3003/8090及5056/AZ91复层铸锭结合界面研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属复层材料作为一种新型的功能、结构材料,由于其优良的可设计性及综合性能,被广泛应用于宇航、石油、化工、汽车、军事、冶金、机械等领域,是近年来材料科学的研究热点之一。作为复合材料,结合界面是金属复层材料最为重要的微结构,是应力及其他信息相互传递的桥梁,其结构与性能直接影响复合材料的整体性能。因此,深入研究结合界面的形成过程、界面层性质、界面反应及其影响因素,从而进行有效控制,是获取高性能金属复层材料的关键。
     本文采用静态复合铸造工艺,分别制备了两类具有不同结合方式的金属复层铸锭,一类是没有界面反应的8090/3003铝-铝复层铸锭,一类是有界面反应的5056/AZ91铝-镁复层铸锭。采用金相、电子探针、扫面电镜、X射线衍射及维氏硬度计等测试手段对两种复层铸锭的界面凝固组织、成分分布、物相组成及力学性能等进行了系统分析。一系列静态试验研究是为实现两类复层铸坯的连铸铸造打下良好基础。
     对3003/8090复层铸锭的内层8090合金施加电磁搅拌,研究了电磁搅拌对复层铸锭界面形貌的影响,实验结果表明:电磁搅拌使内层8090合金凝固组织明显细化,促进柱状晶向等轴晶转变。随着电磁搅拌的增强,结合界面前沿处的柱状晶的生长向逆流方向偏转,直至完全转化为细小等轴晶;但是电磁搅拌对结合处界面的成分分布无显著影响,有无电磁搅拌的情况下,扩散层厚度均约为90μm,其中过渡固溶体层约为50μmm。过渡层的存在,使得力学性能在结合界面内平缓过渡,保证了两侧合金良好的冶金结合,结合强度满足实际应用要求。
     对于5056/AZ91复层铸锭,在有无电磁搅拌的情况下,5056与AZ91间均发生剧烈界面反应而形成反应层。在5056一侧多为Mg2Al3,而在AZ91一侧多为Mg17Al12。实验获得反应层约为2.3mm的5056/AZ91复层铸锭,其反应层由4层不同的凝固组织构成,由AZ91侧至5056侧依次为(Mg17Al12+α-Mg)共晶层、Mg17Al12+(Mg17Al12+α-Mg)过渡层、Mg17A112单相层及Mg2Al3单相层。反应层内的金属间化合物具有极强的脆性,从而导致铝/镁复层铸锭的界面结合强度极低。通过电磁搅拌作用、降低AZ91浇注温度及5056凝固壳内表面温度等手段仍无法抑制或避免界面处金属间化合物的形成。因此,为了获得具有良好结合的铝/镁复层材料,有待展开进一步的研究,采用有效的工艺技术控制铝、镁间的反应程度。
Clad material, a new type of material of functional and structural material, has been widely used in the fields of aerospace, oil, chemical industry, automobile, military, metallurgy and machinery et al. It has become one of research focuses in material field since its excellent designability and combination property. As composite material, bonding interface is the most important microstructure for the clad material. It's the passageway for the transmission of stress and other messages, and the structure and property of the bonding interface determine the performance of the clad material. Therefore, the intensive study on the forming process, quality, reaction and relevant influencing factors of bonding interface is the key for producing high-performance clad material.
     In this dissertation, two different types of cladding ingots were produced by compound casting. One is the3003/8090aluminum-aluminum cladding ingots which have not interface reaction between3003and8090, the other is the5056/AZ91aluminum-magnesium cladding ingots with interface reaction between Al alloy and Mg alloy. The solidification structure, element distribution, phase composition and mechanical property near the bonding interface were investigated by metallographic examination, EPMA, SEM, XRD and Vickers hardness tester et al. All of the experiments were carried out for providing experimental basis for continuous casting of these clad materials.
     The electromagnetic stirring (EMS) was used to improve solidification structure of8090alloy during the casting, and the effect of EMS on the interface morphology of this aluminum alloy cladding ingots was also studied. The results showed that with the influence of electromagnetic stirring, the solidification structure of8090alloy was obviously refined, the columnar-equiaxed transition (CET) was promoted, and solute-enriched in the grain boundary decreased. With the increase of magnetic field intensity, the columnar grains near the interface were deflected to the coming flow, until all of them transformed to equiaxed grains. However, the distribution of elements along the interface was nearly not much impact by EMS. In the condition with or without EMS, the average diffusion layers were all about90μm and the transition layer of sosoloid were about50μm. The transition layer resulted in the slow decrease of mechanical property in the interface zone, which ensured the good metallurgy bonding between two alloys. The bond strength met the requirement of the application.
