:seizures, fever, and neurotrauma.Ann N Y Acad Sci. 2007; 1113:173-7.
    
    (16) Reyes TM, Sawchenko PE. Involvement of the arcuate nucleus of the hypothalamus in interleukin-1-induced anorexia. J Neurosci. 2002;22(12):5091-9.
    
    (17) Yi PL, Tsai CH, Lu MK, et al. Interleukin-1 beta mediates sleep alteration in rats with rotenone-induced parkinsonism.Sleep. 2007;30(4):413-25.
    
    (18) Zubareva OE, Krasnova IN, Abdurasulova IN, et al. Effects of serotonin synthesis blockade on interleukin-1 beta action in the brain of rats. Brain Res. 2001;915(2):244-7.
    
    (19) Zubareva OE, Efremov OM, Simbirtsev AS, et al. Interleukin-1 beta and depressive states Ross Fiziol Zh Im I M Sechenova. 2001;87(10):1450-6.
    
    (20) Pickering M, O'Connor JJ. Pro-inflammatory cytokines and their effects in the dentate gyrus.Prog Brain Res. 2007;163:339-54.
    
    (21) Tringali G , Dello Russo C , Preziosi P, et al. Interleukin-1 in the central nervous system: from physiology to pathology.Therapie. 2000;55(1):171-5.
    
    (22) Copray JC, Mantingh I, Brouwer N, et al. Expression of interleukin-1 beta in rat dorsal root ganglia. J Neuroimmunol. 2001; 118(2):203-11.
    (23) Banks WA, Kastin AJ, Gutierrez EG , et al.. Interleukin-1 alpha in blood has direct access to cortical brain cells.Neurosci Lett. 1993;163(1):41-4.
    
    (24) Dunn AJ. Psychoneuroimmunology for the psychoneuroendocrinologist: a review of animalstudiesof nervous system-immune system interactions. Psychoneuroendocrinology.1989;14(4):251-74.
    
    (25) Kelley KW, Weigent DA, Kooijman R, et al. Protein hormones and immunity. Brain Behav Immun. 2007;21(4):384-92.
    
    (26) Corcoran C, Connor TJ, O'Keane V, et al. The effects of vagus nerve stimulation on pro- andanti-inflammatorycytokines in humans: a preliminary report.Neuroimmunomodulation.2005;12(5):307-9.
    
    (27) Mousa SA. Morphological correlates of immune-mediated peripheral opioid analgesia. Adv Exp Med Biol. 2003;5(21)77-87.
    
    (28) Morioka N, Inoue A, Nakata Y, et al. Neural-immune interactions in dorsal root ganglia.Nippon Yakurigaku Zasshi. 2000; 115(4):219-27.
    
    (29) Goehler LE, Gaykema RP, Nguyen KT, et al. Interleukin-1 beta in immune cells of the abdominal vagus nerve: a link between the immune and nervous systems? J Neurosci.1999;19(7):2799-806.
    
    (30) Gromykhina NIu, Krymskaia LG, Kozlov VA, et al. The role of macrophages during the formation of regulatory connections between the immune, nervous and endocrine systems in the course of an immune response.Usp Fiziol Nauk. 1993; 24(1):59-79.
    
    (31) Caruso G, Cavaliere C, Guarino C, et al. Identification of changes in Triticum durum L. leaf proteome in response to salt stress by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. Anal Bioanal Chem. 2008;63(l):41-4.
    
    (32) Riding GA, Jones A, Holland MK, et al. Proteomic analysis of bovine conceptus fluids during early pregnancy. Proteomics. 2008 ;8(1):160-77.
    
    (33) Zhang W, Lu CP. Immunoproteomics of extracellular proteins of Chinese virulent strains of Streptococcus suis type 2.Proteomics. 2007;7(24):4468-76.
    
    (34) Adams LD, Gallagher SR. Two-dimensional gel electrophoresis.Curr Protoc Mol Biol. 2004;Chapter 10:Unit 10.4.
    
    (35) Chen X, Xie J, Li C, et al. Investigation of the factors that induce analyte peak splitting in capillary electrophoresis.J Sep Sci. 2004;27(12):1005-10.
    
