镁铝复合板热压法制备工艺及其层界面组织性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁及镁合金耐蚀性差是限制其广泛应用的主要原因之一。相比之下,铝及铝合金通常具有很好的耐蚀性能和塑性成形性能,具有表面可修复性、可修饰性,铝也是镁合金中应用最多的一种对耐蚀性改善有益的合金元素。因此,在镁合金表面覆盖一层耐蚀性好的铝合金形成叠层复合材料,则可以在保护镁合金的同时又能发挥镁合金比强度和比刚度高、减震性能和电磁屏蔽性能好等的优点。
     本文通过热压法在大气环境下采用镁铝共晶合金粉末(Mg-31at.%Al)和铝镁共晶合金粉末(Mg-62at.%Al)作为中间层(钎料),热压压头温度分别在460℃、480℃和480℃、500℃下,施加30 MPa压力,保压1min,成功制备了100mmx 100mm×2.4mm的AZ31B/Al复合板。
     X射线无损检测表明镁铝复合板层界面完整,无气孔、未熔合等缺陷。利用扫描电镜(SEM)和能谱仪(EDS)观察分析了不同工艺参数下所制备的镁铝复合板的层界面微观组织结构。结果表明:热压过程中,中间层(钎料)与两侧基体均发生明显的扩散,层界面通过扩散形成冶金结合。在采用镁铝共晶合金粉末制备的镁铝复合板的层界面上,从AZ31B镁合金板到1050纯铝板依次形成α-Mg+Mg17Al12双相层、Mg17Al12单相层和Mg2Al3单相层;在采用铝镁共晶合金粉末制备的镁铝复合板的层界面上,从AZ31B镁合金板到1050纯铝板依次形成Mg17Al12单相层和Mg2Al3单相层。采用粘接拉伸法,测试了镁铝复合板层界面的结合强度,并利用扫描电镜和X射线衍射仪观察和分析了断面的组织形貌和物相组成。结果表明:镁铝复合板的层界面结合强度可达24 MPa,层界面沿较厚的单相金属间化合物层开裂。镁铝复合板层界面处较厚的镁铝金属间化合物层,尤其是Mg2Al3层,是层界面的薄弱位置。采用α-Mg+Mg17Al12共晶合金比采用α-Al+Mg2Al3共晶合金作钎料利于减小Mg2Al3层的厚度,界面结合强度也相对提高。电化学腐蚀结果表明:镁铝复合板的耐蚀性较镁合金基体有很大的提高。在3.5wt.%NaCl溶液中,腐蚀电流从AZ31B的10.75μA/cm2降低至8.68×10-3μA/cm2,与纯Al板的相当。
     采用锌板中间层,压头温度440℃,热压30s,压强15MP持续60s制备AZ31B/Zn/Al复合板,中间层与镁合金基体反应剧烈,而与铝基体无明显反应和扩散。中间层与铝结合为机械咬合结合强度小
Poor corrosion resistance of magnesium and magnesium alloys is one of the main reasons that prevents them from wider applications in many fields. In contrast, aluminum and aluminum alloys have excellent corrosion resistance and plastic formability. Their surface can be self-repaired and paintable, and Al element is beneficial for the corrosion resistance of Magnesium. Thus, coating Mg alloy with Al on its surface can fabricate a kind of laminated composite plate that can not only protect Magnesium alloys from corrosion but also maintain the magnesium alloys'high specific strength and specific stiffness, excellent damping performance as well as electromagnetic shielding characteristics.
     In this paper, a composite plate of magnesium alloy (AZ31B) and a pure aluminum metal with the size of 100mm×100mm×2.4mm was produced successfully by using two kinds of Mg-Al eutectic alloys (Mg-62at.%Al and Mg-31at.%Al) as the solder, respectively, and hot pressing with the indenter at different temperatures 460℃,480℃and 480℃,500℃, respectively, under 30 MPa for 60s in atmosphere.
