AL1050/AZ31/AL1050轧制复合生产工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过热轧轧制复合的方法获得了AL1050/AZ31/AL1050三层复合板。研究了轧制温度、压下率对复合板的结合强度的影响,以及轧后退火工艺对复合板的结合强度及界面结构的影响;探讨界面结合机理,确定出最佳工艺方案。
     实验结果表明:其他条件相同情况下,复合板的结合强度随着轧制温度先升高后下降。其他条件相同情况下,复合板的结合强度随压下率的增加而升高,但当压下率过大时,复合板会出现较大程度的裂边。综合考虑复合板的结合强度和表面质量,最佳轧制复合工艺参数:加热温度控制在410~430℃、压下率控制在50~60%。在此工艺条件下,复合板表面质量良好,没有明显褶皱,复合板的结合强度为45~50MPa,复合板经过弯曲扭转实验后,没有明显的开裂和分离现象。
     轧制复合后适当的扩散退火处理可进一步改善复合板的结合强度、力学性能和成形性能。若退火工艺控制不当,界面会形成脆性化合物导致复合板的结合强度急剧下降。实际生产中,建议扩散退火制度为:退火温度250℃,退火时间30min。退火时出现的两脆性化合物层,通过电子探针成分分析,以为靠镁基体侧化合物为Mg17Al12,靠铝基体侧化合物为Mg2Al3。
     轧制压下率对铝层和镁层的变形分配有影响,而轧制温度对铝层和镁层的变形分配率影响很小。随轧制压下率的增加,铝层和镁层的变形程度均增大,但变形分配上铝层增大的快。
     轧制复合过程中发生的裂口机制、嵌合作用机制,实现了复合板初始的机械结合。热作用机制的启动和发育是复合板的结合强度高的主要因素。另外,扩散机制在一定程度上对复合板的结合强度也有所提高。
Pure aluminum/magnesium/pure aluminum clad plates were fabricated by the hot rolling method. The effects of rolling temperature, pass reduction on the interfacial bonding strength were researched; and the effect of the subsequent annealing process on the interfacial bonding strength and the joint interface structure were investigated. The bonding mechanism was discussed, and then the optimal roll cladding parameters were given.
     It is shown that when other conditions are same, with the increase in rolling temperature the bonding strength increase first then decrease. With the increase in pass reduction the bonding strength increases, but the checked edge occurs when the pass reduction is high. The optimal roll cladding parameters are determined as:rolling temperature is 410-430℃, pass reduction is 50-60%. At such conditions, the interfacial bonding strength is about 45-50MPa and the process property of the clad strip is good.
     Appropriate subsequent annealing can improve bonding strength to some extent, but brittle compound forms and the bonding strength reduces sharply if the annealing temperature is too high or the annealing time is too long. The optimal annealing parameters are determined as:annealing temperature is 250℃, annealing time is 30 minutes. The reaction phases are estimated by EPMA analysis to be Mg17Al12 in the magnesium side and Mg2Al3 in the pure aluminum side.
     Rolling temperature has effect on the deformation amount of each component layer, while pass reduction has little effect. With the increase in pass reduction the deformation amount of both aluminum and magnesium layer increases, but the deformation amount of magnesium layer is much greater than that of aluminum layer.
     Cracking mechanism and inlaying mechanism take place during roll bonding and make the initial mechanical bond. The initiation and evolution of heat effect mechanism is the main factors leading to the high bonding strength. The inter-diffusion mechanism as well as can improves bonding strength to some extent.
引文
1.屠海令主编.有色金属进展(第七卷)[M],长沙:中南工业大学出版杜,1995,216.
    2.孙德勒,等.复合板的成形技术与发展趋势[J],金属成形工艺,2003,21(2):19~22.
    3.(英)赫尔.复合材料导论[M],北京:中国建筑工业出版社,1989,52~89.
    4.郑红霞,李宝宽,昌泽舟.金属复合板生产方法的发展现状[J],炼钢,2001,(2):20~23.
    5.朱旭霞,彭大暑,黎祚坚.不锈钢/铝(合金)/不锈钢多层材料热轧复合及性能研究[D],中南大学博士论文,2000.
    6.马志新,胡捷,李德富,等.层状金属复合板的研究和生产现状[J],稀有金属,2003,27(6):799.
    7.曹雄夫.爆炸复合技术生产不锈钢复合板[J],矿业快报,2000,1(2):23.
    8.杨扬,等.爆炸复合研究现状及发展趋势[J],材料导报,1995(1):72~76.
    9.郑远谋.爆炸焊接和金属复台材料及其工程应用[M],长沙:中南大学出版社.2002,22.
    10.林大超,史庆南.双金属轧制复合技术及其研究的进展[J],云南冶金,1998,(5):32~36.
    11.王素霞,赵胜国.爆炸焊接-热轧法生产复合板界面研究[J],钢铁研究学报,1995,7(3):51.
    12.田雅琴,等.金属复合板的工艺研究现状与发展[J],材料开发与应用,2006,21(1):40~43.
    13.孙德勤,吴春京,谢建新.双金属复合材料铸造工艺研究进展[J],铸造,1999,(12):48~51.
    14.祖国撤.利用中间夹层促进不锈钢与碳钢复合的实验研究[D],沈阳:东北大学,2001,22~32.