    (36) Faca V, Pitteri SJ, Newcomb L, et al. Contribution of protein fractionation to depth of analysis of the serum and plasma proteomes. J Proteome Res. 2007;6(9):3558-65.
    
    (37) Chery CC, Gunther D, Cornelis R, et al. Detection of metals in proteins by means of polyacrylamide gel electrophoresis and laser ablation-inductively coupled plasma-mass spectrometry: application to selenium.Electrophoresis. 2003;24( 19-20):3305-13.
    
    (38) Beeley JA. Clinical applications of electrophoresis of human salivary proteins. J Chromatogr.1991;569(1-2):261-80.
    
    (39) Wiacek C, Muller S, Benndorf D, et al. A cytomic approach reveals population heterogeneity of Cupriavidus necator in response to harmful phenol concentrations.Proteomics.2006;6(22):5983-94.
    
    (40) Kamoda S, Nakanishi Y, Kinoshita M, et al. Analysis of glycoprotein-derived oligosaccharides in glycoproteins detected on two-dimensional gel by capillary electrophoresis using on-line concentration method. J Chromatogr A. 2006;1106(1-2):67-74.
    
    (41) Simon P, Thanos S. Combined methods of retrograde staining, layer-separation and viscoelastic cell stabilization to isolate retinal ganglion cells in adult rats. J Neurosci Methods.1998;83(2):113-24.
    
    (42) Sugaya M, Harada K, Katoh A.,et al. A facile method for the detection of RNA-polypeptide interactions by MALDI-TOF mass spectrometry. Nucleic Acids Symp Ser (Oxf).2007;(51):425-6.
    (1) Besedovsky HO,Sork inE.Network of immuno-neuro-endocrine interactions.J Clin Exp Immunol.1977;27:1-6.
    (2) Wybren J.Suggestive evidence for receptors for morphine and methionine enkephalin on normal human blood T lympphocyres.J Immunol.1979;123:1068.
    (3) Watkins LR,Maier SF,Goehler LE,et al.Cytokine-to-brain communication:a review &analysis of alternative mechanisms.Life Sci.1995;57(11):1011-26.
    (4) Crews D,Lou W,Fleming A,et al.From gene networks underlying sex determination and gonadal differentiation to the development of neural networks regulating sociosexual behavior.Brain Res.2006;1126(1):109-21.
    (5) Floresco SB. Dopaminergic regulation of limbic-striatal interplay. J Psychiatry Neurosci.2007;32(6):400-11.
    
    (6) Porges SW .The polyvagal perspective. Biol Psychol. 2007;74(2):116-43.
    
    (7) Modlin IM, Champaneria MC, Bornschein J, et al. Evolution of the diffuse neuroendocrine system-clear cells and cloudy origins. Neuroendocrinology. 2006;84(2):69-82.
    
    (8) Singh PP, Singal P. Morphine-induced neuroimmunomodulation in murine visceral leishmaniasis: the role(s) of cytokines and nitric oxide. J Neuroimmune Pharmacol.2007;2(4):338-51.
    
    (9) Dantzer R, Kelley KW. Twenty years of research on cytokine-induced sickness behavior.Brain Behav Immun.2007;21(2):153-60.
    
    (10) Roth J, De Souza GE. Fever induction pathways: evidence from responses to systemic or local cytokine formation. Braz J Med Biol Res. 2001;34(3):301-1.
    
    (11) Besedovsky H, Sorkin E, Keller M, et al. Changes in blood hormone levels during immune-response. Proc Soc Exp Biol Med. 1975; 150: 466-70.
    
    (12) Besedovsky H, Sorkin E, Felix D, et al. Hypothalamic changes during immune-response. Eur J Immunol.1977;7:323-5.
    
    (13) Besedovsky HO, Delrey AE, Sorkin E. What do the immune-system and the brain know about each other. ImmunolToday. 1983;4:342-6.
    
    (14) Steinman RM. The dendritic cell system and its role in immunogenicity.Annu Rev Immunol.1991;9:271 -296.
    
    (15) Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature.1998;392:425-252.
    
    (16) Cella M, Sallusto F, Lanzavecchia A , et al. Origin, maturation and antigen presenting function of dendritic cells. Curr Opin Immunol. 1997; 9:10-16.
    