     X-ray nondestructive test indicates that bonding interface is integrity. No pore and incomplete fusion were detected. The scanning electron microscope (SEM) equipped with X-ray energy dispersive spectrscope (EDS) was used for observing the cross-sectional micro structures and analysing the components of the bonding interface of the specimens fabricated under different process parameters. The results show that obvious diffusion occurs between the solders and the base plates, and a metallurgical bonding was achieved. When using Mg-Al eutectic alloy powder as solder, laminated interface of composite plate is composed of a-Mg+Mg17Al12 two-phase layer, Mg17Al12 single phase layer and Mg2Al3 single phase layer consecutively from AZ31B substrate to 1050 substrate, while when using Al-Mg eutectic alloy powder as solder, the laminated interface is composed of Mg17Al12 single phase layer and Mg2Al3 single phase layer consecutively from AZ31B substrate to 1050 substrate.The bonding strength was tested by tensile test, and the fracture surface was analyzed by SEM and X-Ray diffractomer (XRD). The interface strength as high as 24 MPa was obtained, and it was indicated that the fracture always occurs in a thicker intermetallics layer. The thick intermetallic compound layer in the laminated interface, especially, the Al3Mg2 layer is the weak link of the bonding where fracture is prone to occur. Mg2Al3 layer is thinner when using a-Mg+Mg17Al12 eutectic alloy as solder than that when using a-Al+Mg2Al3 eutectic alloy, and the interface bonding strength is relatively higher. Electrochemical tests show that corrosion resistance of Mg-Al composite plate is greatly improved compared to that of Mg alloys. The corrosion current of Mg-Al composite plate is same to that of the pure Al in 3.5wt.% NaCl solution.
     Besides, AZ31B-Zn-Al composite plate was fabricated using Zn plate as the interlayer (solder) with the hot indenter heated at 440℃holding for 30 s and under pressure of 15MPa lasted for 60 s. It was found that a violent reaction occurred between the interlayer and AZ31B substrate, but no reaction occurred on the side of the Al substrate. In this case, the plates was mechanically bonded and the bonding strength was much lower.
引文
[1]赵浩峰,池成忠.镁合金及其复合材料[M].北京:中国科学技术出版社,2002.
    [2]徐洲,姚寿山.材料加工原理[M].北京:科学出版社,2003.
    [3]陆树荪,顾开道.郑来苏,有色铸造合金及熔炼[M].北京:国防工业出版社,1983.
    [4]刘正,张奎,曾小勤.镁基轻质合计理论基础及其应用[M].北京:机械工业出版社,2002.
    [5]卫爱丽,付珍,赵浩峰.镁合金的生产及应用[J].铸造设备研究,2003,1:34-37.
    [6]丁文江.镁合金科学与技术[M].北京:科学出版社,2007
    [7]黄瑞芬,武仲河,李进军等.镁合金材料的应用及其发展[J].内蒙古科技与经济,2008,168(14):158-160.
    [8]陈振华,严红革,陈吉华等.镁合金[M].北京:机械工业出版社,2002.
    [9]张高会,张平则,潘俊德.镁及镁合金的研究现状与进展[J].世界科技研究与发展.2003,25(1):72-78.
    [10]王渠东,丁文江.镁合金及其成型技术的国内外动态与发展[J].世界科技研究与发展.2004,26(3):39-46.
    [11]Luo A, Renaud J, Nakatsugawa I, et al. Magbesium Casting for Automobile Applications [J]. JOM,1995,47(7):28-31.
    [12]Jacques RP, DasGupta R, Shearouse JD Ⅲ. Hot Chamber Discasting of Magnesium Alloy AM50A for Automotive interior Structural Components[J]. Society of Automotive Engineers,1996:15-22.
    [13]杜文博,吴玉峰,左铁镛.镁合金在交通工具中的应用现状[J].世界有色金属,2006,(2):19-21.
    [14]陈力和,赵慧杰,刘正等.镁合金压铸及其在汽车工业中的应用[J].铸造.1999,(10):45-50.
    [15]陈礼清,赵志江.从镁合金在汽车及通讯电子领域的应用看其发展趋势[J].世界有色金属.2004,(7):12-20.
