两种随机优化算法的改进及其化工应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去的30年中,能源价格持续增长,环境控制日益严格,产品竞争趋于全球化,面对这些压力,优化技术是企业降低成本提高效益的一个有效技术。从产品设计到供应链管理,优化技术可以应用于化工过程的每一个层次。然而物质能量转化过程内在的非线性、以及装置操作中的离散性使得化工过程优化存在诸多困难。面对诸多实际问题,经典数学规划法已显无能为力,因此对随机的、智能的优化技术的需求日益迫切。
     随机优化方法,如遗传算法、模拟退火、禁忌搜索、蚁群算法和粒子群算法等在解决现实问题中显示了强大的搜索能力,它们可在合理的时间内逼近问题的最优解,这些算法涉及人工智能、统计热力学、生物进化论以及仿生学,所以又被称为智能优化算法。随机优化算法不受应用问题结构束缚,对问题的数学解析性质要求低,无需函数导数,甚至不需要显式的目标函数,既可处理连续问题也可以处理离散问题,并能以较大概率找到全局最优解,算法容易引入启发式逻辑规则,算法原理直观易于编码实现,这些优点已使随机优化算法成功应用于许多化工优化问题。本文以两种随机优化算法,经典的遗传算法和新颖的粒子群算法为研究对象,针对具体化工应用问题,对它们进行改进研究,提高算法解决具体问题的效率。因粒子群优化算法具有算法简单、收敛速度快的优点,成为近年随机优化领域热点之一,它是本文的重点研究对象。
     本文首先根据化工优化中存在的困难和确定性优化算法内在的缺点,分析了随机优化算法的重要性,并提出研究随机优化算法应注意的问题;其次,将遗传算法应用于两个数据驱动建模问题,一为组合优化问题,一为混合整数优化问题;再次,从粒子群优化算法的基本结构、运动行为、改进方法做了系统的研究:最后,将提出的两种改进粒子群优化算法应用于相平衡计算问题,为非凸全局优化问题。本文的主要研究成果可归纳如下:
     1.光谱分析是化工中常用的分析方法,波长选择是一种重要的光谱分析预处理步骤,通过筛选特征波长点,可以得到建模变量的最优组合,使所建模型的预测性能达到最佳。近红外光谱波长范围宽,波长选择可达2~(1000)种组合,其规模甚大。该问题的优化变量为0—1变量,目标函数无显式表达式,优化有一定难度。为此,本文提出移动窗口—迭代遗传算法(MW—IGA)波长选择算法,在移动窗口扫描所得的信息区间基础上,以迭代遗传算法作细化搜索,选出最优波长区间组合。该算法考虑了光谱的连续相关性特点,保留了一定的信息冗余度,使模型更为稳健。MW—IGA亦可用于其他类型光谱波长选择,若原光谱波长点小于200,可直接使刚IGA。该算法已成功应用于感冒液多组分测定的紫外—可见光谱选择和小麦水分测定的近红外光谱选择。
     2.人工神经网络常用于建立非线性数据驱动模型,在化工操作优化、过程控制中较为常见。本文提出了一种改进的径向基函数一循环子空间回归(RBF-CSR)模型,它具有标准的网络结构设计方法。以模型预测性能为优化目标,优化变量同时含有实数和整数,为此,本文提出一种优进混合编码遗传算法(EHCGA)训练该模型,不同类型的变量采用不同的编码方式,对整型变量进行二进制编码,对实型变量进行浮点型编码。它采用分段交叉算子和分段变异算子,并引入Powell优进算子加速进化。该方法成功用于回收己内酰胺的脉冲波板填料塔萃取过程建模。EHCGA不仅可用于RBF—CSR模型训练,还可推广到其他混合整数规划问题。
     3.为克服粒子群优化算法用于高维问题时容易早熟的缺点,本文提出一种合作粒子群优化算法(CLPSO),它将粒子种群分成两个部分,一部分粒子负责局部开发,一部分粒子负责全局探测,这两部分粒子分工合作,使种群始终保持多样性,大大提高了算法的全局寻优性能。
     4.针对粒子群优化算法运行后期收敛速度减慢的缺点,在合作粒子群算法的基础上,本文提出一种局部加速粒子群算法(LAPSO),它将引入相对进化度的概念,用以监测种群的进化速度,并引入一些加速规则,应用Nelder-Mead单纯形法对局部区域进行局部精细搜索。粒子群算法探测全局解可能所在的区域,单纯形算法又适时地在该区域内细化搜索,加快了种群收敛速度,并提高解的精度。合作粒子群算法始终维持种群多样性,不会因引入局部算法而导致种群早熟。
     5.化工问题中常存在物料守恒、质量守恒、原子守恒这类线性约束,针对粒子群优化算法无法处理约束的缺点,本文提出一种线性约束粒子群算法(LCPSO),它对粒子群算法的位置更新步骤作了改进,各维分量的速度更新采用同一随机数,使速度更新成为线性操作,进而可以直接处理带有线性约束的非凸优化问题。LCPSO在可行空间内产生初始解,利用算法自身的线性进化算子使种群各粒子始终满足线性约束,是一种高效的保持种群于可行空间的约束优化方法。
     6.相稳定性分析可判定所给定的相态是否稳定、相平衡计算结果是否正确等。Gibbs自由能切平面距离法是最常见的相稳定性判定方法,该优化问题的目标函数非凸,且受摩尔分率归一化约束。为此,本文提出采用线性约束粒子群算法LCPSO最小化切平面距离,该方法适用于各种热力学模型,可判定各种分相形式。将LCPSO应用到三类热力学模型,根据热力学原理对每种模型的目标函数作了约简,大大减少目标函数计算量。
     7.复杂相平衡体系Gibbs自由能函数存在多个局部极小点,应用局部优化算法难以得到全局解。不含化学反应的相平衡问题存在物料守恒约束,通过引入组分余相分率,可将其转化为无约束优化问题。本文采用LAPSO求解这类相平衡问题,无需考虑体系实际存在的相态,计算不依赖函数导数,收敛至全局解的概率高。含化学反应的相平衡问题受到原子守恒约束问题,采用LCPSO求解该问题,可使种群始终保持在可行空间内运动,计算效率高。将原子守恒改为元素守恒,极大提高了初始可行种群的产生效率,有利于减少随机抽样产生的无效解。
     随机优化算法在一些化工问题中的成功应用,确定性全局优化算法对问题数学解析性质要求高以及计算量太大,这些现实会继续促使随机优化算法在化工领域的应用研究,特别是在组合优化类型问题上的研究。
In the last thirty years, the energy price has been increasing, the control of environment has been more rigorous, and the product competition has become worldwide. Facing these pressures, optimization technique is an effective approach that can reduce the cost and increase the revenue of enterprise. From product design to supply chain management, optimization can be applied on any scale of chemical process. But the intrinsic nonlinearity in substance and energy conversion, addition to the discreteness of process operation, results in many difficulties for optimization of chemical process. In front of many practical problems, the classical mathematic programming methods are helpless. So the demand for stochastic and intelligent optimization methods is more urgent.
    Stochastic optimization algorithms, such as genetic algorithm, simulated annealing, tabu search, ant colony optimization and particle swarm optimization, have powerful searching ability, and they can approach the true solution of practical problem in reasonable time. These algorithms are usually related to artificial intelligence, statistical thermodynamics, biology evolutionism, and bionics, so they are also called intelligent optimization methods. The stochastic optimization algorithms are not limited to the structure of problem, and have not rigorous restriction on mathematic properties of problem. They needn't the first derivative, and even explicit objective function. They can not only deal with continuous problems, but also discrete problems. Stochastic algorithms can find the global optimum with great probability, and are easy to fuse the heuristic rules. Such advantages have made stochastic optimization algorithms applied to many chemical engineering problems successfully. This dissertation researched on two stochastic algorithms, one of which is genetic algorithm and the other is particle swarm optimization algorithm. Aiming at the specific engineering problems, some modifications have been proposed on the two algorithms, which can improve their efficiency in specific problems. Because particle swarm optimization algorithm is more concise, and it has rapid convergence, which bring it to be a research hotspot in the field of evolutionary computation, so it is an emphasis in this dissertation.