    (17) Ni K, O'Neill HC. The role of dendritic cells in T cell activation. Immunol Cell Biol.1997;75:223-230.
    
    (18) Goerdt S, Kodelja V, Schmuth M, et al. The mononuclear phagocyte-dendritic cell dichotomy:myths, facts, and a revised concept. Clin Exp Immunol. 1996; 105:1 - 9.
    
    (19) Roth J, De Souza GE .Fever induction pathways: evidence from responses to systemic or local cytokine formation. Braz J Med Biol Res. 2001;34(3):301-14.
    
    (20) Turnbull AV, Rivier CL. Regulation of the hypothalamicpituitary-adrenal axis by cytokines:actions and mechanisms of action. Physiol Rev. 1999; 79: 1-71.
    
    (21) Blatteis CM, Li SX, Li ZH, et al. Cytokines, PGE(2) and endotoxic fever: a re-assessment.Prostagland Lipid Mediat. 2005; 76: 1-18.
    
    (22) Dantzer R.Cytokine-induced sickness behaviour: a neuroimmune response to activation of innate immunity. Eur J Pharmacol. 2004; 500: 399-411.
    
    (23) Maier SF, Wiertelak EP, Martin D, et al. Interleukin-1 mediates the behavioral hyperalgesia produced by lithium chloride and endotoxin. Brain Res .1993;623:321 - 324.
    
    (24) Dunn AJ . Role of cytokines in infection-induced stress. Ann NY Acad Sci. 1993;697:189 -202.
    
    (25) Ericsson A, Arias C, Sawchenko PE. Evidence for an intramedullary prostaglandin-dependent mechanism in the activation of stressrelated neuroendocrine circuitry by intravenous interleukin-1.J Neurosci. 1997;17:7166 - 7179.
    
    (26) Saper CB, Breder CD .The neurological basis of fever. N Engl J Med .1994;330:1880 - 1886.
    
    (27) Van Dam A-M, Brouns M, Louisse S, et al. Appearance of interleukin-1 in macrophages and ramified microglia in the brain of endotoxin-treated rats: a pathway for the induction of nonspecific symptoms of sickness? Brain Res. 1992,588:291 - 296.
    
    (28) Berkenbosch F, van Oers J, del Rey A, et al. Corticotropin-releasing factor-producing neurons in the rat activated by interleukin-1. Science .1987; 238: 524-6.
    
    (29) Sapolsky R, Rivier C, Yamamoto G, et al. Interleukin-1 stimulates the secretion of hypothalamic corticotrophin-releasing factor. Science .1987; 238: 522-4.
    
    (30) Vandam AM, Bauer J, Tilders FJH, et al. Endotoxin-induced appearance of immunoreactive interleukin-1-beta in ramified microglia in rat-brain - a light and electron-microscopic study.Neurosci .1995;65: 815-26.
    
    (31) Quan N, Sundar SK,Weiss JM. Induction of interleukin 1 in various brain regions after peripheral and central injections of lipopolysaccharide. J Neuroimmunol.1994;49: 125-34.
    
    (32) Hillhouse EW, Mosley K. Peripheral endotoxin induces hypothalamic immunoreactive interleukin-1b in the rat. Brit J Pharmacol. 1993;109: 289-90.
    
    (33) Laye S, Parnet P, Goujon E, et al. Peripheral administration of lipopolysaccharride induces the expression of cytokine transcripts in the brain and pituitary of mice. Mol Brain Res. 1994;27:157-62.
    
    (34) Ban E, Haour F, Lenstra R,et al. Brain interleukin-1 gene-expression induced by peripheral lipopolysaccharide administration. Cytokine. 1992; 4: 48-54.
    
    (35) Monica Ek, Mieko Kurosawa,Thomas Lundeberg, et al. Activation of Vagal Afferents after Intravenous Injection of Interleukin-1b: Role of Endogenous Prostaglandins J Neuroscience.1998;18(22):9471-9479.
    
    (36) Chuluyan HE, Saphier D, Rohn WM, et al.Noradrenergic innervation of the hypothalamus participates in adrenocortical responses to interleukin-1. Neuroendocrinology.1992;5(6):106-111.
    