    [16]Nishikawa, Y. Development of electric Products Using Magnesium Alloy[J]. Function and Materials.1999,9(6):21-27.
    [17]杨程,杜红星,刘晓平.镁合金在3C产品中应用现状及前景展望[J].铸造设备研究.2005,(6):46-49.
    [18]王智文,张治民,张星等.镁合金的应用现状及其塑性成形技术[J].华北工学院学报,2005,26(1):70-74.
    [19]钟皓,刘培英,周铁淘.镁及镁合金在航空航天中的应用及前景[J].航空工程与维修.2002.(4)41-42.
    [20]王祝堂.变形镁合金在航空航天器中的应用[J].世界有色金属.2010,(3):66-69.
    [21]黄海军,韩秋华.镁及镁合金的特性与应用[J].热处理技术与装备.2010,31(3):6-8.
    [22]杨维谦,杨少华,孙公权等.镁燃料电池的发展与应用[J].电源技术,2005,29(3):182-186
    [23]唐全波,黄少东,伍太宾.镁合金在武器装备中的应用分析[J].兵器材料科学与工程,2007,30(2):69-72.
    [24]张津,麻彦龙,黄福祥等.镁合金表面铝涂层研究新进展[J].表面技术,2007.36(5):64-67.
    [25]刘秀晨,安成强,金属腐蚀学[M].北京:国防工业出版社,2002
    [26]任伊宾,黄晶晶,杨柯等.纯镁的生物腐蚀研究[J].金属学报,2005,41(11):1228-1232.
    [27]Zhang Hua, Yao Guangchun, Wang Shulan et al. A chrome free conversion coating for magnesium lithium alloy by a phosphate permanganate solution [J]. Surface and Coatings Technology.2008,202(9):1825-1830.
    [28]Kwo Zong Chong, Teng Shih Shih. Conversion coating treatment for magnesium alloys by a permanganate phosphate solution[J]. Materials Chemistry and Physics,2003, 80(1):191-200.
    [29]Lin C S,Lin H C, Lin K M et al. Formation and properties of stannate conversion coating s on AZ61 magnesium alloys[J]. Corrosion Science,2006,48(1):93-109.
    [30]张永君,严川伟,王福会等.镁及镁合金环保型阳极氧化电解液及其工艺[J].材料保护.2002,35(3):39-41.
    [31]张永君,严川伟,楼翰一等.Mg及其合金的阳极氧化技术进展[J].腐蚀科学与防护技术.2001,13(4):214217.
    [32]薛文斌,来永春,邓志威等.镁合金微等离子体氧化膜的特性[J].材料科学与工艺.1997,5(2):8992.
    [33]薛文斌,邓志威,来永春等.ZM5镁合金微弧氧化膜的生长规律[J].金属热处理学报.1998,19(3):42 45.
    [34]霍宏伟,王福会,李瑛等.Al扩散涂层对AZ91D镁合金耐腐蚀性能的影响[J].腐蚀科学与防护技术.2001,3(11):84-486.
    [35]Christoglou Ch, Voudouris N, Angelopoulos G N, et al. Deposition of aluminium on magnesium by a CVD process[J]. Surface and Coatings Technology.2004,84:49-155.
    [36]崔泽琴,吴宏亮,王文先等.AZ31B镁合金表面激光熔覆Cu-Ni合金层[J].中国有色金属学报.2010,20(9):1665-1670.
    [37]刘红宾,王存山,等.镁合金表面激光熔覆Cu-Zr-Al非晶复合涂层[J].中国激光.2006,33(5):709-713.
    [38]姚军,孙广平,林文光.AZ91D镁合金激光熔覆Al+Al2O3涂层的界面特征[J].热加工工艺.2006,35(19):32-34.
    [39]胡乾午,刘顺洪,等.镁基复合材料与不锈钢激光熔覆层的结合界面特征[J].材料热处理学报.2001,22(4):31-35.
    [40]杨晓飞,林文光,毛广雷.AZ91D镁合金激光熔覆Al+Al2O3涂层研究[J].兵器材料科学与工程.2007,30(4):20-23.