     While for the5056/AZ91cladding ingots, with or without electromagnetic stirring, there were the reaction zone between5056and AZ91alloy. In the neighborhood of5056the intermetallic compound was Mg2Al3, and adjacent to the AZ91was Mg17Al12. The cladding ingot, with the thickness of the reaction zone was about2.3mm, was produced. The reaction zone was composed of four different types of solidification structure. From the AZ91side to the5056side, they were, in order,(Mg17Al12+δ-Mg) eutectic layer, Mg17Al12+(Mg17Al12+δ-Mg) transition layer, Mg17Al12phase layer and Mg2Al3phase layer. The brittleness intermetallic compound in the interface region resulted in the decrease of bonding strength between Al alloy and Mg alloy. The methods of EMS and changing pouring temperature of the inner or outer layer melt were not useful for avoiding or suppressing the formation of intermetallic compound in the interface. Therefore, for producing high-performance Al/Mg clad materials, the effective technology to control of the degree of the reaction between the aluminum and magnesium should be investigated in the future.
引文
[1]谢刚.冶金新材料的应用及发展[J].云南冶金.1997,26(1):35-39.
    [2]Immarigeon J P, Holt R T, Kou A K et al. Worldwide trends in functional gradient materials research and development [J]. Materials Characterization,1995,35(1), 41-67.
    [3]Suresh S.Mortensen A,李守新等译.功能梯度材料基础——制备及热机械行为[M].北京:国防工业出版社,2000.
    [4]于化顺.金属基复合材料及其制备技术[M].北京:化学工业出版社,2006.
    [5]王立东,阮雪榆.双金属固相结合研究及其发展趋势[J].中国机械工程,1997,8(1):106-107.
    [6]J G Banker, J P Winsky. Titanium/Steel explosion bonded clad for autoclaves and vessels [J], ALTA Autoclave Design & Operation Symposium, May 1999 (Melbourne), ALTA Metallurgical Services,1999.
    [7]K Y Rhee, W Y Han, H J Park, S S Kim. Fabrication of aluminum/copper clad composite using hot hydrostatic extrusion process and its material characteristics [J]. Materials Science and Engineering:A,2004,384 (1-2):70-76.
    [8]刘鼎.半连续铸造制备3003/4004板坯复层材料[J].特种铸造及有色合金,2010,30(5):446-449.
    [9]张毅斌,王群骄.包铝镁板轧制复合机理的研究[J].材料开发与应用,2009,24(6):72-79.
    [10]程挺宇,熊宁,吴诚等.铜/铝/铜电子封装材料的轧制复合工艺[J],机械工程材料,2010,34(3):38-40.
    [11]杨伏良,甘卫平,陈招科.过共晶高硅铝合金的包覆轧制工艺初步研究[J].特种铸造及有色合金,2005,2(2):73-74.
    [12]王立新,李国平.爆破不锈钢复合板界面组织和性能分析及应用[J].钢铁,2005,40(11):71-74.
    [13]李永松,沈怡琳.不锈钢复合板制作新工艺及市场前景的研究[J].广西机械,2001(4):34-36.
    [14]崔建忠.铝/不锈钢复合板--绿色炊具材料[J].五金科技,2003,31(1):33-36.
    [15]孙德勤,吴春京,谢建新.金属复合线材成形工艺的研究开发概况[J].材料导报,2003,17(5):65-68.
    [16]寿伟春,李向丽.铜包铝线在射频电缆中的应用[J].光纤与电缆及其应用技术,2002,(2):40-45.
    [17]戴雅康.以铜包铝线为内导体的CATV同轴电缆的特性[J].广播与电视技术,2002,(3):140-143.
    [18]宫开令,董雅军,高春利.高速钢复合轧制的研制及生产[J].钢铁,1998,33(3):67-71
    [19]李鹏,白云龙,杨敬诚等.大型双金属复合辊套的离心铸造[J].一重技术,2000,86(4):41-45.