    (37) Ericsson A, Kova'cs K, Sawchenko P . A functional anatomical analysis of central pathways subserving the effects of interleukin-1 on stress-related neuroendocrine neurons. J Neurosci.1994;14:897-913.
    
    (38) Rivier C, Vale W, Brown M. In the rat, interleukin-1 α and -β stimulate adrenocorticotropin and catecholamine release. Endocrinology. 1989; 125:3096 -3102.
    
    (39) Weidenfeld J, Abramsky O, Ovadia H, et al. Evidence for the involvementof the central adrenergic system in interleukin 1-induced adrenocortical response.Neuropharmacology.l989;28:1411-1414.
    
    (40) Cao C, Matsumura K, Yamagata K, et al. Induction by lipopolysaccharide of cyclooxygenase-2 mRNA in rat brain; its possible role in the febrile response. Brain Res . 1995;697:187—196.
    
    (41) Dantzer R.How do cytokines say hello to the brain? Neural versus humoral mediation. Eur Cytokine Netw. 1994;5:271-273.
    
    (42) Ericsson A, Liu C, Hart R, et al. Distribution of the type 1 interleukin-1 receptor mRNA in the central nervous system of the rat. J Comp Neurol .1995;361:681-698.
    
    (43) Ericsson A, Arias C, Sawchenko PE. Evidence for an intramedullary prostaglandin-dependent mechanism in the activation of stressrelatedneuroendocrine circuitry by intravenous interleukin-1. J Neurosci. 1997;17:7166-7179.
    
    (44) Watanabe T, Morimoto A, Sakata Y, et al. ACTH response induced by interleukin-1 is mediated by CRF secretion stimulated by hypothalamic PGE. Experimentia. 1990;46:481- 484.
    
    (45) Watkins LR, Maier SF, Goehler LE,et al. Cytokine-to-brain communication: a review and analysis of alternative mechanisms. Life Sci. 1995;57:1011—1026.
    
    (46) Elmquist JK, Breder CD, Sherin JE, et al. Intravenous lipopolysaccharide induces cyclooxygenase2-like immunoreactivity in rat brain perivascular microglia and meningeal macrophages. J Comp Neurol. 1997;381:119 -129.
    
    (47) Blatteis CM.The afferent signalling of fever. J Physiol. 2000;526(3):470.
    
    (48) 吴树亚.细胞因子作用于中枢神经系统的途径和机制.[J]国外医学免疫学分册.2001,24 (3) :116-118.
    
    (49) Banks WA, Kastin AJ.Relative contributions of peripheral and central sources to levels of IL-1 alpha in the cerebral cortex of mice: assessment with species-specific enzyme immunoassays.J Neuroimmunol. 1997;79(1):22-8.
    
    (50) Martino G, Grohovaz F, Brambilla E, et al. Proinflammatory cytokines regulate antigen-independent T-cell activation by two separate calcium-signaling pathways in multiple sclerosis patients.Ann Neurol. 1998;43(3):340-9.
    
    (51) Wakako Nanamiya, Toshihiro Takao ,Koichi Asaba, et al. Effect of orchidectomy on the Age-Related Modulation of IL-1 β and IL-1 Receptors following Lipopolysaccharide Treatment in the Mouse . NeurolmmunoModulation .2000 ;8 : 13-19.
    (52) Johnson AK,Gross PM. Sensory circuventricular organs and brain homeostatic pathways. J FASEB.1993;7(8),678.
    
    (53) Broadwell RD. Transcytosis tbrogh the blood brain barrier. PrOc Natl Acad Sci USA. 1988;85:632.
    
    (54) William AB, Abha JK. Bidirectional passage of peptides across the blood brain barrier. Brain Res.1997;91:139.
    
    (55) Bank WA. Interleukin-1 alpha in blood has direct access to cortical brain cells. Nerosci Letc.1993;183(1):41.
    
    (56) Van Dam AM .Endotoxin-induced appearance immunoreactive interleukia-1 beta in ramified microglia in rat brains a light and electron microscopic study.Neuro science. 1995;65(30):815.
    
    (57) 朱望东,李玲,杨天祝等.感受性室周器官的形态学及参与神经免疫调节的研究进展.解剖科学进展.2001;7 (1) :64-67.
    