    [41]叶宏,孙智富,吴超云.镁合金表面热喷涂Al-Al2O3/TiO2梯度涂层研究[J].武汉理工大学学报.2006,28(7):9-11.
    [42]叶宏,孙智富,张津,等. AZ91D镁合金表面热喷涂陶瓷涂层研究[J].现代制造工程.2004,(11):61-62.
    [43]武建军,曹晓明,温鸣.现代金属热喷涂技术[M].北京:化学工业出版社.2007.
    [44]Wei Zhongshan, Liu Liufa, Ding Wenjiang.Al arc spray coating on AZ31 Mg alloy and its corrosion behavior [J]. Materials Science Forum,2005(488/489):685-688.
    [45]梁永政,郝远,杨贵荣,等.镁合金AZ91D表面电弧喷涂铝工艺的研究[J].机械工程材料,2005,29(3):29-31.
    [46]李线绒,梁伟,赵兴国等.共晶合金中间层连接镁/铝异种金属的界面组织及结合强度研究[J].稀有金属材料与工程,2008,37(11):2016-1019.
    [47]Y.B. Yan, Z.W. Zhang, W. Shen, et al. Microstructure and properties of magnesium AZ31B-aluminum7075 explosively welded composite plate [J]. Materials Science and Engineering A,2010,527:2241-2245.
    [48]焦少阳,董建新,等双金属热轧复合界面结合影响因素及结合机理[J].材料导报.2009(01):59-62.
    [49]付雪松.AZ31轧制变形与AZ31/Al热轧复合工艺研究[D].辽宁:大连理工大学,2010.
    [50]谭成文,李珊珊,周终强等.Mg/Al层状复合材料扩散连接制备及界面特性[J].特种铸造机有色合金.2007.27(1):1-4.
    [51]刘鹏,李亚江,王娟,等Mg/Al异种材料真空扩散焊界面区域的显微组织[J].焊接学报.2004.25(5):5-8.
    [52]H. Yang, X. Guo, G. Wu, et al. Continuous intermetallic compounds coatings on AZ91D Mg alloy fabricated by diffusion reaction of Mg-Al couples [J]. Surface and Coatings Technology,2011,205:2907-2913.
    [53]赵丽敏,刘黎正,徐荣正,等.镁合金与铝合金的夹层扩散焊连接[J].焊接学报.2007.28(10):9-13.
    [54]X. Li, W. Liang, X. Zhao, et al. Bonding of Mg and Al with Mg-Al eutectic alloy and its application in aluminum coating on magnesium [J]. Journal of Alloys and Compounds, 2009,471:408-411
    [55]付晓鹏,梁伟,李线绒,等.镁/铝异种材料连接界面的显微组织与结合强度研究[J].材料研究与应用.2009,3(1):23-27.
    [56]付晓鹏,梁伟,李线绒,等.AZ91D镁合金表面覆铝的显微组织及性能研究[J].金属热处理,2009.3(11):
    [57]刘奋成,梁伟,赵兴国,等.纯镁表面真空扩散渗铝层的组织和性能[J].金属热处理.2007.(5):18-20.
    [58]李线绒.镁及镁合金表面覆铝层的形成及性能研究[D].山西:太原理工大学.2009.
    [59]王国军.铝及铝合金板带材织构[J].轻合金加工技术.2004.32(6):28-33.
    [60]孙跃,胡锦.金属腐蚀与控制[M].哈尔滨:哈尔滨工业大学出版社.2003.
    [61]郝献超,周婉秋,郑志国.AZ31镁合金在NaCl溶液中的电化学腐蚀行为研究[J].沈阳师范大学学报.2004.22(2):117-121.
    [62]D. Pitts, L. Sissom, Schaum's Outlins of Theory Problems of Heat Tramsfer, second Ed., McGraw-Hill Companies, Inc., New York,1998.
    [63]刘鹏.Mg/Al异种金属扩散焊界面元素的扩散机制[D].山东:山东大学,2006.
    [64]徐恒钧.材料科学基础[M].北京:北京工业大学出版社.北京:2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700