    Firstly, according to the difficulties in the optimization of chemical engineering and the intrinsic disadvantage of deterministic optimization algorithms, this work analyzed the importance and advantage of stochastic algorithms, and proposed some important aspects in research on them. Secondly, genetic algorithm was applied to two problems of data driven modeling, one of which was combination problem, the other was mixed integer nonlinear programming. Thirdly, systemic investigations were made on the basic structure, dynamic behavior and modifications of particle swarm optimization. Lastly, two kinds of proposed PSO algorithms were applied on calculation of phase equilibrium, which is nonconvex optimization. The major contributions of this work are summarized as follows.
    1. Spectral wavelength selection is an important spectrum preprocessing step, which can get the best combination of modeling variables for the best predictive performance. The near infrared spectrum has wide spectral range, and there are nearly 2~(1000) combinations for wavelength selection. The optimization variables in this problem are binary and the problem hasn't
    explicit optimization objective function. So moving window - iterative genetic algorithm (MW-IGA) was proposed to select wavelength, in which moving window scanning finds the information regions. Genetic algorithm selects the best combination of wavelength intervals. This approach considers the correlation of continuous wavelength points, and the resulted wavelengths contain some redundancy that make the model more robust. MW-IGA could be applied to wavelength selection for other spectrum. If the number of wavelength points is less than 200, the step of moving window could be neglected. This method has been applied to UV-Vis spectrum of cough syrup and NIR spectrum of corn.
    2. Artificial neural network is used to establish the nonlinear data-driven model, which is very common in operative optimization and process control for chemical process. A modified radical basis function - cyclic subspace regression (RBF-CSR) neural network was proposed, and it has standard network structure. The model contains real and integer variables simultaneously, so eugenic hybrid coding genetic algorithm (EHCGA) was devised to train the neural network. EHCGA adopted different coding methods for different types of variable, which means integer variables adopted binary codes, while real variables adopted float codes. It used different crossing and mutation operator separately for different codes and Powell eugenic operator was introduced to accelerate evolution. RBF-CSR model trained by EHCGA has applied on pulsed extraction process for recover caprolactam successfully. EHCGA can be applied to other MINLP problem.
    3. Particle swarm optimization usually converges prematurely for high dimensional problem, so a collaborative PSO (CLPSO) was proposed. The particle population is divided into two parts, one part is responsible for global exploration and the other part is responsible for local exploitation. The two parts work together and maintain the diversity of population, which improves the global searching ability.
    4. PSO converges very slowly in the late evolutionary period. Based on CLPSO, a locally accelerated PSO (LAPSO) algorithm was proposed. LAPSO introduced the concept of relative evolutionary extent, which could detect the evolutionary rate of algorithm. Some acceleration rules were introduced into LAPSO and Nelder-Mead simplex algorithm was adopted for local search. PSO finds the area that may include global solution, while simplex searches the solution in the area precisely in time. LAPSO also accelerates the convergence of PSO.
    5. In chemical engineering, there exist many linear constraints, such as material balance, mass balance and atom balance. A linear constraint PSO (LCPSO) was devised for this kind of problems. LCPSO modified the velocity and position updating operation, and the random number in every dimension for velocity updating adopted same value. So the new velocity for every particle became the linear combination of old velocity and position. LCPSO can be applied to nonconvex optimization constrained by linear equalities. It generates the initial population in feasible space, and utilizes its intrinsic linear operations to maintain the particle satisfying the constraints. LCPSO is an effective constrained optimization algorithm that deals with linear equalities.
    6. Phase stability analysis can determine whether the given phase is stable and whether the result of phase equilibrium calculation is right. Tangent
    plane distance function (TPDF) approach is the popular method for phase stability analysis. TPDF is nonconvex and the problem is constrained by the mole fraction summation. LCPSO was utilized to minimize the TPDF, and this method can applied to any thermodynamic model and can detect any type of instability. This work applied LCPSO to three types of thermodynamic model. According to thermodynamic theories, the objective functions were simplified, which greatly decreased the amount of calculation.
    7. For complex phase equilibrium system, the Gibbs energy function has several local minima, so it's difficult to get the global minimum by the local optimization algorithms. If chemical reactions don't occur, there are only material balances for phase equilibrium. Component phase fraction was introduced, which converts the original problem to an unconstrained one. LAPSO was utilized to solve the phase equilibrium without reactions, and it need not considering the actual number and type of phases and needn't the derivative. For phase equilibrium problem with chemical reaction, the constraints are atom balances, which are general linear equalities. LCPSO was utilized to compute this kind of equilibrium. LCPSO maintains the particle within feasible space and the computing efficiency is high. When atom balances are converted to element balances, the efficiency of generating initial feasible population is greatly improved.
    The facts that stochastic optimization algorithms were applied to chemical engineering successfully and the deterministic algorithms have the intrinsic disadvantages, will promote the research on stochastic algorithm in chemical engineering, especially in combinational and global optimization.
引文
1.何小荣,化工过程优化.北京:清华大学出版社.2002
    2.袁亚湘,孙文瑜,最优化理论与方法.北京:科学出版社.2001
    3.胡上序,陈海,化工过程的建模、仿真和优化.杭州:浙江大学出版社.1997
    4.王凌,智能优化算法及其应用.北京:清华大学出版社,施普林格出版社.2001
    5. J. H. Holland, Adaption in Nature and Artificial System, Cambridge. Cambridge: MIT Press. 1975
    6. D. B. Fogel, An introduction to simulated evolutionary optimization. IEEE transaction on Neural Networks. 1994, 5:96-101
    7. S. Kirkpatrick, J. C. D. Gelatt and M. P. Vecchi. Optimization by simulated annealing. Science. 1983, 220:671-680
    8. Dorigo, Marco and Stutzle, Thomas, Ant Colony Optimization. Cambridge: MIT press.2004
    9. J. Kennedy, R. C. Eberhart. Particle Swarm Optimization. in Procedings of IEEE International Conference on Neural Networks. 1995. Piscataway, NJ.