    [20]Hashimoto M, Otomo S, Yoshida K, et al. Development of high-performance roll by continuous pouring process for cladding [J].ISIJ International,1992,32(11):1202-1210.
    [21]李玉亭.双金属复层材料的电磁连续铸造技术研究[D].大连理工大学,2003.
    [22]吴彩虹,李廷举,金俊泽.双金属复层材料制备现状及研究发展[J].铸造,2005,54:103-107.
    [23]Manesh H D, Taheri A K. An investigation of deformation behavior and bonding strength of bimetal strip during rolling [J]. Mech Mater,2005,37:531-542.
    [24]Y B Yan, Z W Zhang, W Shen, J H Wang, L K Zhang, B A Chin. Microstructure and properties of magnesium AZ31B-aluminum 7075 explosively welded composite plate [J]. Materials Science and Engineering:A,2010,527 (9):2241-2245.
    [25]Akbari-Mousavi SAA, Barrett L, Al-Hassani STS. Explosive welding of metal plates [J]. J Mater Process Technol,2008,202:224-239.
    [26]Zhongwei Gu, Yafang Han, Fusheng Pan, Xitao Wang, Duan Weng, Shaoxiong Zhou. A study of hot extrusion of 6063 aluminum alloy-clad AZ31B magnesium alloy bar [J]. Materials Science Forum,2009,610-613:791-795.
    [27]Bowen X, Changchun C, Hong W, et al. Fabrication of high chromium cast iron and medium carbon steel bimetal by liquid-solid casting in electromagnetic induction field [J]. Materials and Design,2011,32(5):2978-2982.
    [28]傅定发,宁洪龙,陈振华.喷射沉积技术及双金属材料制备[J].兵器材料科学与工程,2001,24(1):65-67.
    [29]Dominique Klein. Method of Manufacturing Composite Strips by Continuous Casting: United States,4224978 [P].1980,09,30.
    [30]李军.直流磁场下铝合金复层铸坯制备与模拟研究[D].大连:大连理工大学,2009.
    [31]孙勤德.层状铜铝双金属复合棒坯连铸工艺的研究[D].北京:北京科技大学,2004.
    [32]刘湘,李铸钢,许巧玉等.我国镶铸技术的研究现状及展望[J].新疆大学学报(自然科学版),2002,19(4):500-504.
    [33]王守诚,魏世忠,龙锐等.固液双金属复合铸造现状与前瞻[J].金属矿山,2004,(10):485-790.
    [34]程红晓,王超,沈卫东等.垂头的双金属复合铸造工艺[J].中国铸造装备与技术,2004(2):32-33.
    [35]周永欣,赵西成,吕振林等.铸渗法制备金属基表面复合材料的研究进展及应用[J].西安建筑科技大学学报(自然科学版),2006,38(5):668-673.
    [36]李维民,沈蜀西,刘炳等.铸渗质量及其影响因素的研究[J].热加工工艺,2000(6):24-26.
    [37]方大成,姚曼.双金属离心铸造工艺参数的控制[J].铸造,1997,(06):37-39.
    [38]吕学财,王英.离心铸造双金属复合辊筒技术[J].铸造技术,2005,26(9):795-797.
    [39]胡冰,那顺桑,陶进长等.离心铸造双金属结合层的研究[J].热处理,2008,23(6):51-54.
    [40]杨大可,袁鹤清,陈乃琪等.轧辊复合层连续铸造法[J].机械工人:热加工,1995,3:5-6.
    [41]Tanaka Taku, Koie Takayuki, Ayagaki Masatoshi et al. High speed steel type cold rolling mill roll by continuous pouring process for cladding. Nippon Steel Corporation (JAPON),2002, (86):80-85.
    [42]M Hashimoto, S Otomo, K Yoshida et al. Development of high-performance roll by continuous pouring process for cladding. ISIJ International,1992,32(11):83-90.
    [43]吴春京,沈定钊,杨大可等.轧辊复合层连续铸造法计算机数值模拟[J].钢铁研究学报,1995,4:19-24.
    [44]谢建新,吴春京,李静媛.多层复合材料一次铸造成形设备与工艺:中国, CN1229703A[P]. 1999,09,29.
    [45]谢建新,孙德勤,吴春京等.双金属复合材料双结晶器连铸工艺研究[J].材料工程,2000,4:38-40.