    (58) Dunn AJ. Effects of cytokines and infections on brain neurochemistry. Clin Neurosci Res.2006;6(1-2):52-68.
    
    (59) Tsakiri N, Kimber I, Rothwell NJ, et al. Interleukin-1-induced interleukin-6 synthesis is mediated by the neutral sphingomyelinase/Src kinase pathway in neurones. Br J Pharmacol.2008;153(4):775-83.
    
    (60) Wong ML, Boegiomo PB, Gold PW, et al. Localization of interleukin-1 beta converting enzyme mRNA in rat brain vasculature: evidence that the genes encoding the interleukin-1 system are constitutively expressed in brain bloodvessels. Pathophysiological implications.Neuroimmunomodulation.l995;2(3): 141 -148.
    
    (61) Soop M, Duxbury H, Agwunobi AO, et al. Euglycemic hyperinsulinemia augments the cytokine and endocrine responses to endotoxin in humans. Am J Physiol (Endocrinol Metab).2002; 282: 1276-85.
    
    (62) Long NC, Otterness I, Kunkel SL, et al. Roles of interleukin-1-beta and tumor necrosis factor in lipopolysaccharide fever in rats. Am J Physiol (Regulatory Integrative Comp Physiol) .1990;259: 724-8.
    
    (63) Miller AJ, Luheshi G, Rothwell NJ, et al. Local cytokine induction by lipopolysaccharide in the rat air pouch and its relationship to the febrile response. Am J Physiol (Regulatory Integrative Comp Physiol). 1997; 272: 857-61.
    
    (64) Blatteis CM, Li SX, Li ZH, et al. Complement is required for the induction of endotoxic fever in guinea pigs and mice. J Therm Biol .2004; 29: 369-81.
    
    (65) Banks WA, Kastin AJ, Durham DA, et al. Bidirectional transport of interleukin-1 alpha across the blood brain barrier. Brain Res Bull. 1989; 23: 433-7.
    
    (66) Gutierrez EG, Banks WA, Kastin AJ, et al. Murine tumor necrosis factor-alpha is transported from blood to brain in the mouse. J Neuroimmunol 1993; 47: 169-76.
    
    (67) Rothwell NJ. Mechanisms of the pyrogenic actions of cytokines. Eur Cytokine Net. 1990; 1:211-3.
    
    (68) Dantzer R.Cytokine-induced sickness behaviour: a neuroimmune response to activation of innate immunity. Eur J Pharmacol .2004; 500: 399-411.
    
    (69) Fattori E, Cappelletti M, Costa P, et al. Defective inflammatory response in interleukin 6-deficient mice. J Exp Med .1994; 180: 1243-50.
    
    (70) Kozak W, Kluger MJ, Soszynski D, et al. IL-6 and IL-1 beta in fever - Studies using cytokine-deficient (knockout) mice. Ann NY Acad Sci .1998; 856: 33-47.
    
    (71) FantuzziG,DinarelloCA.The inflammatory response in interleukin-1-deficient mice:comparison with other cytokine-related knock-out mice. J Leukoc Biol .1996; 59: 489-93.
    
    (72) Matta S, Singh J, Newton R, et al. The adrenocorticotropin response to interleukin-1 beta instilled into the rat median eminence depends on the local release of catecholamines.Endocrinology.1990; 127(5):2175-82.
    
    (73) Rettori V, Belova N. Role of nitric oxide in control of growth hormone release in the rat.Neuroimmunomodulation. 1994;1 (3): 195-200.
    
    (74) Buller KM, Hamlin AS, Osborne PB, et al. Dissection of peripheral and central endogenous opioid modulation of systemic interleukin-1 beta responses using c-fos expression in the rat brain. Neuropharmacology. 2005;49(2):230-42.
    
    (75) Todaka K, Ishida Y, Ishizuka Y, et al. Fos expression in neurons immunoreactive for neuronal nitric oxide synthase in the rat paraventricular nucleus after intraperitoneal injection of interleukin-1 beta. Neurosci Res. 2000;38(3):321-4.
    
    (76) Goehler LE, Gaykema RP, Nguyen KT, et al. Interleukin-1 beta in immune cells of the abdominal vagus nerve: a link between the immune and nervous systems?J Neurosci.1999;19(7):2799-806.
    