    10. L. T. Biegler, I. E. Grossmann. Retrospective on optimization. Computers and Chemical Engineering. 2004, 28:1169-1192
    11. W. D. Seider, J. D. Seader, D. R. Lewin, Process design principles -Synthesis, Analysis, and Evaluation New York: John Wiley & Sons 1999
    12. R. Horst, P. M. Pardalos, N. V. Thoai, Introduction to Global Optimization. Dordrecht, Netherlands: Kluwer Academic Publishers. 2000
    13. G. Polya, How to Solve it? New Jersey: Princeton University Press. 1948
    14. G. Athier, P. Floquet, L. Pibouleau, and S. Domenech, Process optimization by simulated annealing and NLP procedures. Application to heat exchanger network synthesis. Computers & Chemical Engineering. 1997, 21(Supplement 1): S475-S480
    15. Daniel R. Lewin, A generalized method for HEN synthesis using stochastic optimization - Ⅱ.: The synthesis of cost-optimal networks. Computers & Chemical Engineering. 1998, 22(10): 1387-1405
    16. Daniel R. Lewin, Wang Hao and Shalev, Ofir. A generalized method for HEN synthesis using stochastic optimization - Ⅰ. General framework and MER optimal synthesis. Computers & Chemical Engineering. 1998, 22(10): 1503-1513
    17. B. Lin, D. C. Miller. Tabu search algorithm for chemical process optimization. Computers and Chemical Engineering. 2004, 28:2287-2306
    18. Anthony Garrard, and Eric S. Fraga, Mass exchange network synthesis using genetic algorithms. Computers & Chemical Engineering. 1998, 22(12): 1837-1850
    19. P. Fioguet, L. Pibouleau, S. Domenech. Seperation sequence synthesis: how to use a simulated annealing procedure. Computers and Chemical Engineering. 1994, 18: 1141-1148
    20. V. K. Jayaraman, B. D. Kulkarni, Sachin Karale and Prakash Shelokar,. Ant colony framework for optimal design and scheduling of batch plants. Computers & Chemical Engineering. 2000, 24(8): 1901-1912
    21. L. Cavin, U. Fischer, A. Mosat, and K.Hungerbuhler, Batch process optimization in a multipurpose plant using Tabu Search with a design-space diversification. Computers & Chemical Engineering. 2005, 29(8): 1770-1786
    22. Bernal-Haro Leonardo, Azzaro-Pantel Catherine, Domenech Serge, and Pibouleau Luc. Design of multipurpose batch chemical plants using a genetic algorithm. Computers & Chemical Engineering. 1998, 22(Supplement 1): S777-S780
    23. Ho-Kyung Lee, Jae Hak Jung, and in-Beum Lee. An evolutionary approach to optimal systhesis of multiproducet batch plant. Computers and Chemical Engineering. 1996, 20(9): 1149-1157
    24. C.M.Silva, and E.C.Biscaia, Genetic algorithm development for multi-objective optimization of batch free-radical polymerization reactors. Computers & Chemical Engineering. 2003, 27(8-9): 1329-1344
    25. L.Cavin, U.Fischer, F.Glover, and K.Hungerbuhler, Multi-objective process design in multi-purpose batch plants using a Tabu Search optimization algorithm. Computers & Chemical Engineering. 2004, 28(4): 459-478
    26. Dedieu Samuel, Pibouleau Luc, Azzaro-Pantel, Catherine, and Domenech, Serge. Design and retrofit of multiobjective batch plants via a multicriteria genetic algorithm. Computers & Chemical Engineering. 2003, 27(12): 1723-1740
    27. K.Singh Manish, Banerjee Tamal and A. Khanna, Genetic algorithm to estimate interaction parameters of multicomponent systems for liquid-liquid equilibria. Computers & Chemical Engineering. 2005, 29(8): 1712-1719
    28. Katare Santhoji, Bhan Aditya, James M. Caruthers, W. Nicholas Delgass, and Venkatasubramanian Venkat. A hybrid genetic algorithm for efficient parameter estimation of large kinetic models. Computers & Chemical Engineering. 2004, 28(12): 2569-2581
    29. Tae-Yun Park, and Gilbert F. Froment. A hybrid genetic algorithm for the estimation of parameters in detailed kinetic models. Computers & Chemical Engineering. 1998, 22(Supplement 1): S103-S110
    30. Wongrat Wongphaka, Srinophakun Thongchai and Srinophakun Penjit. Modified genetic algorithm for nonlinear data reconciliation. Computers & Chemical Engineering. 2005, 29(5): 1059-1067
    31. I. E. Grossmann, L.T. Biegler. Future perspective on optimization. Computers and Chemical Engineering. 2004, 28: 1193-1218
    32. T.F. Edgar; D.M. Himmelblau; L.S. Lasdon 著,张卫东等译,化工过程优化(Optimization of chemical process) . 2 ed. 北京:化学工业出版社 .2005
    1.袁亚湘,孙文瑜,最优化理论与方法.北京:科学出版社.2001
    2.T.F.Edgar,D.M.Himmelblau,L.S.Lasdon著,张卫东等泽,化工过程优化(Optimization of chemical process).2 ed.北京:化学工业出版社.2005
    3.何小荣,化工过程优化.北京:清华大学出版社.2002
    4.刑文训;谢金星,现代优化计算方法.北京:清华大学出版社.1999
    5. R. Horst, P. M. Pardalos, N. V.Thoai, Introduction to Global Optimization. Dordrecht, Netherlands: Kluwer Academic Publishers. 2000
    6.王凌,智能优化算法及其应用.北京:清华大学出版社,施普林格出版社.2001
    7.王凌,郑大钟.Meta-heuristic算法研究进展.控制与决策.2000,15(3):257-262
    8. Dorigo, Marco and Stutzle, Thomas, Ant Colony Optimization. Cambridge: MIT press. 2004
    9. J. Kennedy, R. C. Eberhart. Particle Swarm Optimization. in Procedings of IEEE International Conference on Neural Networks. 1995. Piscataway, NJ.
    10. S. Kirkpatrick, J. C. D. Gelatt and M. P. Vecchi. Optimization by simulated annealing. Science. 1983, 220:671-680
    11. F. Glover. Future paths for integer programming and links to artificial intelligence. Computers and Operations Research. 1986, 5:533-549
    12. F. Glover and M. Laguna, Taba Search. Nowell, MA: Kluwer Academic Publishers. 1997
    13.周明,孙树栋,遗传算法原理及应用.北京:国防工业出版社.1999
    14.王小平,曹立明,遗传算法——理论、应用与软件实现.西安:西安交通大学出版社.2002
    15. J. H. Holland, Adaption in Nature and Artificial System. Cambridge: MIT Press.1975
    16. M. Dorigo, V. Maniezoo and A. Colorni, The Ant System: An autocatalytic optimization process, in Technical Report 91-016. 1991, Dept. of Electronics: Politecnico di Milano, Italy.
    17.吴启迪,汪镭,智能蚁群算法及应用.上海:上海科技教育出版社.2004
    18. M. Dorigo and L. M. Gambardella, Ant Colonies for the Traveling Salesman Problem. BioSystem. 1997, 43:73-81
    19.程志刚.连续蚁群优化算法的研究及其化工应用[D].杭州:浙江大学,2005
    20. D. H. Wolpert, and W. G. Macready, No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation. 1997, 1(1): 67-82
    21. I. E. Grossmann, L. T. Biegler. Future perspective on optimization. Computers and Chemical Engineering. 2004, 28:1193-1218
    22. C. A., Floudas, Deterministic global optimization: theory, methods and applications. Dordrecht, Nertherlands: Kluwer Academic Publishers. 2000
    23. I. E. Grossmann, Global optimization in engineering design. Dordrecht, Netherlands: Kluwer Academic Publishers. 1996
    24. C. S. Adjiman, I. P. Androulakis, C. D. Maranas, C. A. Floudas, A global optimization method eBB for process design. Computers and Chemical Engineering,. 1996, 20:S419-S424
    25. C. S. Adjiman, I. P. Androulakis, C. A Floudas, Global optimization of mixed-integer nonlinear problems. AIChE Journal. 2000, 46(9): 1769-1797
    26. N. Y. Sahinidis. BARON: A general purpose global optimization software package. Journal of global optimization. 1996, 8(2): 201-205
    27. R. E.. Moore. Interval analysis. Englewood Cliffs. NJ: Prentice-Hall. 1966
    28.李庆扬,莫孜中,非线性方程组的数值解法.北京:科学出版社.1987
    29. R. B. Kearfott, Rigorous global search: Continuous Problem. Dordrecht, Netherlands: Kluwer Academic Publishers. 1996
    30. Y. Lin, M. A. Stadtherr, Advances in Interval Methods for Deterministic Global Optimization in Chemical Engineering, in Frontiers In Global Optimization, P. M. P. C. A. Floudas, Editor. 2003, Kluwer Academic Publishers: Dordrecht, Netherlands.