    15. Takeuchi E, Zeze M, Tanaka H, et al. Continuous casting of clad steel Slab with level magnetic field brake[J], Steelmaking Conference Proceedings,1996:225-230.
    16.于九明,孝云祯.金属层状复合技术及其新发展[J],材料研究导报,2000,14(1):12.
    17.田雅琴,等.金属复合板的工艺研究现状与发展[J],材料开发与应用,2006,21(1):40~43.
    18.许中波,等.反向凝固复合不锈钢带厚度数值计算[J],钢铁研究学报,1999,11(1):12~15.
    19.周继扬,川小东.喷射铸造—一种崭新的成形工艺[J],铸造,1991(11):28~32.
    20. Takeuchi E, Hunal M. Novel continuous casting progress for clad steel with level dc magnetic field[J], Ironmaking and Steelmaking,1997,24(3):257-203.
    21.谢建新,孙德勤.双金属复合材料双结晶器连铸工艺研究[J],材料工程,2000,(4):38~40.
    22.王震鸣.复合材料及其结构的力学、设计、应用和评价[M],北京:北京大学出版社,1998,65~120.
    23.魏伟,史庆南.铜/钢双金属板异步轧制复合机理研究[J],稀有金属,2001,25(4):307~401.
    24.张永福,丁修坤.双金属固相异步轧制新工艺[[J],东北工学院学报,1991,12(6):619.
    25.曾润根.热双金属室温固相复合[J],上海金属,1982,4(2):47~54.
    26.闻立时.固体材料界面研究的物理基础[M],北京:科学出版社,1991,136~150.
    27. Peng X K, Heness G, Yeung W Y. Effect of roll temperature on interface and bond strength development of roll bonded copper/aluminum metallaminates[J], Mater Sci,1999.34(2):277-281.
    28.陈振华主编.变形镁合金[M],北京:化学工业出版社,2005,1~15.
    29.张丁非,彭建,丁培道,等.镁及镁合金的资源、应用及其发展现状[J],材料导报,2004,18(4):72.
    30.张丁非,彭建,丁培道,等.关于我国镁合金产业发展战略的思考[J],世界有色金属,2004,7:4.
    31.丁文江等著.镁合金科学与技术[M],北京:科学出版社2007,前言.
    32.黎文献主编.镁及镁合金[M],长沙:中南大学出版社,2005,前言.
    33.宋光铃著.镁合金腐蚀与防护[M],北京:化学工业出版社,2006.4,18.
    34.郭兴伍,丁文江.镁合金阳极氧化的研究与发展现状[J],材料保护,2002,35(2):1~3.
    35.黎文献主编.镁及镁合金[M],长沙:中南大学出版社,2005,471~500.
    36.瑛英,余刚,刘跃龙,等.镁合金表面处理及其发展趋势[J],表面技术,2003,32(2):1~2.
    37. Young L. Temperature rise during formation of anodic Oxide films[J], Trans Faraday Soc, 1957.130(51):229.
    38. Faraday Y, Klein N. Electronic reakdown L during the anodic growth of Tantalum pentoxide[J], J Electrochem Soc,1980,127(1):139.
    39. Zozulin A J, Bertak D E Anodized coating for ma gnesium alloys[J], M etal Finishing,1994,92(3): 39.
    40. Khaselev O, Yahakim J. Constant voltage anodizing of Mg Al alloys in KOH-A1(OH)3 solutions[J], Electrochem Soc,1998,145(1):190.
    41.边风刚,李国禄,刘金海,等.镁合金表面处理的发展现状[J],材料保护,2002,35(3):1.
    42.钱建刚,李荻,郭宝兰.镁合金化学转化膜[J],材料保护,2002,35(3):5.
    43.尹建军,李元东,梁卫东.镁合金表面电镀锌的预处理工艺研究[J],材料保护,2002,35(11):36.
    44.韩夏云,郭忠诚,龙晋明.镁及镁合金表面镀锌工艺[J],材料保护,2002,35(11):31.
    45.蒋永锋,瞿春泉,郭兴武.镁合金浸锌及膜层彩化工艺[J],材料保护,2003,36(3):80.
    46.陈长军.镁合金激光表面改性研究进展[J],材料保护,2003,36(1):25.
    47.黎文献主编.镁及镁合金[M],长沙:中南大学出版社,2005,120~137.
    48.肖纪美.材料的应用与发展[M],北京:宇航出版社,1988,35~41.
    49. WANG Lingyun, HUANG Guangjie, FAN Yonge LU. Hot Deformation Kinetics of Magnesium Alloy AZ31[J], Journal of Wuhan University of Technology—Mater. Sci. Ed.2006, (21):2-3.
    50. L. R. Vaidyanath, M. G. Nicholas, D. R. Milner:Brit weld J.1959,1(6):13-28.
    51. Mcewan and Milner:Brit weld J.1962,1(9):406-420.
    52.张军良,裴大荣.铝-钛爆炸复合板的牵引变形及轧制工艺[J],稀有金属材料与工程,1986,(6):13.
    53.郑远谋.金属爆炸复台材科的压力加工[J],钢铁研究,1999,108(3):32.
    54.崔忠析.金属学与热处理[M],北京:机械工业出版社,1997,150~189.
    55. F Czerwinski. The oxidation behaviour of an AZ91D magnesium alloy at high temperatures[J], Actaaterialia,2002, (50):2639-2654.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700