    (77) Callahan TA, Piekut DT. Differential Fos expression induced by IL-1beta and IL-6 in rat hypothalamus and pituitary gland.J Neuroimmunol. 1997;73( 1 -2):207-11.
    
    (78) Boisse L, Mouihate A, Ellis S, et al. Long-term alterations in neuroimmune responses after neonatal exposure to lipopolysaccharide.J Neurosci. 2004;24 (21):4928-34.
    
    (79) Sparkman NL, Kohman RA, Garcia AK, et al. Peripheral lipopolysaccharide administration impairs two-way active avoidance conditioning in C57BL/6J mice. Physiol Behav.2005;85(3):278-88.
    
    (80) Felten DL. Noradrenergic sympathic neural interactions with the immune system : structure and function . Immunol Rev. 1987; 100 : 225-260.
    
    (81) Maier SF, Goehler LE, Fleshner M, et al. The role of the vagus nerve in cytokine-to-brain communication . Ann N Y Acad Sci. 1998;840:289-300.
    
    (82) Fu L W, Longhurst JC. Interleukin-1 beta sensitizes abdominal visceral afferents of cats to ischaemia and histamine J Physiol. 1999;521 (1):249-60.
    
    (83) Nozdrachev AD, Kolosova LI, Moiseeva AB, et al. The role of the peripheral nervous system in the connection of the immune system with the brain .Ross Fiziol Zh Im I M Sechenova.2000;86(6):728-42.
    
    (84) Konsman JP, Cartmell T. Neural pathways from the immune system to the brain. Eur Cytokine Netw. 1997;8(2):221-3.
    
    (85) Czura CJ, Tracey KJ. Autonomic neural regulation of immunity. J Intern Med.2005;257(2):156-66.
    
    (86) Bret Dibat JL, Bluthe RM, Kent S , et al. Lipopolysaccharide and interleukin-1 depress food-motivated behavior in vagal-mediated mechanism. Brain Behav Immun,1995; 9:242-246.
    
    (87) Watkins LR, Weirtelak EP, Goehler LE, et al. Characterization of cytokine induced hyperalgesia. Brain Res. 1994,654:15-26.
    
    (88) Watkins LR, Goehler LE, Relton JK, et al. Blockade of interleukin-1 induced hyperthermia by subdiaphragmatic vagotomy: evidence for vagal mediation of immunebrain communication.Neurosci Lett. 1995; 183:17 - 31.
    
    (89) HansenMK, Krueger JM .Subdiaphragmatic vagotomy blocks the sleep- and fever-promoting effects of interleukin-1 β . Am J Physiol .1997;273;1246-53.
    
    (90) Gaykema RPA, Dijkstra I, Tilders FJH, et al. Subdiaphragmatic vagotomy suppresses endotoxin-induced activation of the hypothalamic corticotrophin-releasing hormone neurons and ACTH secretion. Endocrinology. 1995; 136:4717-20.
    
    (91) Bluthe RM ,Michard B, Kelley KW, et al. Vagotomy blocks behavioural effects of interleukin-1 injected via the interperitoneal route but not via other systemic routes.Neuroreport. 1996;7,282-3.
    
    (92) Kapcala LP, He JR ,Gao Y, et al. Subdiaphragmatic vagotomy inhibits intra-abdominal interleukin-1 beta stimulation of adrenocorticotropin secretion. Brain Res.1996;728:247.
    
    (93) Laye S, Bluthe RM, Kent S, et al. Subdiaphragmatic vagotomy blocks induction of IL-1 -beta messenger-RNA in mice brain in response to peripheral LPS. Am J Physiol (Regul Integr Comp Physiol). 1995; 37: 1327-31.
    
    (94) Fleshner M, Goehler LE, Hermann J, et al.Interleukin-1 beta induced corticosterone elevation and hypothalamic NE depletion is vagally mediated.Brain Res Bull. 1995;37(6):605-10.
    
    (95) Sehic E, Blatteis CM. Blockade of lipopolysaccharide-induced fever by subdiaphragmatic vagotomy in guinea pigs. Brain Res. 1996;726(2):160-6.
    