    1.陆婉珍,现代近红外光谱分析技术.北京:中国石化出版社.2000
    2.徐广通,袁洪福,陆婉珍.现代近红外光谱技术及应用进展.光谱学与光谱分析.2000,20(2):134-142
    3.胡上序,陈德钊,观测数据的分析与处理.杭州:浙江大学出版社.1996
    4.陈德钊,多元数据处理.北京:化学工业出版社.1998
    5.褚小立;袁洪福;陆婉珍;.近红外分析中光谱预处理及波长选择方法进展与应用.化学进展.2004,16(4):528-542
    6. U. Horchner, J. H. Kalivas. Further investigation on a comparative study of simulated annealing and genetic algorithm for wavelength selection. Analytica Chimica Acta. 1995, 311:1-13
    7. J. A. Hageman, M. Streppel, R. Wehrens and L. M. C. Buydens. Wavelength selection with Tabu Search. J. Chemometries. 2003, 17:427-437
    8. Ortiz, M. Julia. Acros, M. Cruz. genetic -algorithm based wavelength selection in multieomponent spectrometric determinations by PLS: applieaiton on indomethacin and acemethacin mixture. Analytica Chimica Acta. 1997, 339:63-77
    9. R. Leardi, L. Gonzalez. generic algorithm applied to feature selection in PLS regression: how and when to use them. Chemometrics Intell. Lab. Syst. 1998, 41:195-207
    10. Qing Ding, Gray W. Small. Genetic Algorithm-Based Wavelength Selection for the Near-Infrared Determination of Glucose in Biological Matrixes: Initialization Strategiesand Effects of Spectral Resolution. Anal Chem. 1998, 70:4472-4479
    11. L Nogaard, A. Saudland. Interval Partial Least-Squares Regression (iPLS): A Comparative Chemometrie Study with an Example from Near-Infrared Spectroscopy. Applied spectroscopy. 2000, 54(3): 413-419
    12. Jian-Hui Jiang, Yukihiro Ozaki. Wavelength Interval Selection in Multieomponent Spectral Analysis by Moving Window Partial least-Squares Regression with Applications toMid-Infrared and Near-Infrared Spectroscopic Data. Anal. Chem. 2002, 74(14): 3555-3565
    13. Y. P. Du, Y. Z. Liang, J. H. Jiang, R. J. Berry, Y. Ozaki. Spectral regions selection to improve prediction ability of PLS models by changeable size moving window partial least squares and searching combination moving window partial least squares. Analytica Chimica Aeta. 2004, 501:183-191
    14. FDA (2003) PAT-A Framework for Innovative PharmaceuticalManufaeturing and Quality Assurance (Draft Guideline). http://www.fda.gov/cder/OPS/PAT.htm. Volume,
    15. Joa O. A. Lopes, Paula F. Costaa, Teresa P. Alvesb, Jose C. Menezes. Chemometries in bioproeess engineering: process analytical technology (PAT) applications. Chemometries and Intelligent Laboratory Systems. 2004, 74: 269- 275
    16. Steven J. Doherty, and Andrew J. Lange, Avoiding pitfalls with ehemometries and PAT in the pharmaceutical and bioteeh industries. TrAC Trends in Analytical Chemistry. 2006, 25(11): 1097-1102
    17.高鸿,李华.过程分析化学的新进展.分析化学.2001,29(4):473-477
    18.陈军,张岱宗.我国炼油化工在线分析仪表的应用与系统集成.化工自动化及仪表.1998,25(1):1-5
    19.舒伟杰,王靖岱,蒋斌波,阳永荣.声波的多尺度解析与气固流化床故障检测.化工学报.2006,57(7):1560
    20.胡晓萍,侯琳熙,王靖岱,阳永荣.气固流化床中声发生机理及在工业装置中的应用.化工学报.2005,56(8):1474
    21.陆婉珍,褚小立,袁洪福.在线近红外光谱过程分析技术及其应用.现代科学仪器.2004,(2):3-21
    22.俞汝勤,梁逸曾.化学计量学在我国的发展.化学通报.1999,(10):14-19
    23.梁逸曾,俞汝勤.分析化学手册;第十分册;化学计量学 北京:化学工业出版社.2000
    24.朱尔一,杨芃原.化学计量学技术及应用.北京:科学出版社 2001
    25. Gasteiger Johann. The central role of chemoinformatics. Chemometrics and Intelligent Laboratory Systems. 2006, 82(1-2): 200-209
    26. S. J. Haswell, A. D. Walmsley. Chemometrics: the issues of measurement and modelling. Analytiea Chimica Acta. 1999, 400:399-412
    27.张正奇.分析化学.北京:科学出版社.2001
    28. M. Blanco, J. Coello, H. Iturriaga, S. Maspoch, J. Pages. NIR calibration in non-linear systems: different PLS approaches and artificial neural networks. Chemometrics and Intelligent Laboratory Systems. 2000, 50:75-82
    29. F. Chauchard, R. Cogdill, S. Roussel, J. M. Roger, V. Bellon-Maurel. Application of LS-SVM to non-linear phenomena in NIR spectroscopy: development of a robust and portable sensor for acidityprediction in grapes. Chemometries and Intelligent Laboratory Systems. 2004, 71:141-150
    30. S. Wold, Mi. Sjostrom, L. Eriksson. PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems. 2001, 58:109-230
    31.成忠.PLSR用于化学化工建模的几个关键问题的研究[D].杭州:浙江大学,2005
    32.倪永年.化学计量学在分析化学中的应用.北京:科学出版社.2004
    33.王惠文.偏最小二乘回归方法及其应用.北京:国防工业出版社.1999
    34. R. Leardi. Application of genetic algorithm-PLS for feature selection in spectral data sets. J. Chemometrics. 2000, 14:643-655
    35.张立庆,吴晓华,唐曦,朱仙良,苏文庭.基于VB的主成分回归计算分光光度法同时测定感冒液成分的研究.光谱学与光谱分析.2002,22(3):427-429
    36.张立庆,吴晓华,唐曦,朱仙良,苏文庭.偏最小二乘分光光度法同时测定扑热息痛等五组分含量.分析科学学报.2002,18(4):318-320
    37.成飙,吴晓华,陈德钊.基于迭代初始化遗传算法的光谱波段选择及其在感冒液多组分测定中的应用.光谱学与光谱分析.2006,26(10):1923-1927
    38. J. H. Kalivas, two data sets of near infrared spectra. Chemometrics Intell. Lab. Syst. 1997, 37: 255-259
    39.成飙,陈德钊,吴晓华.基于移动窗口-迭代遗传算法的近红外光谱波长选择方法.分析化学.2006,34(s):S123~S126
    40. R. Leardi, M. B. Seasholtz, J. P. Randy Variable selection for multivariate calibration using a genetic algorithm: prediction of additive concentrations in polymer filmsfrom Fourier transform-infrared spectral data. Analytica Chimica Acta. 2002, 461:189-200
    1.胡上序、陈海.化工过程的建模、仿真和优化.杭州:浙江大学出版社.1997
    2.麻德贤,李成岳,张卫东.化工过程分析与合成.北京:化学工业出版社.2002
    3.王树青.先进控制技术及应用.北京:化学工业出版社.2001
    4.麻德贤.过程系统人工智能技术.北京:中国石油化工出版社.1996
    5.张兵;陈德钊;俞欢军..通用回归神经网络及其用于渣油裂解建模.浙江大学学报(工学版).2004,38(6):653-657
    6.郝鑫;陈德钊;吴晓华;俞欢军..广义回归神经网络的改进及在延迟焦化建模中的应用.化工学报.2004,55(4):608-612
    7.王延敏,姚平经.热偶精馏过程模拟优化方法的改进——人工神经网络2遗传算法.化工学报.2003,54(9):1246-1270
    8.俞金寿,刘爱伦,张克进.软测量技术及其在石油化工中的应用.北京:化学工业出版社.2000
    9. Adilson Jose, De Assis, Rubens Maciel Filho. Soft sensors development for on-line bioreactor state estimation. Computers and Chemical Engineering. 2000, 24:1099-1103
    10. Linko Susan, Zhu Yi-Hong, Linko Pekka. Applying neural networks as software sensors for enzyme engineering. Trends in Biotechnoiogy. 1999, 17(4): 155-162
    11. L. Fortuna, S. Graziani, and M. G. Xibilia, Soft sensors for product quality monitoring in debutanizer distillation columns. Control Engineering Practice. 2005, 13(4): 499-505
    12. Hornik K, Stinchcombe M, White H. Multilayer feedforward neural networks are universal approximators. Neural Networks. 1959, 2(5): 359-366