    [46]吴春京,谢建新,赵立华,等.双结晶器连铸铜—锌铝合金双金属复合材料[J].特种铸造及有色合金,2002,3:24-26.
    [47]于治民,吴春京,谢建新等.双金属层状复合材料连铸工艺的研究进展[J].铸造技术,2004,125(5):399-401.
    [48]张卫文,朱苍山,魏兴钊等.上产梯度材料的双流浇注连续铸造方法[J].科学通报,1998,43(11):1223-1226.
    [49]张卫文,李元元,龙雁等.半连续铸造法制备AICu/Al梯度材料[J].中国有色金属学报,2002,5(12):188-190.
    [50]Li Yuan-yuan, Fei Jin, Chen Wei-ping et al. Preparation of 2024/3003 gradient materials by semi-continuous casting using double-stream-pouring technique [J]. Journal of Central South University of Technology,2002,9(4):229-234.
    [51]Zhang Weiwen, Zhu Cangshan, Wei Xingzhao et al. Double-stream-pouring technique of production of gradient materials by continuous casting [J]. Chinese Science Bulltin, 1998,43(11):911-914.
    [52]Weiwen Zhang, Jixiang Gao, P K Rohatgi et al. Effect of the depth of the submerged entry nozzle in the mold on heat, flow and solution transport in double--stream-pouring continuous casting. Journal of Materials Processing Technology [J],2009,209 (15-16):5536-5544.
    [53]Eiichi Takeuchi, Kaname Wada, Kou Miyamura et al. Continuous casting process for composite metal material:United States,4828015[P].1989,09,317.
    [54]Takeuchi, Zene M. Novel continuous casting progress for clad steel slabs with level DC magnetic field [J], Iron making and steel making,1997,24(3):257-263.
    [55]赵勇慧.连铸过程中金属液流动的电磁控制[D].大连:大连理工大学,2002.
    [56]孙建波.复层铝合金铸坯连续铸造技术研究[D].大连:大连理工大学,2011.
    [57]李军.直流磁场下铝合金复层铸坯制备与模拟研究[D].大连:大连理工大学,2010.
    [58]Benedyk JC. Novel is Fusion TM Process:breakthrough in the simultaneous DC casting of multiple aluminum alloy layers for rolling ingot [J]. Light Met Age,2006,48-50.
    [59]王祝堂.诺威力复合锭铸造法的原理和工艺及应用[J].轻合金加工技术,2007,35(1):1-6.
    [60]郝元恺,肖加余.高性能复合材料学[M].北京:化学工业出版社,2004.
    [61]潘金生,仝健民,田民波.材料科学基础[M].北京:清华大学出版社,2006.
    [62]Hiroaki Matsumoto, Sadao Watanabe, Shuji Hanada. Fabrication of pure Al/Mg-Li alloy clad plate and its mechanical properties [J]. Journal of Materials Processing Technology,2005,169(1):9-15.
    [63]S. Lee, H.T. Son, I.H. Oh, et al. Fabrication and characterization of Ti-Cu clad materials by indirect extrusion [J]. Journal of Materials Processing Technology. 2007, (187-188):653-656.
    [64]Jun-ting Luo, Shuang-jing Zhao, Chun-xiang Zhang. Microstructure of aluminum/copper clad composite fabricated by casting-cold extrusion forming [J]. Journal of Central South University of Technology.2011,18(4):1013-1017.
    [65]丁旭光,张质良.双金属固相结合机理及研究趋势[J].锻压技术,1997,4:32-36.
    [66]N Bay. Cold Welding 1:Characteristics, bonding mechanisms, bond strength. Metal Construction, June 1986:369-372.
    [67]斯密良可夫.浇合铸件的制造[M].北京:机械工业出版社,1995.
    [68]许春伟,李炎,魏世忠等.液固双金属复合界面研究新进展[J].材料热处理.2006,35(20):70-73.
    [69]刘耀辉,刘海伟,于思荣.液-固结合双金属复合材料界面研究[J].机械工程学报.2000,36(7):81-85.
    [70]Takeuchi E, Zene M. Novel continous casting progress for clad steel slad with level de magnetic field [J]. Iron making and Steel making.1997,24(3):257-263.
    [71]李万明,姜周华,董艳伍,刘辉,郑立春.复合轧辊界面理论研究的现状.材料与冶金学报.2011,10:77-80.