    (96) Watkins LR, Goehler LE, Relton JK, et al. Blockade of interleukin-1 induced hyperthermia by subdiaphragmatic vagotomy: evidence for vagal mediation of immune-brain communication. Neurosci Lett .1995; 183: 27-31.
    
    (97) Ge X, Yang Z, Duan L, et al. Evidence for involvement of the neural pathway containing the peripheral vagus nerve, medullary visceral zone and central amygdaloid nucleus in neuroimmunomodulation. Brain Res. 2001;914(2): 149-58.
    
    (98) Gordon FJ. Effect of nucleus tractus solitarius lesions on fever produced by interleukin-1beta.Auton Neurosci. 2000;85(1):102-10.
    
    (99) Gaykema RPA, Goehler LE, Tilders FJH, et al. Bacterial endotoxin induces Fos immunoreactivity in primary afferent neurons of the vagus nerve. Neuroimmunomodulation .1998; 5:234-240.
    
    (100) Goehler LE, Gaykema RPA, Hammack SE,et al. lnterleukin-1 induces c-Fos immunoreactivity in primary afferent neurons of the vagus nerve. Brain Res. 1998; 804:306-310.
    
    (101) Hinde JL, Hammack SE, Caykema RPA, et al. Intraperitonel injections of interleukin-1 β induce c-Fos immunoreactivity in vagal sensory neurons. Sco Neurosci Abstr. 1998;2(4): 1611.
    
    (102) Goehler LE, Gaykema RPA , Khorsand J , et al. Staphylococcal entertoxin in B induces c-Fos immunoreactivity in rat nervous system. Sco Neurosci Abstr ,1998; 2(4): 1721.
    
    (103) Goehler LE, Gaykema RP, Opitz N, et al. Activation in vagal afferents and central autonomic pathways: early responses to intestinal infection with Campylobacter jejuni. Brain Behav Immun. 2005;19(4):334-44.
    
    (104) Buller KM, Day TA. Systemic administration of interleukin-1 beta activates select populations of central amygdala afferents. J Comp Neurol. 2002;452(3):288-96.
    
    (105) Hosoi T, Okuma Y, Nomura Y. Electrical stimulation of afferent vagus nerve induces IL-1beta expression in the brain and activates HPA axis. Am J Physiol Regul Integr Comp Physiol. 2000;279(1):141-7
    
    (106) Schaffar N, Rao H, Kessler JP ,et al. Immunohistochemical detection of glutamate in rat vagal sensory neurons. Brain Res.1997;778:302 - 308.
    
    (107) Mascarucci P, Perego C, Terrazino, S, et al. Glutamic acid release in the nucleus tractus solitarius induced by peripheral endotoxin and interleukin-1. Neuroscience .1998;86:1285 -1290.
    
    (108) Morioka N, Inoue A, Nakata Y,et al .Neural-immune interactions in dorsal root ganglia.Nippon Yakurigaku Zasshi. 2000;115(4):219-27.
    
    (109) Riccio MM, Myers AC , Undem BJ,et al. Immunomodulation of afferent neurons in guinea-pig isolated airway. J Physiol Lond.1996; 49(1):499.
    
    (110) Kurosawa M, Lundeberg T, Ericsson A. Activation of vagal afferents after intravenous injection of interleukin-1 beta: role of endogenous prostaglandins. J Neurosci.1998;18(22):9471-9.
    
    (111) Goehler L ,Relton JK ,Dripple D,et al. Vagal paraganglia bind biotinylated interleukin-1 receptor antagonist: a possible mechanism for immune-to-brain communication [J] Brain Res Bull.1997; 43(3):357-364.
    
    (112) STEPHEN D. SKAPER .The Brain as a Target for Inflammatory Processes and Neuroprotective Strategies. Ann N Y Acad Sci. 2007;1122 (1):23-34.
    
    (113) Berthoud HR, Kressel M, Neuhuber WL,et al. Vagal afferent innervation of rat abdominal paraganglia as revealed by anterograde Diltracing and confocal microscopy. Acta Anat.1995;15(2):127-132.
    