    13. J. Park, I W. Sandberg Universal approximation using radial-basis-function networks. Neural Comput. 1991, 3(2): 246-257
    14.阎平凡,张长水.人工神经网络与模拟进化计算.2 ed.北京:清华大学出版社.2005
    15. S. Chen, N. C. F. Cowan, P. M. Grant. Orthogonal least squares learning algorithm for radial basis function networks. IEEE transactions On Neural Networks. 1991, 2(2): 302-309
    16. B. Walczak, D. L. Massart The Radial Basis Functions-Partial Least Squares approach as a flexible non-linear regression technique. Analytica Chemica Acta. 1996, 331(3): 177-185
    17. V. N. Vapnik, The nature of statiscal learning theory New York: Springer. 1995
    18.陶少辉.最小二乘支持向量机德改进及其在化学化工中的应用[D].杭州:浙江大学,2006
    19. J. H. Kalivas, Basis sets for multivariate regression. Analytica Chemica Acta. 2001, 428: 31-40
    20.李志华,陈德钊.RBF—MCSR方法用于二甲苯异构化装置的建模.化工学报 2002,53(6):627-632
    21.庄凌,陈德钊.RBF—CSR方法及其应用于裂解装置建模的研究.高校化学工程学报 2002,16(1):64-69
    22. P. M. Lang, J. M. Breneheley, R. G. Nieves, J. H. Kalivas Cyclic Subspace Regressin. Jounal of Multivariate Analysis. 1998, 65(1): 58-70
    23.周明,孙树栋.遗传算法原理及应用.北京:国防工业出版社.1999
    24.陈永忠,陈顺怀.整数规划的遗传算法.交通部上海船舶运输科学研究所学报.2000,23(1):42-46
    25.陈宝林.最优化理论与算法.北京:清华大学出版社.1989
    26.Chaohong(何潮洪),Xie Fangyou(谢方友),Zhu Mingqiao(朱明乔),Liu Jianqing(刘建青) and He. Extraction of Caprolactam from Aqueous Ammonium Sulfate Solution in Pulsed Packed Column Using 250Y Mellapak Packings. Chinese J. Chem. Eng. 2002, 10(6): 677—680
    27. Liu Jianqing, Xie Fangyou, He Chaohong, Zhu Mingqiao. Recovery of Caprolactam from waste water in caprolactam production using pulsed-sieve-plate extraction column. Chinese J. Chem. Eng. 2002, 10(3): 371-373
    28.虞肖鹏,叶向群,何潮洪.脉冲填料萃取塔的绿色设计.高校化学工程学报.2005,19(6):745-750
    29.谢方友.脉冲筛板塔回收废液中己内酰胺的中试及工业化[D].杭州:浙江大学,2002
    30.成飙,陈德钊,吴晓华.RBF—CSR—EHCGA模型及其在脉冲萃取中的应用.化工学报.2004,56(7):1271-1275
    1. R. C Eberhart, J. Kennedy. A new optimizer using particle swarm theory, in Proceeding of sixth international symposium on Micro mathine and human science. 1995. Nagoya, Japan.
    2. J. Kennedy, R. C. Eberhart. Particle swarm optimization, in Proceedings of IEEE International Conference on Neural Networks. 1995. Piscataway, NJ.
    3. R.C.Eberhart and Y.Shi, Guest Editorial Special Issue on Particle Swarm Optimization. IEEE Transaction on evolutionary computation. 2004, 8(3): 201-203.
    4. C.W. Reynolds, Flocks,herbs and schools:a distributed behavioral model. computer graphics. 1987, 21(4): 25-34
    5. Heppner, F.U. Grenander, A stochastic nonlinear model for coordinated bird flocks. The Ubiquity of chaos, ed. S.Krasner. Washington DC: AAAS publications. 1990
    6. E.O. Wilson, Sociobiology: The new synthesis. Cambridge,MA: Belknap Press. 1975
    7. J.Kennedy,The particle swarm:social adaptation of knowledge. in Proceedings of IEEE international conference on evolutionary computation.1997.Indianapolis,Indiana.
    8. R.C.Eberhart, P.K.Simpson, R.W.Dobbins, Computational Intelligence PC Tools. first ed.: Academic Press Professional. 1996
    9. Y. Shi, R.C. Eberhart Empirical study of particle swarm optimization. in Proceedings of the World Multiconference on Systemics, Cybernetics and Informatics. 1999. Orlando, FL.
    10. Y. Shi, R.C.Eberhart A modified particle swarm optimizer. in Proceedings of IEEE International Conference on Evolutionary Computation. 1998. Piscataway, NJ.
    11. Y.Shi, R.C.Eberhart. Parameter selection in particle swarm optimization. in Proceedings of the Seventh Annual Conferenceon Evolutionary Programming. 1998. New York, USA.
    12. Yuhui Shi; R.C. Eberhart, Fuzzy adaptive particle swarm optimization. in Proceedings of the 2001 Congress on Evolutionary Computation. 2001. Seoul, Korea.
    13. M.Clerc , J.Kennedy The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation. 2002, 6(1): 58-73
    14. M.Clerc, The swarm and the queen:Towards a deterministic anda daptive particle swarm optimization. in Proceedings of the IEEE Congresson Evolutionary Computation. 1999.
    15. R.C.Eberhart, Y.Shi. Comparing Inertia weight and constriction factors in particle swarm optimization. in Proceedings of the IEEE Congress on Evolutionary Computation. 2000. San Diego, CA.
    16. J.Kennedy, The behavior of particle. in Proc. 7th Annu. conf. Evol.Program. 1999. San Diego.
    17. E.Ozcan, C.K.Mohan. Analysis of a simple particle swarm optimization system. Intelligent Engineering Systems Through Artificial Neural Networks. 1998, 8: 253-258
    18. E.Ozcan, C.K.Mohan. Particle swarm optimization: surfing the waves. in Proceedings of the IEEE Congress on Evolutionary Computation. 1999. Picataway, NJ.
    19. F.Van Den.Bergh, An analysis of particle swarm optimizers[D]. Pretoria,South Africa: University of Pretoria, 2002
    20. F.Van Den Bergh, A.P. Engelbrecht. A study of particle swarm optimization particle trajectories. Information Science. 2006, 176: 937-971
    21. L.C.Trelea, The particle swarm optimization algorithnv.convergence analysis and parameter selection. Inf. Process. lett. 2003, 85: 317-325
    22. 李宁,孙德宝,邹彤. 基于差分方程的PSO算法粒子运动轨迹分析. 计算机学报 . 2006, 29(11): 2052-2061
    
    23. Visakan Kadirkamanathan, Kirusnapillai Selvarajah, and Peter J. Fleming. Stability analysis of the particle dynamics in particle swarm optimizer. IEEE Transaction on evolutionary computation. 2006, 10(3): 245-255
    24. 周春晕,化工过程控制原理. 2 ed. 北京: 化学工业出版社. 1998
    25. J.Holland, Adaption in natural and artificial systems. Ann Arbor, MI: Universtiy of Michigan Press. 1975
    26. S.Milgram, A small world problem. Psychology today. 1967, 44: 585-612
    27. D.J. Watts, Small Worlds :The Dynamics of Networks Between Order and Randomness. Princeton University Press. 1999
    28. R.Mendes, J.Kennedy, and J. Neves, Watch thy neighbor or how the swarm can learn from its environment. in Proceedings of the IEEE Swarm Intelligence Symposium (SIS 2003). 2003. Indianapolis, Indiana USA.