    [72]Immarigeon J P, Holt R T, Kou A K et al. Lightweight Materials for Aircraft Applications [J]. Materials Characterization [J],1995,35(1),41-67.
    [73]Starke E A, Staley J T. Application of Modern Aluminum Alloys to Aircraft Applications [J]. Progress in Aerospace Sciences[J],1996,32(2/3):131-172.
    [74]黄光杰,汪凌云.铝锂合金的发展、应用和展望[J].材料导报,1997,02:21-24.
    [75]杨守杰,陆政,苏彬等.铝锂合金研究进展[J],材料工程,2001,5:44-47.
    [76]Lavernia E J, Srivatsan T S, F A Mohamed. Strength, deformation, fracture behaviour and ductility of aluminium-lithium alloys [J]. Materials Science[J],1990,25 (2), 1137-1158.
    [77][Timotius Pasang, Stan P Lynch, Stavroula Moutsos. Challenges in developing high performance Al-Li alloys [J]. Int J Soc Mater Eng Resour,2006,14(1/2):7-11.
    [78]Sinyavskii V S, Semenov A M. Mechanism of Stress corrosion cracking of Al-Li alloys [J]. Protection of Metals,2002,38(2):132-140.
    [79]Semenov A M, Sinyavskii V S. The effect of copper to magnesium ratio and their summary content on the corrosion properties of Al-Li alloys [J]. Protection of Metals,2001, 37(2):132-137.
    [80]张伟强.金属电磁凝固原理及技术.北京:冶金工业出版社[M],2004.
    [81]王学东,张伟强,时海芳.旋转磁场电磁搅拌数值模拟[J].辽宁工程技术大学学报(自然科学版),2000,19(5):543-545.
    [82]Buchholz A, Engler S. The influence of forced convection on solidification interfaces [J]. Computational materials science,1996,7(1-2):221-227.
    [83]刘玉林,胡壮麟,张匀.8090Al-Li合金的凝固机制[J].材料科学进展,1993,7(5):391-395.
    [84]Bregianos A C, Crosky A G, Munroe P R, Hellier A K. A study aimed at determining and understanding the fracture behaviour of Al-Li-Cu-Mg-Zr alloy 8090. International Journal of Fracture,2010,161(2):141-159.
    [85]B. L Mordike, T Ebert. Magnesium:Properties-applications-potential [J]. Materials Science and Engineering:A,2001,302(1):37-45.
    [86]Alan A. Lou. The science, technology, and application of magnesium [J]. JOM Journal of the Minerals, Metals and Materials Society,1998, (50):30-34.
    [87]G. Song. Recent Progress in Corrosion and Protection of Magnesium Alloys [J]. Advanced Engineering Materials,2005,7 (7):563-586.
    [88]Y. Z Lu, Q. D Wang, W. J Ding, et al. Fracture behavior of AZ91 magnesium alloy [J]. Material Letters.2000,44(5):265-268.
    [89]肖亚庆等.铝加工技术实用手册[G].北京:冶金工业出版社,2005.
    [90]付雪松.AZ31轧制变形及AZ31/A1热轧复合工艺研究[D].大连理工大学:2010.
    [91]张立奎.镁合金-铝合金爆炸复合材料界面组织与性能的影响[D].南京理工大学:2008.
    [92]Hiroaki Matsumoto. Sadao Watanabe, Shuji Hanada. Fabrication of pure Al/Mg-Li alloy clad plate and its mechanical properties [J]. Journal of Materials Processing Technology,2005,169:9-5.
    [93]Zhongwei Gu, Yafang Han, Fusheng Pan, et al. A Study of Hot Extrusion of 6063 Aluminum Alloy-Clad AZ31B Magnesium Alloy Bar. Materials Science Forum.2009,610-613:791-795
    [94]Thermal properties of metals (2002) ASM ready reference,1st edn. ASM International, Materials Park.
    [95]Reaction-Web, Fact-Web Programs. http://www.crct.polymtl.ca/factweb.php
    [96]E Hajjari, M Divandari, S H Razavi et al. Dissimilar joining of Al/Mg light metals by compound casting process [J]. Journal of Materials Science,2011,46(20):6491-6499.
    [97]贺幼良,杨院生,胡壮麟.电磁场作用下的金属凝固与成形[J].材料导报,2007,14(7):3-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700