    (114) Goehler LE, Relton JK, Dripps D, et al.Vagal paraganglia bind biotinylated interleukin-1 receptor antagonist: a possible mechanism for immune-to-brain communication. Brain Res Bull.1997;43:357-364 .
    
    (115) Matsumura K, Watanabe Y, Onoe H,et al. Prostacyclin receptor in the brain and central terminals of the primary sensory neurons—an autoradiographic study using a stable prostacyclin analogue [3H]iloprost. Neuroscience. 1995; 65:493-503.
    
    (116) Milligan ED, McGorry MM, Fleshner M, et al. Subdiaphragmatic vagotomy does not prevent fever following intracerebroventricular prostaglandin E2: further evidence for the importance of vagal afferents in immune-to-brain communication. Brain Res. 1997;766(1):240-3.
    (117) Ericsson A, Arias C, Sawchenko PE,et al. Evidence for an intramedullary prostaglandin-dependent mechanism in the activation of stressrelated neuroendocrine circuitry by intravenous interleukin-1. J Neurosci. 1997;17:7166 - 7179.
    
    (118) Katsuura G, Gottschall PE, Dahl RR, et al. Adrenocorticotropin release induced by intracerebroventricular injection of recombinant human interleukin-1 in rats: possible involvement of prostaglandin. Endocrinology .1988; 122:1773 - 1779.
    
    (119) Romanovsky AA, Simons CT, Szekely M, et al. The vagus nerve in the thermoregulatory response to systemic inflammation. Am J Physiol. 1997;273:407 - 413.
    
    (120) Sehic E, Blatteis CM. Blockade of lipopolysaccharide-induced fever by subdiaphragmatic vagotomy in guinea pigs. Brain Res. 1996 726:160-166.
    
    (121) Wan W, Wetmore L, Sorensen CM, et al. Neural and biochemical mediators of endotoxin and stress-induced c-fos expression in the rat brain. Brain Res Bull .1994; 3(4):7 - 14.
    
    (122) Gaykema RPA, Dijkstra I,Tilders FJH, et al. Subdiaphragmatic vagotomy suppresses endotoxin-induced activation of hypothalamic corticotropin-releasing hormone neurons and ACTH secretion. Endocrinology. 1995;136: 4717-204.
    
    (123) Hansen MK, O'Connor KA, Goehler LE, et al. The contribution of the vagus nerve in interleukin-1 beta-induced fever is dependent on dose. Am J Physiol Regul Integr Comp Physiol. 2001;280(4):929-34.
    
    (124) Hansen MK, Daniels S, Goehler LE, et al.Subdiaphragmatic vagotomy does not block intraperitoneal lipopolysaccharide-induced fever.Auton Neurosci. 2000;85(1):83-7.
    
    (125) Van Dam AM, Bol JG, Gaykema RP, et al. Vagotomy does not inhibit high dose lipopolysaccharide-induced interleukin-1 beta immunoreactivity in rat brain and pituitary gland.Neurosci Lett. 2000;285(3):169-72.
    
    (126) Romeo HE, Tio DL, Taylor AN,et al. Effects of glossopharyngeal nerve transection on central and peripheral cytokines and serum corticosterone induced by localized inflammation. J Neuroimmunol. 2003; 136( 1 -2): 104-11.
    
    (127) Zehnaly A, Hosokawa R, Urata M, et al .TGF-beta signaling and aplasia cutis congenita:proposed animal model.J Calif Dent Assoc. 2007;35(12):865-9.
    
    (128) Baudet ML, Hassanali Z, Sawicki G , et al. Growth hormone action in the developing neural retina: a proteomic analysis. Proteomics. 2008; 8(2):389-401.
    
    (129) Koo JW, Duman RS. IL-1beta is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc Natl Acad Sci U S A. 2008; 105(2):751-6.
    
    (130) Borovikova LV, Ivanova S, Zhang M, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin . Nature. 2000; 405(6785):458-62.
    
    (131) Conrad C, Niess H, Jauch KW, et al. Overture for growth hormone: requiem for interleukin-6?Crit Care Med. 2007;35(12):2709-13.
    
    (132) Tixier E, Galmiche JP, Neunlist M, et al. Intestinal neuro-epithelial interactions modulate neuronal chemokines production. Biochem Biophys Res Commun.2006;344(2):554-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700