    29. J. Kennedy, Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance. in Proceedings of IEEE Congress on Evolutionary Computation (CEC 1999). 1999. Piscataway, NJ.
    30. J. Kennedy, R. Mendes Population structure and particle swarm performance, in Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2002). 2002. Honolulu, Hawaii.
    31.张丽平.粒子群优化算法的理论及实践[D].杭州,中国:浙江大学,2005
    1. A. Carlisle, and G. Dozier. An off-the-shelf PSO,. in Proceedings of the Workshop on Particle Swarm Optimization. 2001. Indianapolis, USA.
    2. El-Gallad, A. El-Hawary, M. Sallam, A. Kalas. Enhancing the particle swarm optimizer via proper parameters selection, in Canadian Conference on Electrical and Computer Engineering. 2002.
    3. Ventura Mark Richards and Dan. Dynamic sociometry in particle swarm optimization, in International Conference on Computational Intelligence and Natural Computing. 2003. Cary, North Carolina.
    4. K. E. Parapoulos, Plagianakos, Improving the particle Swarm Optimizer by Function "Stretching", in Advances in convex analysis and Global Optimization, P. P. M. Hadjiasvvas N, Editor. 2001, Kluwer Academic Publisers Boston. p. 445-457.
    5. G. V. Reklaitis, A. Ravindran, and K. M. Ragsdell, Engineering Optimization — Methods and Applications. New-York: Wiley-Interscience. 1983
    6. D. H. Wolpert, W. G. Macready, No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation. 1997, 1(1): 67-82
    7. P. J. Angeline, Using selection to improve particle swarm optimization, in Proceedings of the IEEE Congress on Evolutionary Computation. 1998. Anchorage, Alaska.
    8. Chia-Feng Juang, A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Transactions on Systems, Man and Cybernetics, Part B,. 2004, 24(2): 997-1006
    9. Fang Wang, Yuhui Qiu. A modified particle swarm optimizer with roulette selection operator. in Proceedings of 2005 IEEE International Conference on Natural Language Processing and Knowledge Engineering. 2005. Wuhan China.
    10. T. A. Hendtlass, combined swarm differential evolution algorithm for optimization problems, in Proceedings of the 14th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems (IEA/AIE). 2001. Budapest, Hungary.
    11. Wen-Jun Zhang, Xiao-Feng Xie. DEPSO: hybrid particle swarm with differential evolution operator, in IEEE International Conference on Systems, Man and Cybernetics 2003. Washington, DC.
    12. S. C. Esquivel, and C. A. Coelio Coello, On the use of particle swarm optimization with multimodal functions, in Proceedings of IEEE Congress on Evolutionary Computation. 2003. Canbella, Australia.
    13. T. O. Ting, M. V. C. Rao, C. K. Lop, and S. S. Ngu, Solving Unit Commitment Problem Using Hybrid Particle Swarm Optimization. Journal of Heuristics. 2003, 9:507-520
    14. S. Katare, A. Kaios, D. West, A hybrid swarm optimizer for efficient parameter estimation. in Congress on Evolutionary Computation. 2004. Piscataway, NJ.
    15. T. A. A. Victoire, and A. E. Jeyakumar, Hybrid PSO-SQP for economic dispatch with valve-point effect. Electric Power Systems Research. 2004, 71(1): :51-59
    16. Junfeng Chen Fan, Ziwu Ren Xinnan. A Hybrid Optimized Algorithm Based on Improved Simplex Method and Particle Swarm Optimization. in Chinese Control Conference 2006. Harbin, Heilongjiang.
    17. M. M. Noel, and T. C Jannett, Simulation of a new hybrid particle swarm optimization algorithm, in Proceedings of the Thirty-Sixth Southeastern Symposium on System Theory. 2004. Atlanta, USA.
    18. M. P. Wachowiak, R. Smolikova, Y. Zheng, J. M. Zurada, and A. S. Elmaghraby. An Approach to Multimodal Biomedical Image Registration Utilizing Particle Swarm Optimization. IEEE Transactions on Evolutionary Computation. 2004, 8(3): 289-301
    19. J. Mead Nelder, A simplex method for function minimization. Computer Journal. 1965, 7: 308-313
    20.唐焕文,秦学志,实用最优化方法.3 ed.大连:大连理工大学出版社.2003
    21. Z. Michalewicz, survey ofconstraint handlingtechniques in evolutionary computation methods, in Proceedirrgs of the 4th Annual Confererice on Evolutionary Programming. 1995.
    22. G. Coath, S. K. Halgamuge, A comparison of constraint-handling methods for the application of particle swarm optimization to constrained nonlinear optimization problems. in The 2003 Congress on Evolutionary Computation (CEC03) 2003. Canberra.
    23. K. Vrahatis, and M. Parsopoulos, Particle swarm optimization method for constrained optimization problems: in Intelligent technologies - theory and applications: new trends in intelligent technologic. Frontiers in Artificial lritelligerice andilpplieariorrs. Vol. 76. IOS Press. 2002
    24. R. Horst, P. M. Paradolos, N. V. Thoai, Introduction to Global Optimization. 2 ed. Boston: Kluwer Academic Publishers. 2000
    1. J. D. Seader, E. J. Henley, Separation Process Principles. New York: Wiley & Sons, Inc.1998
    2.陈新志,蔡振云,胡望明,化工热力学.北京:化学工业出版社.2001
    3. Michelson, M. L. Phase Equilibrium calculation: what is easy and what is difficult? Comput. chem. engng. 1993, 17(5/6): 431-439
    4. L. E. Baker, a, C, Pierce, and K. D. Luks. Gibbs energy analysis of phase equlibria. Soc. Petro. Eng. 1982, 731:
    5. J. V. Smith, R. W. Missen, and W. R. Smith. General optimality criteria for multiphase multireaction chemical equilibrium. J. AICHE. 1993, 39(4): 707
    6. M. L. Michelsen, The Isothermal Flash Problem: Ⅰ. Stability. Fluid Phase Equilibria. 1982, 9:1-19
    7. M L Michelsen,. The Isothermal Flash Problem: Ⅱ. Phase-Split Calculation. Fluid Phase Equilibria. 1982, 9:21-40
    8. Conor M. Mcdonald, C. A. Flouda. Global Optimization for the Phase Stability Problem. AIChE Journal. 1995,41(7): 1798-1814
    9. C. M. Mcdonald, C. A.. Floudas, GLOPEQ: a new computational tool for the phase and chemical equilibrium problem. Computers and Chemical Engineering. 1997, 21(1): 1-23
    10. S. T. Harding, C. A. Floudas. Phase Stability with Cubic Equations of State: Global Optimization Approach. AICHE J. 2000, 46(7): 1422
    11. S. T. Harding, Analysis and design of nonideal distillation process[D]. Princeton University, 2001
    12. James Z. Hua, Joan F. Brennecke, and Mark A. Stadtherr, Reliable prediction of phase stability using an interval Newton method. Fluid Phase Equilibria. 1996, 116(1-2): 52-59
    13. James Z. Hua, Joan F. Brennecke, and Mark A. Stadtherr, Reliable phase stability analysis for cubic equation of state models. Computers & Chemical Engineering. 1996, 20(Supplement 1): S395-S400
    14. James Zhengmao Hua.Interval methods for reliable computations of phase equilibrium from equation of state model[D]. Urbana: University of Illinois at Urbana-Champaign, 1997
    15. James Z. Hua, Joan F. Brennecke, and Mark A. Stadtherr, Reliable computation of phase stability using interval analysis: Cubic equation of state models. Computers & Chemical Engineering. 1998,22(9): 1207-1214
    16. Stephen R.Tessier, Joan F. Brennecke, and Mark A. Stadtherr, Reliable phase stability analysis for excess Gibbs energy models. Chemical Engineering Science. 2000, 55(10): 1785-1796
    17. I. Burgos-Solorzano Gabriela, Joan F. Brennecke, Mark A. Stadtherr. Validated computing approach for high-pressure chemical and multiphase equilibrium. Fluid Phase Equilibria. 2004,219:245-255
    18. Xu Gang, William D. Haynes, and Mark A. Stadtherr, Reliable phase stability analysis for asymmetric models. Fluid Phase Equilibria. 2005, 235(2): 152-165
    19. A C Sun, W.D. Seider. Homotopy-Continuation Method for Stability Analysis in the Global Minimization of the Gibbs Free Energy. Fluid Phase Equilibria. 1995, 103: 213-249
    20. Bausa Jurgen, Marquardt Wolfgang. Quick and reliable phase stability test in VLLE flash calculations by homotopy continuation. Computers & Chemical Engineering. 2000, 24(11): 2447-2456
    21. F. Jalali-Farahani, J.D. Seader. Use of homotopy-continuation method in stability analysis of multiphase, reacting systems. Computers and Chemical Engineering. 2000, 24: 1997-2008
    22. S K Wasylkiewicz, Lakshmi N Sridhar, Michael F Doherty, Michael F. Malone. Global Stability Analysis and Calculation of Liquid-Liquid Equilibrium in Multicomponent Mixtures. Ind. Eng. Chem. Res. 1996, 35: 1395-1408
    23. S. K. Wasylkiewicz, Sophie Ung. Global phase stability analysis for heterogeneous reactive mixtures and calculation of reactive liquid-liquid and vapor-liquid-liquid equilibria. Fluid Phase Equilibria. 2000, 175: 253-272
    24. K.A. Green, Shihong Zhou, K.D. Luks. The fractal response of robust solution techniques to the stationary point problem. Fluid Phase Equilibria. 1993, 84: 49-78
    25. B.E. Poling, J.M. Prausnitz, J.P.O'connell, The properties of gases and liquids. 5 ed.: McGraw-Hill companies,Inc.2001
    26. Conor M. Mcdonald, Christodoulos A. Floudas,. Glopeq: a new computational tool for the phase and chemical equilibrium problem Computers & Chemical Engineering. 1996, 21(1): 1-23
    27. U. Block, and B. Hegner. Development and application of a simulation model for three phase distillation. J. AICHE. 1976, 22(3): 586
    28. Zhu Yushan and Xu Zhihong. A reliable prediction of the global phase stability for liquid-liquid equilibrium through the simulated annealing algorithm: Application to NRTL and UNIQUAC equations. Fluid Phase Equilibria. 1999, 154(1): 55-69
    29. Rangaiah Gade Pandu. Evaluation of genetic algorithms and simulated annealing for phase equilibrium and stability problems. Fluid Phase Equilibria. 2001, 187-188: 83-109
    30. Nichita Dan Vladimir, Gomez Susana and Luna, Eduardo. Phase stability analysis with cubic equations of state by using a global optimization method. Fluid Phase Equilibria. 2002, 194-197:411-437
    31. 王丽军,李希,张宏建. 乙酸—水—乙酸正丁脂三相体系的热力学分析与共沸精镏过程模拟. 化工学报. 2005, 56(7): 1260
    
    32. J.M.Prausnitz, R.N.Lichtenthaler, D.Azevedo, Molecular thermodynamics of Fluid-Phase Equilibria. 3 ed.: Prentice Hall PTR.1999
    33. M.L.Michelsen. The Isothermal Flash Problem: 1 .Stablity. Fluid Phase Equilibria. 1982, (9):1
    34. M.J. Cocero, F. Mato, I. Garc'(?)a, J.C. Cobos, H.V. Kehiaian. hermodynamics of binary mixtures containing organic carbonates. 2. Isothermal vapor-liquid equilibria for dimethyl carbonate + cyclohexane + benzene, or + tetrachloromethane. J.Chem.Eng. Data. 1989, 34(1): 73-76
    35. Y.W. Kang, Vapor-Liquid Equilibria for the Systems Difluoromethane + Hydrogen Fluoride, Dichlorodifluoromethane + Hydrogen Fluoride, and Chlorine + Hydrogen Fluoride. J. Chem. Eng. Data. 1998, 43(1): 13-16
    36. J.W. Kovach, and W.D. Seider. Heterogeneous azeotropic distillation:experimental and simulation results. Journal of AICHE. 1987, 33(8): 1300
    1. Warren D. Seider, Soemantri Widagdo. Multiphase equilibria of reactive systems. Fluid Phase Equilibria. 1996, 123:283-303
    2. M. L. Michelsen, The Isothermal Flash Problem: l. Stablity. Fluid Phase Equilibria. 1982, (9):1
    3. M. L. Michelson, The Isothermal Flash Problem: 2. Phase-Split Calculation. Fluid Phase Equilibria. 1982, (9): 21
    4. M. L. Michelson, Phase Equilibrium calculation: what is easy and what is difficult? Comput. Chem. Eng.,. 1993, 17(5/6): 431-439
    5. W. B. White, S. M. Johnson, and G. B. Dantzig. Chemical equilibrium in complex mixtures. J. Chem. Phys. 1958, 28(5): 751
    6. Boyd George, L. P. Brown. Computation of Multicomponent Multiphase Equilibrium. Ind. Eng. Chem., Process Des. Dev. 1976, 15(3): 372-377
    7. W. D. Seider, R. Gautam. Computation of phase and chemical equilibrium- Part Ⅰ: Local and constrained minima in Gibbs free energy. Journal of AICHE. 1979, 25(6): 911
    8. W. D. Seider, R. Gautam. Computation of phase and chemical equilibrium-Part Ⅱ: Phase splitting. Journal of AICHE. 1979, 25(6): 999
    9. W. D. Seider, R. Gautam. Computation of phase and chemical equilibrium- Part Ⅲ: Electrolytic solutions. Journal of AICHE. 1979, 25(6): 1006
    10. J. Castiilo and I. E. Grossmann. Computation of phase and chemical equilibria. Computers and Chemical Engineering. 1981, (5): 99-108
    11. G. Lantagne, B. Marcos, and B. Cayrol. Computation of complex equilibria by nonlinear optimization. Comput. Chem. Eng.,. 1988, 12(6): 589
    12. A. Lucia, and J. Xu. Chemical process optimization using Newton-like methods. Comput. Chem. Eng.,. 1990, 14(2): 119
    13. A. K. Gupta, P. R. Bishnoi, and N. Kalogerakis. A method for the simultaneous phase equilibria and stability calculatins for multiphase reacting and non-reacting systems. Fluid Phase Equilibria. 1991, 63:65-89
    14. C. A. Floudas, A. Aggarwal. and A. R. Ciric. A global optimum search for nonconvex NLP and MINLP problems. Comput. chem. engng. 1989, 13(10): 1117
    15. G. E. Paules, C. A. Floudas. A new optimization approach for phase and chemical equilibrium problems, in the Annual AIChE Meeting. 1989. San Franciso, CA.
    16. W. D. Seider, A. C. Sun. Homotopy continuation algorithm for global optimization, in Recent advances in global optimization. 1992, Princeton University Press.
    17. C. A. Floudas, V. Visweswaran. A global optimization algorithm(GOP) for certain classes of nonconvex NLPs: Ⅰ. Theory. Comput. chem. engng. 1990, 14(12): 1397
    18. V. Visweswaran, C. A. Floudas A global optimization aigorithm(GOP) for certain classes of nonconvex NLPs: Ⅱ. Application of theory and test problems Comput. chem. engng. 1990, 14(12): 1419
    19. C. M. Mcdonald, C. A.Floudas, Global optimization for the phase and chemical equilibrium problem: application to the NRTL equation. Computers and Chemical Engineering. 1995, 19(11): 1111-1139
    20. Mcdonald, C. M. & Floudas, C. A. Global optimization and analysis for the Gibbs free energy function using the UNIFAC, Wilson, and ASOG equations. Industrial Engineering and Chemical Research. 1995, 34: 1674-1687
    21. C. M. Mcdonald, C. A.Floudas, Global optimization for the phase stability problem. Journal of AICHE. 1995,41(7): 1798-1814
    22. C. M. Mcdonald, C. A.Floudas, GLOPEQ: a new computational tool for the phase and chemical equilibrium problem. Computers and Chemical Engineering. 1997, 21(1): 1-23
    23. C.S.Adjiman, S. Dallwig, C. A. Floudas, and A. Neumaier,. A Global Optimization Method, a BB, for General Twice-Differentiable NLPs: I. Theoretical Advances. Comput. Chem. Eng.,. 1998,22: 1137
    
    24. C.S. Adjiman , I. P. Androulakis, and C. A. Floudas,. A Global Optimization Method, a BB, for General Twice-Differentiable NLPs: II. Implementation and Computational Results,. Comput. Chem. Eng.,. 1998, 22(1159):
    
    25. S.T. Harding, C.A. Floudas. Phase Stability with Cubic Equations of State: Global Optimization Approach. Journal of AICHE. 2000, 46(7): 1422-1440
    26. Yeow Peng Lee , Gade Pandu Rangaiah , Rein Luus. Phase and chemical equilibrium calculations by direct search optimization. Computers and Chemical Engineering. 1999, 23: 1183-1191
    27. Rangaiah Gade Pandu. Evaluation of genetic algorithms and simulated annealingfor phase equilibrium and stability problems. Fluid Phase Equilibria. 2001, 187-188: 83-109
    28. Zhu Yushan, and Xu Zhihong. Calculation of Liquid-Liquid Equilibrium Based on the Global Stability Analysis for Ternary Mixtures by Using a Novel Branch and Bound Algorithm: Application to UNIQUAC Equation. Ind. Eng. Chem. Res. 1999, 38: 3549-3556
    29. Yushan Zhu, Hao Wen, Zhihong Xu. Global stability analysis and phase equilibrium calculations at high pressures using the enhanced simulated annealing algorithm. Chemical Engineering Science. 2000, 55: 3451} 3459
    30. Y. Zhu, K. Inoue. Calculation of chemical and phase equilibrium based on stability analysis by QBB algorithm: application to NRTL equation. Chemical Engineering Science. 2001,56:6915-6931
    31. D.V. Nichita, S.Gomez , E. Luna. Multiphase equilibria calculation by direct minimization of Gibbs free energy with a global optimization method. Computers and Chemical Engineering. 2002, 26: 1703-1724
    32. Y. Sofyan, A.J. Ghajar, and K.A.M. Gasem. Multiphase Equilibrium Calculations Using Gibbs Minimization Techniques. Ind. Eng. Chem. Res. 2003, 42: 3786-3801
    33. Gabriela I. Burgos-Sol6rzano, Joan F. Brennecke, Mark A. Stadtherr. Validated computing approach for high-pressure chemical and multiphase equilibrium. Fluid Phase Equilibria. 2004,219:245-255
    34. Jurgen Bausa, Wolfgang Marquardt. Quick and reliable phase stability test in VLLE flash calculations by homotopy continuation. Computers and Chemical Engineering. 2000, 24: 2447-2456
    35. M.O.Thompson, D.W.Ohanomah. Computation of multicomponent phase equilibria : Part I Vapour-liquid equilibria. Comput. chem. engng. 1984, 8(3): 147
    36. M.O.Thompson, D.W.Ohanomah. Computation of multicomponent phase equilibria -PartII: Liquid-liquid and solid-liquid equilibria. Comput. chem. engng. 1984, 8(3): 157
    37. M.O. Thompson, D.W.Ohanomah. Computation of multicomponent phase equilibria -PartIII: Multiphase equilibria. Comput. chem. engng. 1984, 8(3): 163
    38. J.M. Reneaume, M.Meyer, X.Joulia. A global MINLP approach for phase equilibrium calculations. Comput. Chem. Eng.,. 1996, 20: 303-308
    39. J.W. Kovach, and W.D. Seider. Heterogeneous azeotropic distillation:experimental and simulation results. Journal of AICHE. 1987, 33(8): 1300
    40. R. C. Reid, J.M Prausnitz, The properties of gases and liquids. New York: McGRAW-HILL.1987
    41. Wen-De Xiao, Kai-Hong Zhu, Wei-Kang Yuan,Henry Hung-Yeh Chien. an algorithm for simultaneous chemical and Phase equilibrium calculation. AIChE Journal. 1989, 35(11): 1183-1120
    42. V. Sanderson Robert, Henry H. Y. Chien. Simultaneous Chemical and Phase Equilibrium Calculation. Ind. Eng. Chem. Process Des. Develop. 1973, 12(1): 81-85
    43. Marcelo Castier, Peter Rasmussen and Aage Fredenslund. Calculation of simultaneous chemical and phase equilibria in nonideal systems. Chem. Engng Sci. 1959, 44(2): 237-248
    44. Wyczesany Andrzej. Nonstoichiometrie Algorithm of Calculations of Simultaneous Chemical and Phase Equilibria. l. Influence of a Method Modeling Nonideality of Systems on the Calculated Equilibrium Composition at Low Pressure. Ind. Eng. Chem. Res. 1993, 32:3072-3080
    45. F. Jalali, J. D. Seader. Homotopy continuation method in multi-phase multi-reaction equilibrium systems. Computers and Chemieal Engineering. 1999, 23: 1319-1331
    46. Yushan Zhua, Katsutoshi Inoueb. Calculation ofchemieal and phase equilibrium based on stability analysis by QBB algorithm: application to NRTL equation. Chemical Engineering Science. 2001, 56:6915-6931
    47.李浩然,林金清.应用遗传算法求解含化学反应体系的相平衡.化工学报.2002,53(6):616-620
    48.安维中,胡仰栋,袁希钢.多相多组分化学反应平衡和相平衡计算的遗传算法.化工学报.2003,54(5):691-694
    49. R. Gani, T. S. Jepsen, and E. S. Pkrez-Cisneros. A Generalized Reactive Separation Unit Model. Modelling and Simulation Aspects. Comput. chem. engng. 1998, 22(Suppl.): S363-S370
    50. Aspen Technology Inc, Aspen Plus Unit Operation Models. Cambridge. 2000
    51. H. S. Caram, and L. E. Scriven. Non-unique reaction equilibria in non-ideal systems. Chem. Eng. Sci. 1976, 31:163
    52. R. A. Heidemann, Non-Uniqueness in phase and reaction equilibrium computations. Chem. Eng. Sci. 1978, 33(1517):
    53. E. S. Pereza Cisneros, R. Gani, M. L. Michelsen, Reactive separation systems-Ⅰ. Computation of physical and chemical equilibrium Chemical Engineering Science 1997, 52(4): 527-543

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700